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Abstract—IoT devices are decentralized and deployed in un-
stable environments, which causes them to be prone to various
types of faults, such as power failure and network disruption.
Yet, current IoT platforms require programmers to handle faults
manually, a complex and error-prone task. In this paper, we
present IOTREPAIR, a fault-handling system for IoT that (1)
integrates with fault identification modules to track faulty devices,
(2) provides a library of fault-handling functions for effectively
handling different fault types, (3) provides a fault handler on top
of the library for autonomous IoT fault handling, with deployed
devices, user preferences, and developer configuration as input.
Through an evaluation in a simulated lab environment, we find
IOTREPAIR reduces the incorrect states on average 63.51%, which
corresponds to less unsafe and insecure device states. Overall,
through a systematic design of an IoT fault handler, we provide
users flexibility and convenience in handling complex IoT fault
handling, allowing safer IoT environments.

I. INTRODUCTION

Internet of Things (IoT) has continued to increase in
popularity in recent years, leading to a rush of new IoT devices
and IoT environments with many diverse devices. IoT devices
can now be used to provide services to users in home, industrial,
city, and vehicular deployments. Figure 1 presents the typical
architecture of an IoT device and an example IoT app. As
shown on the right of the figure, an IoT device often consists
of (i) a set of sensors such as location, temperature, and light
sensors, (ii) an auxiliary Micro-Controller Unit (MCU) to read
the raw sensor values, (iii) low power CPU cores, (iv) network
interfaces to communicate the user-level events to end-users,
and (v) a battery or a power supply unit to power all these
components. The left side of the figure illustrates an example
IoT app of how these devices are automated to interact with
the environment. The app uses a temperature sensor to read
the current temperature of the home, opening the window and
notifying the user when it gets too hot and closing the window
and turning on the heater when it gets too cold.

Faults in IoT Systems. IoT devices that interact with physical
environments must maintain high dependability for practical
deployment. However, they are prone to faults caused by factors
such as power outages [1] and network disruption [2]; frequency
of faults is also increased due to IoT device design constraints
such as low computation capacity [3] and small batteries [4].
Additionally, devices face complex issues, such as disruptive
environmental conditions like weather and collisions [5], user
error during deployment in environment [1], and flaws in the
device hardware and software [6]. A study shows that devices in
smart homes can experience faults more than 4 hours a day due
to power loss, network disruption, and hardware failure [4], and
a more recent work shows that a temperature sensor experiences
more than 15% faulty temperature readings [2].
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Fig. 1: IoT system architecture and an example IoT app.

Faults can manifest in several forms with different conse-
quences. We divide faults into three categories. Fail-stop faults
occur when a device stops functioning and is unresponsive
to external requests. For example, the power loss of a device
causes its sensor reading to stop and its actuations to fail. Non-

fail-stop faults do not cause a device to function incorrectly and
can appear in a variety of ways with different effects [7]. In
detail, they happen when a device manifests an incorrect state,
either producing incorrect sensor reads or failing to properly
follow actuation commands. For example, a software error
could cause the device to rapidly change between two states,
which could trigger a large number of incorrect actuations
from apps. Cascading faults happen when a faulty device in
an app incorrectly triggers an event in another app, causing
the initial fault to cascade through the system. For example, if
a fault in the temperature sensor causes the app in Figure 1
to turn on the heater, a cascading fault happens when another
energy-saving app turns off the air conditioner as a result.

Motivation for Automated IoT Fault Handling. As IoT
systems are primarily autonomous, there is generally little
interaction and oversight from users. When faults happen,
asking users to handle faults manually would be impractical
and lead to lengthened response time. Therefore, it is highly
desirable to have a largely automated IoT fault identification
and handling system. Such an automated system would reduce
dependency on swift user interventions and increase the
reliability of IoT services. Automatic identification of a variety
faults is already present in IoT, but the ability to quickly handle
the majority of faulty cases is still absent. Our motivation for
IOTREPAIR is to provide a handling solution that will eliminate
or mitigate the various effects of these faults in IoT platforms.

Fault Tolerance in IoT Systems. To understand state of the art
in automated IoT fault detection and handling, we have studied
both current major IoT platforms and past research. We aim at
characterizing their fault identification and handling methods



Fail-Stop Faults Non-Fail-Stop Faults

IoT Platform Comm. Power Crit Error Outlier Stuck-at High Var. Spike

SmartThings [8] ⊘ ⊘ ⊘ ⊗ ⊗ ⊗ ⊗

OpenHab [9] ⊘ ⊘ ⊘ ⊗ ⊗ ⊗ ⊗

Vera [10] ⊘ ⊘ ⊘ ⊗ ⊗ ⊗ ⊗

Homekit [11] ⊖ ⊖ ⊖ ⊗ ⊗ ⊗ ⊗

Wink [12] ⊖ ⊖ ⊖ ⊗ ⊗ ⊗ ⊗

AndroidThings [13] ⊕ ⊕ ⊕ ⊗ ⊗ ⊗ ⊗

IoTivity [14] ⊖ ⊖ ⊖ ⊗ ⊗ ⊗ ⊗

KaaIoT [15] ⊖ ⊖ ⊖ ⊗ ⊗ ⊗ ⊗

⊘ Silent ⊖ Generic Error ⊕ Detailed Error ⊗ Undetected

TABLE I: IoT platforms’ response to different device faults.

Undetected means that the fault is not recognized by the

platform, silent means no message sent to apps, generic error

means message does not contain fault information, and detailed

error means message contains fault information.

(See Table I). In general, current IoT platforms do not give
the means for apps to handle non-fail-stop faults since these
faults are not even detected by these platforms. For fail-stop
faults, only Android Things gives enough information to handle
faults effectively; however, developers still have to manually
add code to handle these faults. Other platforms either provide
only generic error messages, which make it hard for apps to
differentiate types of fail-stop faults, or stay silent and rely on
developer to attempt to implement ad-hoc detection. Finally,
none of these platforms can handle cascading faults.

A large body of work on fault identification has been
proposed targeting specific environments and fault types
e.g., [16], [17], [18], [19], [20] for wireless sensor networks,
and [21], [22], [23] for smart home devices. Yet, there is
very little research on automated IoT fault handling after a
fault is identified. One system [24] uses imperfect replication
in redundancy-free UAV sensors to allow near-correct device
operation during sensor failure, but it is specific to UAV sensors
and does not repair faults. Most fault tolerance methods for
commodity IoT use replication; for example, Rivulet [25]
removes the edge device as a single point of failure by
distributing communication relays to capable devices, though
it does not handle the more common sensor and actuator
faults. Transactuations [26] address transaction flaws in IoT
and prevents physical device states from losing synchronization
with stored variables. Yet, it does not repair faults or correct
state errors that occur before the fault is detected. To the best
of our knowledge, there exists no system that automates fault
identification and handling for diverse IoT device faults.

Challenges in IoT Fault Handling. Compared to the fault han-
dling in other computing platforms such as distributed systems
and cloud services, IoT systems raise unique challenges [27].

• Due to the heterogeneity of IoT devices, various devices
often require different fault-handling techniques executed
to fit power, environmental, and computation constraints.
IOTREPAIR addresses this challenge by introducing a set of
functions that may be invoked in a flexible order with custom
parameters through device driven defined schemes.

• Optimal handling of a specific fault is highly contextual due
to varying user and developer demands, and environmental
factors. For instance, some users may prefer energy conser-
vation over real-time fault handling, and a developer may
desire their apps suspended when a fault occurs. IOTREPAIR

enables users and developers to define their requirements in a
configuration file, which is updated by runtime environmental
input.
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Fig. 2: Overview of IOTREPAIR architecture

• A fault-handling mechanism at installation and run-time must
require minimum user interaction and domain expertise. For
instance, a solution that only notifies users about the fault
may lead to safety issues as the users might not available,
and the fault may require real-time response. IOTREPAIR

provides automated fault handling functionality with user
configurations and developers customizing with APIs to
automate the fault-handling functions in apps.

II. IOTREPAIR OVERVIEW

We design and develop IOTREPAIR, a fault-handling system
for IoT. IOTREPAIR integrates with fault identification modules
to track faulty devices and provide a fault-handling library with
a set of functions to handle diverse device faults. IOTREPAIR can
be integrated into a cloud platform or edge device of an IoT
system to ensure autonomous fault handling. Figure 2 presents
IOTREPAIR architecture with components explained below:

• IOTREPAIR includes a configuration file created during an
initialization phase and can later be customized by IOTREPAIR,
users, and developers ( 1 ). The file includes a set of
parameters to manage and control IOTREPAIR functionality
based on the device types and apps. For instance, parameters
define whether application suppression is enabled and the
upper bound on fault identification module identification
time. These parameters enable IOTREPAIR to be flexible in
addressing a variety of faults in diverse environments.

• IOTREPAIR integrates with a custom, separately installed fault-
identification module to track faulty devices ( 2 ). While
there is a number of fault-identification techniques available,
IOTREPAIR requires only the device ID be provided for each
identified fault to automate fault handling ( 3 ).
IOTREPAIR includes a fault-handling library consisting of a
set of functions to mitigate and repair different fault types,
such as device restart, retry, and checkpoint ( 4 ). Each
function uses the parameters in the configuration file while
attempting to handle a fault. Developers can also implement
their fault handling logic by using provided APIs to modify
the configuration file or adding try/catch block around device
interactions in app source code ( 5 ).

• IOTREPAIR automates fault handling through the configuration
file, fault handling functions, and schemes to minimize the
developer effort ( 6 ). Schemes are organized lists of functions
which invoke a set of fault-handling functions in a specific
order ( 7 ). Once a faulty device is identified, IOTREPAIR

performs device suppression, which blocks polls to the faulty
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Device-based Functions
bool activate_redundant_device (String device_ID){...}

int retry (String device_ID, FP verifyFunc†,
String[][] expectedValues†, bool isFailstop†){...}

bool device_software_restart (String device_ID)){...}

bool device_hardware_restart (String device_ID){...}

None notifyUser (String device_ID){...}

Environment-based Functions
bool checkpoint (String[] device_values){...}

int rollback (String device_ID){...}

int transaction (String[][] actuations){...}

Auxiliary Functions
bool AddDevice (String[] device_ID){...}

bool RemoveDevice (String[] device_ID){...}

bool UpdateDeviceConfig (String[] device_ID, ConfigOptions‡){...}
bool UpdateAppConfig (ConfigOptions‡){...}

† Marks optional arguments.
‡ ConfigOptions are arguments for device/app configuration parameters.

TABLE II: Fault handling functions prototypes.

device and commands sent to faulty devices. It then executes
a scheme defined for a device in the configuration file.

Design Requirements. To fully provide the functionality

above, IOTREPAIR requires the ability to query list of connected
devices, poll device states, query installed apps, send actuation
commands, create and manage a configuration file, expose
library functions to apps, and hook fault identification messages.
The installation space must be between the apps and devices
so that events and actuations can be interrupted. IOTREPAIR

also requires the ability to query types and capabilities at
initialization at least to create configuration file.

Configuration File. There are three types of information in
the configuration file: (i) general parameters, defining the
upper bound on how long fault identification module takes
to identify a fault, as well as specifications for checkpoint
cleanup and replicated device detection, each specified by
the user. (ii) device-based parameters, defining the list of
devices running in the system and the parameters (e.g., which
fault-handling scheme (detailed in Section III-D)) for each
device; default configurations are generated for each device
connected to the edge device by selecting from a list of default
configurations that best matches the device type; they can be
modified by the user, by the automated handler at runtime,
or by developers by making API calls in their apps; (iii) app
parameters, listing what apps are installed on the edge device
and whether the application suppression is enabled for each;
by default application suppression is disabled.

III. FAULT-HANDLING FUNCTIONS

We introduce a set of functions to handle faults in three
groups (See Table II). We then discuss four built-in fault-
handling schemes to automate fault handling.

A. Device-based Functions

Device-based functions implement isolated fault handling,
which does not consider the overall state of the system
(i.e., state of all connected devices), and acts based only on
the state and configuration of the faulty device.

Activate Redundant Device. We define replicating devices to
be of two types: (a) a duplicate of the primary device; (b) a
device that provides similar capabilities; for example, a camera
that can detect motion to replicate a motion sensor. IOTREPAIR

currently only supports type (a) replication, yet imperfect

Initially motion sensors are considered potentially replicating. As time

continues, Motion1 differs in state and is no longer considered, while 

Motion2 and Motion3 stay paired long enough to become replicating.

Presence1: P1

Motion1: M1

Motion2:    M2

Motion3:    M3

P1 M1

M2 M3

P1 M1

M2 M3

P1 M1

M2 M3

Example Sensors Initially Considered 

Sensor Pairs

M1 Differs In State Replication Time 

Threshold Reached

Fig. 3: Example of automatic replication detection

replication could be easily integrated into IOTREPAIR through
using device fingerprints [28] and physical equations [24].

The function ActivateRedundantDevice allows the system
to continue to run unaffected by a detected fault, so long as the
configuration file specifies the replicating device ID if one exists.
If there is, it redirects polls and actuation commands from the
faulty device to the replicating device. Using this method,
IOTREPAIR does not rely on native replication support from the
platform. To ease the burden of writing replicating devices in
the configuration file, IOTREPAIR examines the list of connected
devices through platform capabilities for devices with matching
type and automatically generates relevant configuration data.
Finding a replicate device in an IoT environment must consider
the fact that similar devices are not necessarily co-located. To
address this, IOTREPAIR observes the sensor states during polling
for a configured time and checks whether devices report the
same states consistently. If the two devices’ states and transition
timings remain within acceptable bounds, these devices are
identified to be replicating. Figure 3 illustrates how two co-
located motion sensors would be detected as replicating, as
their states match consistently, while an unrelated presence
sensor and distant motion sensor are discarded.

Retry Device State. Retry aims to prevent overhandling short,
transient faults by delaying functions like restart that would
waste time and energy, or rollback which would unnecessarily
revert the system state. Retry continuously polls the faulty
device’s state until either the fault is resolved or the retry limit
for this device in the configuration file is reached. Optionally if
the faulty device is an actuator and the desired state is known,
corrective actuations can be attempted in between polls which
can resolve faults caused by temporary disruptions.

Software and Hardware Restart. Restarting can be
useful to remediate software bugs or hardware failures.
SoftwareRestart and HardwareRestart functions send a
signal to the device to initiate a restart. This relies on the
device having a built-in capability for the appropriate type of
restart, so some device schemes may not be able to utilize
this function. Many IoT market devices such as Honeywell Z-
Wave Thermostat [29] and open-source platforms like Arduino
implement restart. IOTREPAIR will wait for a response signal and
monitor the device state, and if the restart does not complete,
it retries a number of times based on configuration, and then
the function confirms whether fault is resolved.

B. Environment-based Functions

Environment-based functions implement linked fault han-
dling to mitigate cascading faults. The functions below consider
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Motion Light

Timestamp System Checkpoints

Timestamp Frequency Motion Light

System Device States

t_0 N/A N/A N/A N/AOn On

t_1 1 Off Off

t_2 1 On On

t_1 1 Off Off

t_2 1 On On

t_3 2 Off Off

t_2 1 On Off

t_4 1 Off On

t_1 Off Off

t_2 On On

t_3 Off Off

t_4 Off On

Fig. 4: Illustration of how Checkpoints are taken in a system.

the state of all devices in an environment.

Checkpoint. Checkpoint stores a collection of all device states
in a pending queue at the time it is called. The automated fault
handler invokes the checkpoint function after every actuation
where no subscribing application initiates an actuation based
on the new state. Some time must pass before a checkpoint is
considered valid and appended to the history log. The delay
period is determined by the upper bound on the fault-detection
time, which must be provided by the fault identification module
or set to default. These restrictions prevent creating a checkpoint
that triggers actuations or where a fault was present.

We divide device states into sensor states and actuator states.
Sensor states are read-only states that collectively represent
the state of the environment. Actuator states can be read and
modified through actuation, hence they are the states that can be
rolled back. We assume an app follows the well-known sensor-
computation-actuator structure: modifying actuator states based
on sensor states. IOTREPAIR includes a novel, history-based
checkpoint/rollback mechanism (1) that during checkpointing
records the history of device states, and (2) that during rolling
back restores the most desirable actuator states by looking up
the history according to the current sensor states.

Valid checkpoints are stored in a history log, which holds
checkpoints and their frequencies. Frequency is essential when
implementing fail-norm rollback (discussed soon) which rolls
back to the checkpoint most likely to match the current physical
environment. Only the most recent checkpoint for a given set
of actuator states is stored in the log. Only storing the most
recent sensor states for a set of sensor states keeps the log from
exploding in size. For this reason, checkpoints are removed
from history if they remain unused for a configured duration.

Figure 4 provides an example of how checkpoints are taken
over time in a system as a result of changes in actuator states.
The example uses a simple system with two devices: a motion
sensor and a light actuator. The figure shows checkpoints being
taken during a series of actuations, which occur at time-stamps
t1 through t4, with initial time t0 before actuations. On the
left side of the figure, the state of the system after the actuation
completes is shown. On the right is the list of checkpoints at
each time, starting from an empty set and updating after each
actuation. The first two checkpoints at times t1 and t2 are new
states, since there are no existing checkpoints that match the
sensor states. For these new checkpoints, the time they occurred
and current device states are recorded, and the frequency is set
to 1. The checkpoint taken at t3 has the same device states as
an existing checkpoint; so it updates the checkpoint time-stamp
and the frequency. At time t4, a checkpoint that matches the
sensor states is taken, but the actuator states do not match

Motion Presence Door Lock

Off Faulty (stuck at home) Unlocked

Current System State:

Frequency Motion Presence Door Lock

History of Checkpoints:

30 On Home Unlocked

2 On Away Locked

3 Off Home Unlocked

50 Off Away Locked

Bottom two match the motion sensor state and the second 

one has higher frequency; so rollback the door to be locked

Fig. 5: Example of Fail-norm Rollback.

those of an existing checkpoint; so the matching checkpoint’s
time-stamp is updated, actuator states are overwritten, and
frequency is reset.

Rollback. Rollback performs a series of actuations to match
the system state to a checkpoint selected based on configuration.

We have designed three techniques for choosing the best
checkpoint to target for rollback. Most Recent targets the
checkpoint with the latest timestamp. This technique is suitable
for a system where faults can be detected quickly or system
state changes slowly. Fail-safe only consider checkpoints where
all actuators are in their configured fail-safe state. From this
reduced list, a checkpoint whose sensor states match the
current sensor states in the system is selected. As the states
of faulty sensors cannot be trusted, their sensor states cannot
be considered when determining if a checkpoint matches the
current sensor states. If this causes more than one matching
state, then the frequency is used as a tiebreaker. Fail-norm

finds checkpoint matches in the same fashion as fail-safe, but
does not reduce the list based on fail-safe configurations first.

Rollbacks can be dangerous, as a partial rollback can result
in an invalid transition and enter an incorrect system state.
For this reason, our rollback aborts if any actuator that needs
to be changed is currently known to be faulty. We note that
this captures the heterogeneous nature of IoT devices when
compared to similar functions in distributed systems [30] and
cyber-physical systems [31]. Additionally if rollback completes,
faulty sensor values are set to their values in the checkpoint
until the device is repaired or another rollback occurs.

Figure 5 gives an example of how fail-norm rollback would
operate in a system with two sensors, motion and presence, and
a lock actuator for a door. It shows that IOTREPAIR’s rollback
can mitigate dangerous faults that would otherwise persist
until the user can repair the faulty device, as long as another
sensor’s state is correlated with the faulty sensor’s state with
high frequency. In the example of Figure 5, a presence sensor
that is stuck at home could cause the door to remain unlocked
indefinitely. Fortunately, the motion sensor’s state is largely
correlated with the presence sensor’s state, because it is likely
to detect user motion when the user is at home. As a result,
IOTREPAIR’s rollback can then use the motion sensor’s state to
correct the door to be locked and secure the home, even when
the presence sensor is faulty.

C. Auxiliary Functions

Auxiliary functions are not directly used during fault
handling but can be invoked by the automated handler or
app developers to modify handler configuration.
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Scheme Function Ordering

Conservative 1 2 3 4 5 6
Transient-resistant 1 3 4 5 6 ∅

Long-Restart 1 2 5 3 4 6
Time-sensitive 1 5 2 3 4 6

TABLE III: Execution order of functions in schemes. (1)

Replicate; (2) Retry; (3) Software Restart; (4) Hardware Restart;

(5) Rollback; (6) Notify User.

Device Suppression. Device Suppression is not a library
function, but rather a capability implemented in an edge
device (e.g., hub). Through this capability, an edge device
can terminate polling the device’s state and block actuation
commands sent to the device. This prevents events from a
faulty device triggering incorrect actuations in other devices.

Application Suppression. Application suppression is also a
capability implemented in the edge device. The edge suppresses
all events sent to an app and all actuations triggered by an
app for every app that subscribes to a faulty device and has
application suppression enabled. This is useful for apps that
may put the system into an unsafe state if the state of one
of its dependent devices is unknown. For example, without
suppression, an app may incorrectly open a window if the
temperature gets too hot because a faulty presence sensor is
falsely reporting that the user is home.

Update Device/App Configuration. These functions allow
IOTREPAIR to update the configuration file at runtime by passing
a device or application name and a list of fields to update. If
the passed arguments are valid for the given fields, the values
in the configuration file is updated. App developers can also
call this function with the same parameters to customize the
configuration file for their requirements.

D. Built-in Fault-Handling Schemes

We introduce a set of built-in schemes to automate the
functions introduced above (See Table III). The schemes modify
the execution order of the functions to address environmental
requirements such as safety and security. We chose to use the
device type as a primary determinant of each scheme as IoT
devices introduce several limitations, e.g., duration of restarts
and the presence of replicated devices, which impacts the
optimal function ordering. Our four schemes are not designed
to address all possible deployments, and additional schemes
can easily be created for different deployment requirements
and when new handling functions are developed. IOTREPAIR

updates selected schemes based on device behavior during
fault handling. We describe the purpose of each scheme.
Conservative scheme fits in environments where there are
no strict time requirements and energy conservation is the
primary goal. Transient-resistant scheme aims at devices that
are unlikely to experience transient faults. For instance, this
would be suitable for a temperature sensor deployed in a stable
home environment, since it is capable of restarting and does not
control time-sensitive operations. Long-restart scheme is used
in devices that have excessively long software and hardware
restart times, such as security cameras and a smart refrigerator.
Time-sensitive aims to return the system to the desired state as
the device impacts the safety, for instance, when the security
system is unresponsive. This scheme fits industrial or vehicle
environments where system integrity is the top priority.

IV. IMPLEMENTATION

We implemented 11 distinct IoT apps that automates 17 IoT
devices in a simulated smart home. In this section, we begin
by introducing the simulated IoT apps, and we then present
fault injection and fault identification techniques required for
evaluation of IOTREPAIR.

Implementation Setup. We deployed a set of Arduino devices
connected to and run in parallel on an AVR Arduino Mega
2560 Rev 3 Board [32]. We use the sensor data to generate a
realistic trace for 17 simulated devices that represents activity
in a smart home, which then drives a trace-driven simulation.

IoT Devices and Applications. We deployed 8 Arduino
devices, 6 sensors and 2 actuators to observe behavior for
generating simulated devices. Table IV shows the description
of applications. These apps are selected to cover all spectrum
of home environment functionality, including green living,
convenience, home automation, security, and safety.

Fault Injection. We use fault injection to evaluate the effec-
tiveness of different fault handling methods. The injected fault
overwrites a trace sensor value with the faulty value, either an
incorrect real state for non-fail-stop faults or a null state for fail-
stop. We ensure full coverage of device type and remediation
effectiveness. The fault type, fault length, and injection time are
injected within reasonable distributions because these values
impact the number of incorrect states, not the way the faults
are handled. We only consider single faults–when no more than
one fault is in the system at any given time. Some examples
include a device experiences a power failure, environmental
damage, or communication interruption.

Fault Identification. We use a perfect identification module
that identifies faults instantly and reports the faulty Device
ID. This enables us to show the effectiveness of IOTREPAIR at
mitigating the effects of injected faults.

V. EVALUATION

We present our evaluation on the performance of IOTREPAIR’s
automated handler (Section V-A). Furthermore, we assess the
effectiveness of IOTREPAIR on injected faults (Section V-B).

A. Fault Handling Latency

We evaluate the automated handler latency for different fault-
handling schemes. Here latency refers to the running time of
each scheme, which we average across possible executions.
We examine the logic to track CPU operations and device
interaction time from device manuals to get timing information.
Time spent on CPU operations is then calculated based on the
processing speed of a representative SmartThings IoT Hub [33].

We evaluate latency of each scheme introduced in Sec-
tion III-D. We calculate the running time across all possible
permutations of devices, function parameters, and fault types to
obtain the average time each scheme takes to handle each fault
type. The results are shown in Figure 6, where the average time
to handle a fault is illustrated for each scheme, alongside the
average time each scheme takes to rollback. Optimal assumes
perfect knowledge for choosing functions. Using the proper
scheme results in repairs or mitigation occurring over twice as
fast. Faults underlined in red indicate IOTREPAIR cannot repair
the fault, so rollback time is more important to mitigate errors.
For these faults, the handling time indicates how long it takes
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ID App Name Description

App1 Motion-Activated-Lights When motion detected, turn on lights. Turn off lights when motion not active.

App2 Smoke-Alarm When smoke is detected sound alarm and unlock doors. When no smoke is detected turn off alarm.

App3 Temperature-Control Keep temperature between 70-80 degrees (◦F) by turning heater and air conditioner on and off

App4 Water-Leak-Detector When leak is detected sound alarm and close water valve, when there no leak turn off alarm and open water valve.

App5 Welcome-Home When the user arrives home, unlock doors and turn on coffee machine

App6 Secure-Patio When user is not present and contact is detected, send text message to user

App7 Energy-Saver If window is open and either heater or air conditioner is on, close window.

App8 Secure-Home when user is not present home, lock doors and close windows.

App9 Intruder-Detector When user is not present home and motion is detected, send text message to user

App10 Alarm-Safety When alarm is activated, turn on lights

App11 Morning-Air Open windows and close windows at specific times

TABLE IV: IoT apps and their descriptions developed to evaluate IOTREPAIR.

Fig. 6: Avg. time in msecs each scheme takes to handle different

types of faults and to rollback.

the handler to recognize that the fault is unfixable and notify the
user. We also found that IOTREPAIR is most effective at handling
faults that last longer than ten msecs. However, suppression
and replication help mitigate errors for shorter faults.

B. Effectiveness

We measure the number of incorrect device states that occur
over different executions, which show the effectiveness of
IOTREPAIR in mitigating faults. A device is in an incorrect state
when it deviates from the state it was in at that time in the
faultless execution. This metric is a conservative definition
since a fault handler may correct a device to a state acceptable
to users though it differs from the faultless execution. Yet,
we use the incorrect-state metric since it does not require an
acceptable-state definition, which is user and app-specific.

We execute the simulation: a© when no faults are present,
b© when faults occur without a fault-handling system, c© with
device suppression, and d© using IOTREPAIR. The baseline
of the correct device states is obtained through a©. We
evaluate the effectiveness of the four fault-handling schemes
discussed in Section III-D, and compare the number of incorrect
states in each execution. We detail our results when a single
fault occurs at a time and give a comprehensive analysis
of injected faults and their effects in each execution in our
extended paper [34]. Figure 7 presents the number of incorrect
states over different executions. Most schemes had similar
performance, but transient-resistant scheme was the most
effective scheme for handling single faults. It shows a 63.51%
decrease in incorrect states over no handler and a 60.43%
decrease over device suppression; this represents significant
mitigation of the effects of faulty devices.

Fig. 7: Avg. Incorrect States for each fault handling type across

100 executions of the simulation.

VI. LIMITATIONS AND DISCUSSIONS

The evaluation of IOTREPAIR is limited for several reasons.
The first and largest limitation is it is entirely simulation
based, and while the simulation is based off of real Arduino
devices, we cannot guarantee a physical deployment would
have the same results. Second, for every run, every device
uses the same scheme. This means improvements in one
device can be canceled out by another device that performs
better under a different scheme. Finally, we did not design
our experiments to target the key distinguishing features of
the schemes, such as adding frequent short transient faults to
thwart the transient-resistant scheme. We plan to conduct more
extensive experiments in a true physical deployment.

VII. CONCLUSIONS

We presented the current flawed state of fault handling in
IoT and the need for a fault handling solution to prevent
and mitigate device failures. We have designed and developed
IOTREPAIR

1, a fault handler library that integrates with edge
devices to meet the requirements for diverse IoT environments.
IOTREPAIR includes runtime replication detection, fault history
tracking, a set of fault-handling functions, and schemes
automating the execution of functions in customized orders.
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