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Abstract

Adversarial examples, inputs designed to induce worst-case
behavior in machine learning models, have been extensively
studied over the past decade. Yet, our understanding of this
phenomenon stems from a rather fragmented pool of knowl-
edge; at present, there are a handful of attacks, each with
disparate assumptions in threat models and incomparable def-
initions of optimality. In this paper, we propose a systematic
approach to characterize worst-case (i.e., optimal) adversaries.
We first introduce an extensible decomposition of attacks
in adversarial machine learning by atomizing attack compo-
nents into surfaces and travelers. With our decomposition,
we enumerate over components to create 576 attacks (568
of which were previously unexplored). Next, we propose the
Pareto Ensemble Attack (PEA): a theoretical attack that
upper-bounds attack performance. With our new attacks, we
measure performance relative to the PEA on: both robust and
non-robust models, seven datasets, and three extended -
based threat models incorporating compute costs, formalizing
the Space of Adversarial Strategies. From our evaluation we
find that attack performance to be highly contextual: the do-
main, model robustness, and threat model can have a profound
influence on attack efficacy. Our investigation suggests that
future studies measuring the security of machine learning
should: (1) be contextualized to the domain & threat models,
and (2) go beyond the handful of known attacks used today.

1 Introduction

It is well-known that machine learning models are vulnerable
to adversarial examples—inputs designed to induce worst-
case behavior. Seminal papers have introduced a suite of
varying techniques for producing adversarial examples, each
with their own unique threat models, strengths, and weak-
nesses [7,22,33,35,39]. Every generation of research yields
the next evolution of attacks, designed to overcome prior de-
fenses. It is unclear whether this evolution will ever converge,
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yet it is apparent that there are some attacks that have “sur-
vived” modern defenses. Specifically, the accepted baselines
for evaluating defenses are converging to a small set of largely
fixed attacks and threat models.

This observation on the fixed nature of commonly used
attacks speaks to a broader and more fundamental problem in
the way we evaluate the trustworthiness of machine learning
systems: our understanding of adversaries has been derived
from a union of works with disjoint assumptions and underly-
ing threat models. As a consequence, it is challenging to draw
any universal truths from a rather fragmented (and broadly in-
comparable) pool of knowledge. Subsequently, comparisons
between attacks and attempts at characterizing the worst-case
adversary have been through the lens of a specific threat model
and defined with respect to a small handful of attacks, making
it difficult to discern the true strength of claims on what is
good (or even best) and when.

In this paper, we introduce a systematic approach to de-
termine worst-case adversaries. We first introduce 568 new
attacks by anatomizing seminal attacks into interchangeable
components, therein enabling a meaningful evaluation of
model robustness against an expansive attack space. With this
decomposition, we formalize an extensible Space of Adver-
sarial Strategies: the set of attacks considered by an adversary
under a specific threat model and domain. We then empiri-
cally approximate the Pareto Ensemble Attack (PER): a
theoretical attack which upper-bounds attack performance by
returning the optimal set of adversarial examples for a given
threat model and dataset. We then use the PEA to explore a
fundamental question: Does an optimal attack exist?

Our analysis begins by decomposing seminal attacks in ad-
versarial machine learning. We observe that all known attacks
are broadly built from two components: (1) a surface, and
(2) a traveler. Surfaces encode the traversable attack space
(often as the gradient of a cost function), while travelers are
“vehicles” that navigate a surface to meet adversarial goals.
Attack components live within surfaces and travelers, which
characterize attack behavior, such as building crude surfaces
that favor meeting adversarial goals without regard to budget,



or vice-versa. Our decomposition allows us to (a) generalize
attacks in an extensible manner, and (b) naturally construct
new (and known) attacks by permuting attack components.

From our decomposition, we permute attack components
to build a previously unexplored attack space, yielding 568
new attacks. We then measure attack performance through the
PEA, which is built by forming the lower envelope of measured
model accuracy across attacks over the budget consumed. In
other words, the PEA bounds the performance an individual at-
tack could achieve. We rank attacks with respect to the PEA by
measuring the difference in areas of their performance curves.
Our approach not only gives us a comparable definition of
optimality, but also a mechanism by which we can measure
the merit of individual attacks.

Our evaluation across seven datasets, three threat models,
and robust (through adversarial training) versus non-robust
models found relative attack performance to be highly contex-
tual. Specifically, (1) the domain and threat model can have
a profound effect (especially if the trained model is robust),
and (2) even the advantage of certain component choices is
sensitive to these factors, as well as other paired components.
We make the following contributions:

* We propose a decomposition of attacks in adversarial
machine learning by atomizing attack components into
two main layers, surfaces and travelers. Our decomposi-
tion readily enables extensions of new components.

* We characterize the attack space by permuting compo-
nents of known attacks, yielding 568 new attacks.

* We introduce a systematic approach to compare the ef-
ficacy of attacks. We first build the Pareto Ensemble
Attack from the performance curves of attacks and rank
their relative performance.

* We instantiate and enumerate over a hypothesis space
to identify which strategies perform better than others
under a given threat model.

2 Background
2.1 Threat Models

Adversaries have historically had one of two goals: mini-
mizing model accuracy [32, 35,39, 54] or maximizing model
loss [3,22,33]. The risks associated with minimizing model ac-
curacy are often exemplified by vehicles misclassifying traffic
signs [19], intrusion detection systems permitting malicious
entities entry [60], medical misdiagnoses [20], among other
failures. Maximizing model loss serves two purposes: (1) itis
a surrogate for minimizing model accuracy (as, the inverse is
performed to maximize model accuracy during model train-
ing), and (2) it aids in transferability attacks [18,37,38,56].
In this work, we focus on minimizing model accuracy and
defer the explorations of transferability to future work.

In the context of minimizing model accuracy, translating
the risks above into an optimization objective to be solved by

an adversary is commonly written as:

agmin el
€
subjectto  f(x+¢€) # P, ()
x+€€ By(x).

where we are given a victim model f, a sample x, label J, a
self-imposed budget ¢ measured under some £,-norm. Con-
ceptually, the adversary searches within some self-imposed
norm-ball B of radius ¢, centered at x for a “small” change €
that, when applied to x, yields the desired goal.

With adversarial goals and capabilities defined, the final
component of threat models pertains to access. Specifically,
subsequent works have shown that adversaries need not have
direct access to the victim model f to produce adversarial ex-
amples; models trained on similar data have similar decision
manifolds, and thus, adversarial examples can “transfer” from
one model to another [37,38,56]. When access is restricted
(and thus, transferability is exploited), such threat models are
called “grey-" or “black-box”, while full access to the victim
model is called a “white-box™ threat model. In this paper,
we focus on white-box threat models as they represent the
worst-case adversaries (in that they can produce adversarial
examples with the tightest £,-norm constraints). However,
our decomposition and performance measurements can be
directly applied to grey- and black-box threat models as well,
which we further discuss in section 6.

On /,-norms. As shown in Equation 1, the “cost” for craft-
ing adversarial examples has been predominantly measured
through £,,-norms. Informally, adversarial examples induce a
misclassification between human and machine; £,-bounded
examples attempt to meet this definition. This concept arose
from attacks on images, in that attacks would produce adver-
sarial examples whose perturbations were invisible to humans,
yet influential on models. £,-norms are becoming an increas-
ingly controversial topic, in that it has been debated if they
have meaningful interpretations in non-visual domains [48],
or even visual domains [10], or if they are useful at all [47].
Regardless, attacks have broadly converged on optimizing
under £y, ¢», or £, and thus we focus our study on those.

2.2 Attack Algorithms

Here we briefly discuss the attack algorithms used in our
decomposition (specifically, the unique components they in-
troduce). We study these algorithms specifically due to their
prevalence across works in adversarial machine learning [42].

Basic Iterative Method (BIM). BIM [29]is an itera-
tive extension of Fast Gradient Sign Method (FGSM) [22].
BIM is an /.-based attack that perturbs based on the gradi-
ent of a cost function, typically Cross-Entropy (CE). It often
uses Stochastic Gradient Descent (SGD) as its optimizer
for finding adversarial examples.



Projected Gradient Descent (PGD). PGD [33] is
widely regarded as the state-of-the-art in crafting algorithms.
PGD is identical to BIM, with the exception of a Random-
Restart preprocessing step, wherein inputs are initially ran-
domly perturbed within an /., ball.

Jacobian-based Saliency Map Approach
(ISMA). The JSMA [39] is an {y-based attack that is unique
in its definition of a saliency map; a heuristic applied to
the model Jacobian to determine the most salient feature to
perturb in a given iteration. Unlike most other attacks, it does
not rely on a cost function, but rather uses the model Jacobian
directly. In our decomposition, we denote the JSMA saliency
map as SM;y. The JSMA uses SGD as its optimizer.

DeepFool (DF). DF [35] is an /,-based attack which models
crafting adversarial examples as a projection onto the decision
boundary. We find that we can model this projection as a
saliency map, much like the JSMA, which we denote as SMp.
Similar to the JSMA, DF relies on the model Jacobian, does not
have a cost function, and uses SGD.

Carlini-Wagner Attack (CW). CW [7] is an {;-based
attack that is unique across several dimensions: (1) it uses a
custom loss, which we label Carlini-Wagner Loss (CWL),
(2) introduces the Change of Variables technique, which en-
sures that, during crafting, the intermediate adversarial exam-
ples always comply with a set of box constraints, and (3) uses
Adam as its optimizer for finding adversarial examples.

AutoAttack (AA). AA [15] is an ensemble attack con-
sisting of three different white-box attacks (as well as
one black-box attack). This ensemble is unique in that
all of its attacks are parameter free (except for the num-
ber of iterations to run attacks for). Its white-box attacks
are: (1) Auto Projected Gradient Descent - Cross
Entropy (APGD-CE), which is PGD with the Momentum Best
Start optimizer, (2) Auto Projected Gradient Descent
- Difference of Logits Ratio (APGD-DLR), which is
APGD-CE but with Difference of Logits Ratio Loss,
and (3) Fast Adaptive Boundary Attack [13] (FAB),
which is similar to DeepFool, but it’s optimizer Backward
Stochastic Gradient Descent applies a biased gradient
step and a backward step to stay close to the original point.

3 Decomposing AML

From analysis of popular attacks (discussed in subsection 2.2),
we find that attacks broadly perform two main functions to
produce adversarial examples, they: (1) manipulate x, such as
with Random-Restart, or (2) manipulate gradients, such as by
using a saliency map. We use this observation as a starting
point for our decomposition; components that do the former
are part of the traveler and ones that do the latter are within
the surface. Through this generalization, an attack can be seen
as, simply, a choice of values for each of these components
rather than a unique, incomparable entity.

Attack Algorithms

Surface Components Traveler Components

Losses: Cross-Entropy Random-Restart:  Enabled, Disabled
Carlini-Wagner Loss
Identity Loss
Difference of Logits Ratio Loss
Saliency Maps: ~ SMj, SMy, SMy Change of Variables: ~ Enabled, Disabled
Ly-norm Lo, by, (e Optimizer: ~ SGD, Adam, MBS, BWSGD
BIM @ [¢] o [¢] o o ° o o e [¢] o ° o o o
PGD @ [} [e] [} [e] [e] L] [e] [e] L] L] [e] L] [e] [e] [e]
JsMa O [} L] [} L] [e] [e] L] [e] [e] [} [e] L] [e] [e] [e]
pDF O [} L] [} [e] L] [e] [e] L] [e] [} [e] L] [e] [e] [e]
cw O L] [e] [} [e] [e] L] [e] L] [e] [} L] [e] L] [e] [e]
APGD-CE @ [¢] o [¢] o o o o o e L] o o o [ ) o
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Table 1: Attack Component Decomposition.
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Figure 1: Flow of composition between the surface and trav-
eler to construct an attack. Required components have bold
outlines while optional components have dotted outlines.

Importantly, these components are broadly mutually com-
patible with one another, in that one could omit, add, or swap
them when building an attack. We exploit this property when
permuting components, therein yielding a vast space of at-
tacks, some of which are known, but most of which are not.
This modular view of attacks not only allows us to build this
vast space, but also makes the framework highly extensible by
nature; new attacks can add on new choices for components
or even new components entirely. A summary of the evaluated
components in this paper and the compositions of well-known
attacks are shown in Table 1.

For the remainder of this section, we describe: (1) the com-
ponents that constitute a surface and their options, (2) the
layers that define a traveler and associated configurations, and
(3) a characterization of the attack space. An overview of the
composition of the surface and traveler, and their interaction
is shown in Figure 1. All symbols defined in this section (and
in the remainder of the paper) can be found in appendix A.

3.1 Surfaces

Surfaces, which encode the traversable attack space, are built
from: (1) the model Jacobian, (2) the gradient of a loss func-




tion, (3) the application of a saliency map, and (4) an £,-norm.
context of crafting adversarial examples.

Model Jacobian. At the heart of every surface (and thus,
every attack) is the model Jacobian. The Jacobian J of a
model with respect to a sample x encodes the influence each
feature i in x has over each class. While most attack papers
encode perturbations as a function of the gradient of a loss
function, such computations necessarily involve computing
a portion (at least) of the model Jacobian (whether attacks
require the full model Jacobian is a matter of design choice).
This is evident via application of the chain rule:
OL((0).5) _ OL().5) ) _ LU E).S)
ox - 9f(x) ox  df(x)

Importantly, computing a Jacobian is computationally expen-
sive, on the order of O(d - ¢), where d describes the dimen-
sionality of x (i.e., the number of features) and c describes the
number of classes. Thus, attacks that require the full model Ja-
cobian (e.g., JSMA and DF) must pay a (sometimes substantial)
cost in compute resources to produce adversarial examples—
a fact largely overlooked. This component is perhaps the
one with the greatest potential for extensibility. For instance,
black-box attacks or those wanting to overcome obfuscated
gradients [2] could opt to use Backwards Pass Differentiable
Approximation (BPDA) [2] to obtain a jacobian rather than a
traditional backwards pass.

Loss Functions. Perhaps the most popular design choice in
attack algorithms is to perturb features based on the gradient
of a loss function. The intuition is straightforward: we rely
on surrogate measurements to learn parameters that have
maximal accuracy during training, and thus, we can exploit
these same measures to produce samples that induce minimal
accuracy. This is commonly Cross-Entropy (CE) loss:

Y —9i-1og(yi)
i

where c is the number of classes, J; is the label as a one-hot
encoded vector, and y; is the output of the softmax function.
Aside from CE loss, other attack philosophies instead opt
for custom loss functions that explicitly encode adversarial
objectives, such as Carlini-Wagner Loss (CWL):

[13l[5 + ¢ - max (f3(x) — max{fi(x) : i # $},0)

where p is the target £,-norm to optimize under and c is a hy-
perparameter that controls the trade-off between the distortion
introduced and misclassification.

Similar to the latter half of CWL, the Difference of
Logits Ratio Loss (DLR) takes the difference between the
true logit and the largest non-true-class logit. However, this
loss function also divides by the difference between the largest
logit (fx, (x)) and the third largest logit (fz,(x)), as follows:

fi(x) — max{fi(x) : i # §}
S (x) — Jx3 (x)

Finally, some attacks do not have an explicit loss function
(such as JSMA or DF) and instead rely on information at other
layers in the surface to produce adversarial examples (e.g.,
through saliency maps). To support this generalization, we
implement a pseudo-identity loss function, Identity Loss
(IL1), which simply returns the yth model logit component.

Saliency Maps. Saliency maps, in the context of adversar-
ial machine learning, were first introduced by the JSMA [39].
These maps encode heuristics to best achieve adversarial goals
by coalescing model Jacobian information into a gradient. We
slightly tweak the original definition of the saliency map used
in the JSMA to be: (1) independent of perturbation direction,
and (2) agnostic of a target class. Though functionally differ-
ent, we call this saliency map the Jacobian Saliency Map
(SMy), as the underlying heuristic is identical in spirit to the
one introduced by the JSMA:

0 if sgn(Jy,;) =sgn( Y J.1)
SMJi()’%J): ”

Jy.i

. Z Jj; otherwise

J#9
where y is the label for a sample x, J is the Jacobian of a
model with respect to x, and i is the ith feature of x. Moreover,
we observe that attack formulations with complex heuristics,
such as DeepFool, can be cast as-is into a saliency map as
well. We define the DeepFool Saliency Map (SMp) as:

f(x) — )]
195 = Jillg

SMp (x,9,q) = (s =) sgn(Uy — i)

where x is a sample, y is the label for x, g is calculated from the
¢, norm where g = -+, f is the model, and k is the “closest”
class to the true label § calculated by:

g U0 i)
A 15— Jill4

Notably, unlike the SMj, this formulation is identical to that
presented in the original DeepFool attack.

Finally, attacks can also opt not to use any form of saliency
map, and thus, we define an identity saliency map, Identity
Saliency Map (SMp), which simply returns the passed-in
gradient-like information as-is.

£,-norms. To meet threat model constraints, nearly all attacks
manipulate gradient information via an £,-norm. We remark
that this can be conceptualized as a layer in a surface. Thus, we
provide abstractions for three popular £,,-based threat models:

sgn(V)
0 otherwise

Le(V) = sgn(V) e
g (V):L fo(Vi)Z{ if i = argmax (|V])
2TV

where V is some gradient-like information. While any £,-
norm could be used in this layer, we also see natural exten-
sions to other measurements of distance, such as LPIPS [62]



that could also fit into this component. This layer could also
extend to allow for adaptive threat models, such what is used
in the DDN attack [44].

3.2 Travelers

Travelers serve as the “vehicles” that navigate over a surface
to meet adversarial goals. Travelers are built from a series of
subroutines that modify x: (1) Random-Restart, (2) Change
of Variables, and (3) an optimization algorithm. Here, we
detail these components and describe how they aid in finding
effective adversarial examples.

Random-Restart. Many optimization problems, such as
k-means [24] and hill-climbing [45], have been shown to
benefit from the meta-heuristic, Random-Restart. Due to non-
linear activation functions, deep neural networks are non-
convex, and thus, subject optimization algorithms to non-ideal
phenomena. Specifically, Random-Restart attempts to prevent
optimization algorithms from becoming stranded in local min-
ima by applying a random perturbation to an input. At this
time, PGD is unique in its use of Random-Restart, defined as:

x=x+ U(—¢&,g)

where €U is a uniform distribution, bounded by a hyperparame-
ter € (which represents the total perturbation budget). Notably,
while Random-Restart could be applied at each perturbation
iteration, PGD uses it once on initialization.

Change of Variables. As a new way of enforcing box
constraints, [7] introduced Change of Variables for the
Carlini-Wagner Attack. As noted in [7], common prac-
tice for images is to first scale features to be within [0, 1].
When a perturbation is applied, these constraints must be en-
forced, as any feature beyond 1.0, for example, would map to
a pixel value greater than 255, which exceeds the valid pixel
range for 8 bit images. Most attacks enforce this constraint by
simply clipping perturbations. However, this can negatively
affect certain gradient descent approaches [7]. Thus, Change
of Variables was proposed to alleviate deficient behaviors.
In the context of CW, a variable w is defined and solved for
(instead of the perturbation directly). Its relationship to x is:

x+d= %(tanh(w)—i—l)

where 0 is the resultant perturbation applied to an input x.
As [7] notes, this ensures that 0 < x+ & < 1, meaning that
examples will automatically fall within the valid input range.

Optimizers. Nearly all attacks are described as “taking steps
in the direction” (of a cost function). Practically speak-
ing, these attacks refer to Stochastic Gradient Descent
(SGD). As demonstrated by the BIM, as little as three itera-
tions (with o = 0.01) could be sufficient to drop state-of-
the-art ImageNet models to ~2 % accuracy [29]. However,
Carlini-Wagner Attack was perhaps the first attack to ex-
plicitly use Adam to craft adversarial examples. Adam, unlike

SGD, adapts learning rates for every parameter, and thus, often
finds adversarial examples quicker than SGD [7].

In addition to SGD and Adam, we explore two additional op-
timizers, both of which come from AA. The first is Momentum
Best Start (MBS), which accounts for momentum in its up-
date step as follows:

Xip1 =X+ M08+ (1-m) - (x5 —xi-1)
where 1 controls the strength of the momentum (set to 0.75
in [15]). In addition to this momentum step, it also features
an adaptive learning rate that updates based on conditions
that capture progression of inputs toward adversarial goals,
described in [15].

Finally, our framework also supports Backward
Stochastic Gradient Descent  (BWSGD), which is
the optimizer used for FAB in [13]. This optimizer operates
similarly to SGD and MBS but aims to update with the distance
to the original sample in mind by updating as follows:

Xit1 =X+ (1 _T]) '05'8[‘*'7] : (xorg+a'60rg)

where 1 controls the influence of the original point on the
update step. In addition, if x; is misclassified, this optimizer
also performs a backward step by moving x; closer to X, via:
Xit1 =P -xix1+ (1 —PB) - Xore- In our experiments, we set 1|
to be 0 since d,,, (a) does not translate to attacks that do not
use a decision hyperplane projection and (b) as can be seen
in [13], the use of backward step had a far greater influence
on the attack performance than setting a non-zero value of 1.

4 Extending Performance Measurements

With the attack space made enumerable by our decomposition,
we now focus on necessary extensions of budget interpre-
tations, the introduction of Pareto Ensemble Attack, and
our approach for measuring optimality.

4.1 Beyond the /,-norm

Since the inception of modern adversarial machine learning,
the cost of producing an adversarial example has predomi-
nantly been measured through ¢,-norms. Yet, it seems im-
practical to assume realistic adversaries will be unbounded
by compute (as attacks that require days to produce adversar-
ial examples offer little utility in any real-time environment).
This observation is further exacerbated when attacks use ex-
pensive line search strategies [54], embed hyperparameter
optimization as part of the crafting process [7], or rely on
model Jacobian information [35,39]. While such construc-
tions can lead to incredibly effective attacks, adversaries who
are limited by compute resources may find such attacks cost-
prohibitive. To this end, we are motivated to extend standard
definitions of budget beyond £,,-norms. Specifically, we incor-
porate and measure the time it takes to produce adversarial
examples, therein extending our definition of budget as:

B(p,6,x) = £,(x) +6-T(x) 2)



—— As
— Ay PEA

0.8+

Model Accuracy
o
o
L

e
=
L

0.2 4

[

o

0.0 02 0.4 0.6
Budget Consumed

0.0

1
y
0.

Figure 2: The Optimal Attack — The PEA lower-bounds all
attacks across the range of budgets. The area between the PEA
and attack curves are shown with vertical bars.

8 1.0

where p is the desired norm, 6 parameterizes the importance
of computational cost versus the introduced distortion, x is the
adversarial example, and T returns the compute time neces-
sary to produce x. We note that the precise value of 6 depends
on the threat model; adversaries who are compute-constrained
may prioritize time twice as much as distortion (i.e., 6 = 2),
while adversaries with strong compute may not consider time
at all (i.e., 6 = 0, as is done in standard evaluations). In sec-
tion 5, we find that some attacks consume prohibitively large
amounts of budget when compute is measured, and thus, cur-
rent threat models (which only measure £, distance) fail to
generalize adversarial capabilities.

4.2 Pareto Ensemble Attack

With a realistic interpretation of budgets, we revisit a fun-
damental question: Does an optimal attack exist? Attacks
measure distortion through different £,-norms, can require dif-
ferent amounts of compute, and have varying budgets (which
is notably true for robustness evaluations). Thus, answering
this question is non-trivial, especially in the absence of any
meaningfully large attack space.

A single definition that accurately characterizes optimality
across attacks, while incorporating these confounding factors,
is challenging. Yet, we can say some attack A is optimal if,
for a given threat model, A bounds all other attacks for an
adversarial goal (i.e., A must lower-bound all attacks when
minimizing model accuracy across budgets). Of the 576 at-
tacks that we evaluated, no single attack met this definition.
Thus, we conclude that the optimal attack are best character-
ized by an ensemble of attacks.

To this end, we introduce the Pareto Ensemble Attack
(PER), a theoretical attack which, for a given budget and ad-
versarial goal, returns the set of adversarial examples that
best meet the adversarial goal, within the specified budget
(in other words, the Pareto frontier). The PEA is attractive for

our analysis, in that it serves as a meaningful baseline from
which we can compare attack performance to (discussed in
the following section). We formally define the PEA as:

PEA = U argmin Acc(f(xa),¥) | B(p,6,x4) <b
bem \ Yaes

where b is a budget in a list of budgets %, x, is the set of
adversarial examples produced by attack A from a space of
attacks .7, f is a model, ¥ is the set of true labels for x4, B is a
function used to measure budget (i.e., Equation 2), Acc returns
model accuracy, p is an £,-norm, and 0 controls the sensitivity
to computational resources. Concisely, the PEA returns the set
of adversarial examples whose model accuracy is minimal
and within budget. Moreover, we provide a visualization of
the PEA in Figure 2, where the PEA forms the lower envelope
of model accuracy across budgets. We highlight that if there
was some attack A’ which achieved the lowest accuracy across
all budgets (for some domain), then the PEA = A’. It has been
suggested by some in the community that algorithms such as
PGD might be optimal for some application [5, 33, 63]. Our
formulation of the PEA and measure of optimality allows us
to test this hypothesis.

Measuring Optimality. The PEA yields a baseline from
which we can fairly assess the performance of attacks. As the
PEA meets the definition of optimal (that is, it bounds attack
performance), we can evaluate attack performance relative
to the PEA. Intuitively, attacks that closely track the PEA are
performant, while those that do not are suboptimal. Mathemat-
ically, this can be measured as the area between the curves
of the PEA and some attack A. We note that our definition
of optimality is: (1) relative to the attacks considered (and
not measured against a set of provably worst-case adversarial
examples or certified robustness [5, 43, 58]), and (2) as at-
tacks are ranked by area, prefers attacks that are consistently
performant (i.e., across the budget space). We acknowledge
this measurement favors attacks whose behaviors are stable
(which we argue most popular white-box attacks exhibit);
other modalities may benefit from other cost measures.

For example, in Figure 2, the area between the PEA and at-
tack A, is maximal, minimal for attack A3, and somewhere in
between for attack A;. Thus, we conclude that the worst-case
adversary would use A3 if bound by small budgets, otherwise
A1 (and never A). This approach to measuring attack per-
formance is desirable in that, (1) attacks that track the PEA
across budgets have minimal area (and thus, constitute a per-
formant attack), and (2) attacks that are exclusively optimal
for specific budgets incur large area.

5 Evaluation

With our attack decomposition and approach to measure opti-
mality, we ask several questions: (1) Do known attacks per-



form best? (2) What attacks are optimal, if any? (3) Which
components tend to yield performant attacks?

5.1 Setup

We perform our experiments on a Tensor EX-TS2 with two
EPYC 7402 CPUs, 1 TiB of memory, and four Nvidia A100
GPUs. We use PyTorch [40] 1.9.1 for instantiating learning
models and our attack decomposition. Here, we describe the
attacks, threat models, robustness approach (i.e., adversarial
training), and datasets used in our evaluation. We defer attack
adaptations to appendix A.l, and hyperparameters & details
on adversarial training to appendix A. Full versions of any
shortened tables and figures in this section can be found in
the arxiv version of this paper [49].

Attacks. In section 3, we introduce a decomposition of ad-
versarial machine learning by atomizing attacks into modular
components. Our evaluation spans the enumerated 576 attacks.
Of these 576, JSMA, CW, DF, PGD, BIM, APGD-CE, APGD-DLR,
and FAB are labeled explicitly, while other attacks are num-
bered from 0 to 575. The specific component choices of at-
tacks mentioned by number can be found in appendix A. We
note that some known attacks (such as DF and CW) have spe-
cialized variants for ¢ p2-norms, which we do not implement
(as to maintain homogeneous behaviors across attacks of the
same norm). Thus, we still reference these attacks numeri-
cally, since they are not the algorithmically identical.

In our experiments, we focused on untargeted attacks: that
is, the adversarial goal is to minimize accuracy. While our
decomposition is readily amenable to targeted variants, we
defer analysis (and thus evaluation) of targeted attacks for two
reasons: (1) choosing a target class requires domain-specific
justification, and (2) certain classes are harder to attack than
others [39]. These two factors would require a rather nuanced
analysis, while our objectives aim to characterize broad attack
behaviors. Thus, we anticipate that while a targeted analysis
might affect attack performance in an absolute sense, relative
performance to other attacks will likely be indifferent.

Threat Models. As motivated in section 4, we explore the
interplay in attack performance when compute is measured,
as defined by Equation 2. Specifically, we explore 3 £,-based
threat models (i.e., £y, £, and £..) with 20 different values of 6
at 0.1 step sizes, from O to 2. These values can be interpreted
as an adversary who, for example, values computational speed
twice as much over minimizing distortion (i.e., 8 = 2). We
note that all attacks are instantiated within our framework, and
thus, any implementation-specific optimizations that acceler-
ate compute speed are leveraged uniformly across attacks.

Robust Models. Adversarial training [22, 33] is one of
the most effective defenses against adversarial examples to
date [5, 14,46]. Given its popularity and compelling results,
we are motivated to investigate the impact of robust mod-
els on relative attack performance. We adversarially train

our models with a PGD-based adversary. We follow the same
approach as shown in [33]: input batches are replaced by ad-
versarial examples (produced by PGD) during training. For
MNIST and CIFAR-10, hyperparameters were used from [33];
other datasets were trained with parameters which maximized
the accuracy over benign inputs and adversarial examples.
Additional hyperparameters can be found in appendix A.

5.1.1 Datasets

We use seven different datasets in our experiments, chosen
for their variation across dimensionality, sample size, and
phenomena. We provide details and basic statistics below.

Phishing. The Phishing [12] dataset is designed for de-
tecting phishing websites. Features were extracted from 5000
phishing websites and 5000 legitimate webpages. It contains
48 features and 10 000 samples. Beyond its phenomenon, we
use the Phishing dataset to investigate the effects of small
dimensionality and training size on attack performance.

NSL-KDD. The NSL-KDD [55] is based on the seminal KDD
Cup ' 99 network intrusion detection dataset. Features are
defined from varying network features from traffic flows emu-
lated in a realistic military network. At 41 features, it contains
125973 samples for training and 22 544 for testing. We use
the NSL-KDD for its small dimensionality, large training size,
and concept drift [21].

UNSW-NB15. The UNSW-NB15 [36] is a network intrusion
detection dataset designed to replace the NSL-KDD. Features
are derived from statistical and packet analysis of real in-
nocuous flows and synthetic attacks. It has 48 features, with
175 341 samples for training and 83 332 samples for testing.
The UNSW-NB15 enables us to compare if attacks generalize
to similar phenomenon (such as the NSL-KDD).

MalMem. CIC-MalMem-2022 (MalMem) [8] is a modern mal-
ware detection dataset. 58 features are extracted from mem-
ory dumps of benign applications and three different malware
families (i.e., trojans, spyware, and ransomware). In total, it
contains 58.596 samples, with half belonging to benign appli-
cations and half to malware. MalMem gives us the opportunity
to understand the effects of small dimensionality in an entirely
different phenomenon from the network datasets.

MNIST. MNIST [30] is a dataset for handwritten digit recogni-
tion. It is a well-established benchmark in adversarial machine
learning applications. With 784 features, 60 000 samples for
training and 10 000 for testing, MNIST has substantially larger
dimensionality than even the largest network datasets. We
use MNIST to corroborate prior results, explore a vastly dif-
ferent phenomenon, and investigate how (relatively) large
dimensionality influences attack performance.

FMNIST. Fashion-MNIST (FMNIST) [59] is a dataset for rec-
ognizing articles of clothing from Zalando articles. Adver-
tised as a drop-in replacement for MNIST, FMNIST was de-
signed to be a harder task and closer representative of modern



computer vision challenges. FMNIST has identical dimension-
ality, training samples, and test samples to MNIST. Thus, we
use FMNIST to understand if changes in phenomena alone are
sufficient to influence attack performance.

CIFAR-10. CIFAR-10 [28] is a dataset for object recogni-
tion. Like MNIST, CIFAR-10 is extensively used in adversarial
machine learning literature. At 3072 features, CIFAR-10 rep-
resents a substantial increase in dimensionality from MNIST.
It has 60000 samples for training and 10000 for testing.
CIFAR-10 allows us to compare against extant works and
explore how domains with extremely large dimensionality
affect attack efficacy.

5.2 Comparison to Known Attacks

As discussed in section 3, we contribute 568 new attacks.
Naturally following, we ask: are any of these attacks useful?
Asked alternatively, do known attacks perform best? We inves-
tigate this question through commonly accepted performance
measurements [6, 29, 35,39]: the amount of £, budget con-
sumed by attacks whose resultant adversarial examples cause
model accuracy to be <1 %. In this traditional performance
setting, we aim to understand if known attacks serve as the
Pareto frontier (which would indicate that our contributed
attacks yield little in terms of adversarial capabilities).

We organize our analysis as follows: (1) we first segment
attacks based on £,-norm and compare them to known attacks
of the same norm (that is, we compare JSMA to ¢y attacks,
CW, DF, & FAB to {;, and PGD, BIM, APGD-CE, & APGD-DLR to
{.), and (2) report relative budget consumed (with respect
to known attacks) for attacks whose adversarial examples
caused model accuracy to be <1 %.

5.2.1 Performance on MNIST

For our analysis of attack performance, we craft adversarial
examples for 1000 iterations over ten trials (we note that 1000
iterations was selected for completeness; the vast majority
of attacks converged in less than 100 iterations). Figure 3
shows the median results for two threat models, segmented
by £,-norm. Known attacks (i.e., JSMA, CW, DF FAB, PGD, BIN,
APGD-CE, and APGD-DLR) are highlighted in red, while other
attack curves are dotted blue and slightly opaque to capture
density. We now discuss our results on a per-norm basis.

£y Attacks. Figure 3a shows £y-targeted attack performance
with the JSMA in red. We observe that the JSMA is worse than
most attacks. Attack performance is largely well-clustered
with a few poor performing attacks near the top right portions
of the graph. These attacks used Random-Restart, and thus,
immediately consume most of the available ¢y budget.

£, Attacks. Figure 3b shows /,-targeted attacks, with CW as
solid red, DF as dash-dotted red, and FAB as dashed red. Like
£y, attacks are well-concentrated (albeit with slightly more

spread). Notably, DF and FAB (which are ostensibly superim-
posed on one another), demonstrate impressive performance
(the red lines that are nearly vertical)—both drop model accu-
racy with a near-zero increase in budget. CW exhibits moderate
performance over the budget space.

lo Attacks. Figure 3c shows (.-targeted attacks, with PGD
as solid red, BIM as dash-dotted red, APGD-CE as dashed red,
and APGD-DLR as dotted red. Unlike other norms, /.. has clear
separation, broadly attributable to using Change of Variables
(specifically, attacks that used Change of Variables performed
worse than those that did not). Finally, all of the known attacks
exhibit near-identical performance, with APGD-DLR slightly
pulling ahead at budgets > 0.2.

From our norm-based analysis, we highlight that: (1)
Random-Restart is largely inappropriate for {y-targeted at-
tacks (in that benefits do not outweigh the cost), (2) ¢>-
targeted attacks cluster fairly well; no individual attack sub-
stantially outperformed any other, and (3) {.-targeted attacks
were broadly unable to exploit Change of Variables.

5.2.2 Relative Performance to Known Attacks

Recall our central question for this experiment: do known
attacks perform best? To answer this question, we analyze
the minimum budget necessary for attacks to cause model
accuracy to be <1 % (attacks that fail to do so are encoded as
consuming infinite budget). We run attacks for 1000 iterations
over ten trials and report the median results in Table 2. Here,
attacks are ranked by budget and segmented by norm (i.e., 192
attacks per norm). We report the percentage change of each
attack with respect to the known attack that performed best
in that norm (that is, for £y, results are relative to the JSMA,
while for ¢, results are relative to CW, which outperformed
DF, etc.). In the table, we show: (1) the attack that ranked first,
(2) ranks of known attacks, and (3) the lowest ranked attack
that still reduced model accuracy to <1 %. Next, we highlight
some strong trends for each £,-norm.

Of the 34 % of attacks that succeed in the ¢y space, the
JSMA (ranked 32"%) was at the bottom of the highly perfor-
mant bin (in that its ¢y budget was 0.17)—the JSMA was
held back by its saliency map, SMs; using either SMy (or no
saliency map at all, i.e., SM1) was almost always better. While
CW seemingly rank low (i.e., 69'), we note that ¢, budgets
were broadly similar, as the worst and best performing attacks
were within £50 % of the budget consumed by CW. APGD-DLR,
BIM, APGD-CE, and PGD, ranked 17, 40, 48™ and 49" re-
spectively, were marginally outperformed by attacks using
either the SMp saliency map or BWSGD optimizer. As a final
note, we were confounded by the performance of DF and
FAB—uvisually inspecting Figure 3b, both are clearly superior
attacks (the performance curves ostensibly resemble square
waves) and yet, they failed to reduce model accuracy to <1 %.
While these analyses of attack performance has been useful
historically for understanding adversarial examples, we argue
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Figure 3: MNIST model accuracy for (normalized) ¢y-, {2-, and {.-based budgets. Known attacks are highlighted in red.
{o Attacks {, Attacks l. Attacks
Rank Attack % Reduction ¢y Budget Rank Attack % Reduction ¢, Budget Rank Attack % Reduction /., Budget
1. ATKi; -41 % 0.10 1. ATKugo -50 % 0.12 1. ATKy49 -8 % 0.22
30. JSMA — 0.17 69. CwW — 0.24 17. APGD-DLR — 0.24
68.  ATKyu6 +352 % 0.77 88. ATKjyy +45 % 0.35 40. BIM +16 % 0.28
136. DF +00% oo 48. APGD-CE +20 % 0.29
137. FAB +00% oo 49. PGD +20 % 0.29
135. ATK191 +304 % 0.97

Table 2: MNIST Relative Attack Comparisons. Budgets are normalized. Attacks that fail to reduce model accuracy to be <1 % are
labeled as consuming infinite budget. Budget reductions are relative to the best known attack for each £,-norm.

that this “race to 0 % accuracy” fails to capture meaningful
definitions of attack performance (as made evident by the
apparent “failure” of DF and FAB).

From our comparison with known attacks, we highlight
two key takeaways: (1) Measuring the required distortion
to reach some amount of model accuracy is a rather crude
approach to estimating attack performance. We argue using
measurements that factor the entire budget space (such as
the PEA, which we use subsequently) will yield more mean-
ingful interpretations of attack performance. (2) Even when
we define success as <1 % model accuracy, known attacks
do not perform best. In fact, many attacks produced by our
decomposition consistently outperformed known attacks (e.g.,
68 out of the 189 introduced by our approach outperformed
both CW and DF), which demonstrates the novel adversarial
capabilities introduced by our decomposition.

5.3 Optimal Attacks

In Figure 4.2, we introduced an approach for measuring opti-
mality: the area between the performance curves of the PEA
and an attack. Attacks that have a small area closely track the
PEA and thus, are performant attacks, while those that have a
large area perform poorly. In this experiment, we ask: does
attack performance generalize? In other words, is relative
attack performance invariant to dataset or threat model?

We investigate this hypothesis of attack optimality by rank-
ing attacks by area across varying threat models, datasets, and
robust models. Then, we measure the generalization of these
rankings via the Spearman rank correlation coefficient [52],
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Figure 4: Median Spearman Rank Correlation Coefficients
for MNIST—Results are segmented by £,-norm. Data points
correspond to a threat model. Top row shows within-norm gen-

eralization & bottom row shows cross-norm generalization.

which informs us how similar the rankings are between two
datasets, threat models, or a robust and non-robust model.
For example, a highly positive correlation across two
datasets would imply that relative attack performance was un-
changed (in other words, changing the dataset had little to no
effect on attack performance), a near-zero correlation would
suggest that relative attack performance changed substantially
(which would suggest attack performance is sensitive to the
dataset), and a negative correlation would indicate attack per-
formance was reversed (i.e., the worst attacks on one dataset



became the best on another). In our experiments, we craft
adversarial examples for 1000 iterations over ten trials' and
report the median Spearman rank correlation coefficients. We
note that 1000 iterations was selected for completeness; the
vast majority of attacks converged in less than 100 iterations.

Optimal Attacks by Threat Model. Here, we analyze the
generalization of attack performance across threat models.
Specifically, we consider ¢y-, ¢»-, and {.-based threat models
with varying values of 0 (from O to 2). Note that 8 =0 (i.e.,
where compute time is ignored) is the commonly used threat
model. Figure 4 shows the median Spearman rank correlation
coefficients for MNIST with results segmented by £,-norm.
Each entry corresponds to a unique threat model (i.e., a value
for 0). High attack performance generalization is encoded
as lighter shades, while low generalization is encoded with
darker shades.

From the results, we can readily observe: (1) rankings do
not generalize across £,-norms, especially between £o- and £o.-
targeted attacks (but do generalize relatively well within an £ -
norm), and (2) the influence of compute on rankings appears
to be £,-norm dependent: {p-based threat models that weight
compute (i.e., 6 # 0) do not generalize well to those that do
not, /»-based threat models exhibit a smoother degradation
of generalization, while, surprisingly, /..-based threat models
generalize everywhere (that is, the same attacks that were
found to be performant with 8 = 2 were as performant when
6 = 0). Within a dataset, we observe that the threat model
significantly affects attack performance across £,-norms, and
to some extent, within an ¢ p-norm, with /. as the exception.

Optimal Attacks by Dataset. In this experiment, we instead
now measure the generalization of attack performance across
datasets. Specifically, for a given threat model, we measure
the generalization of attack performance rankings across
seven datasets. The evaluated datasets span varying forms
of phenomena, from classifying network traffic to catego-
rizing clothing items, and thus, we investigate if performant
attacks are task-agnostic.

The results in Figure 5 disclose that: (1) CIFAR-10 does not
generalize at all, regardless of £,-norm, (2) skewing budgets
towards favoring compute gradually degrades generalization—
attack rankings become increasingly dissimilar as we move
from ignoring compute time (8 = 0) to heavily favoring it
(6 =2), and (3) {p-based threat models readily generalize
across datasets and is largely invariant to considering com-
pute, ¢ attacks, regardless of 8, moderately generalize, and /.,
attacks closely track ¢, attacks with a particular subtly: attacks
performant on MNIST generalized almost perfectly to FMNIST
(i.e., image-based generalization), while attacks performant
on NSL-KDD almost perfectly generalized to UNSW-NB15 (i.e.,
network-intrusion-detection-based generalization). Lastly, we

'In another experiment, we validated that rankings are highly correlated
across trials. Combined with our use of nonparametric statistics (i.e., median
Spearman correlation), this ensures our metrics converge in few trials.

observe that attacks performant on Phishing and MalMem
moderately generalized better to non-image data (particularly
to the UNSW-NB15). Considering compute degrades these ob-
servations slightly. Within a threat model, we observe that,
based on £,-norm, the dataset can have drastic degrees of in-
fluence on attack performance, in that it can have little effect
at all (e.g., £p), have an effect everywhere (i.e., {), or have
an effect specific to the phenomena (i.e., £..). We attribute the
unique behavior of CIFAR-10 to its dimensionality; the next
largest dataset, FMNIST and MNIST, are ~74 % smaller.

Optimal Attacks Against Robust Models. In this final ex-
periment, we now measure the generalization of attack perfor-
mance between robust and non-robust models. Specifically,
for a given threat model and dataset, we compute pairwise
correlations between attack performance rankings on robust
and non-robust models. Adversarially trained models have
been shown to be an effective defense against adversarial
examples [33], and thus, we investigate if such procedures
have a visible effect on attack performance.

Median Spearman rank correlation coefficients for all
datasets and threat models are shown in Figure 6. We note
several trends across norm, threat models, and datasets: (1)
generally speaking, attack rankings in ¢,-based threat mod-
els were substantially affected by robust models, especially
for MalMem, MNIST, and FMNIST, (2) considering compute can
have a significant impact on generalization, mainly dependant
on the norm; increasing the importance of compute almost
universally aided generalization in /5, but hurt generaliza-
tion in £y (especially for image data, albeit CIFAR-10 is less
sensitive to varying 0 at the scales we investigated), and (3)
we observed that top-performing attacks can be especially af-
fected: on MNIST for an /; + 0 - time threat model, for instance,
the top 10 attacks on the non-robust model had a median rank
of 445™ (out of 576) on the robust model. These profound
differences in relative attack effectiveness demonstrate that
the unique properties of robust models necessitate changes to
attack components (discussed further in subsection 5.4.3).

Takeaways on Attack Optimality. In this set of experiments,
we analyzed attack optimality through the lens of varying
threat models, unique data phenomena, and robust models.
From our analyses, we find that the optimality of any given
attack is highly dependant on the given context. We support
this conclusion through the following remarks on the gen-
eralization of relative attack performance: (1) across threat
models, performance generalizes well within an £,-norm, but
not across—considering compute exacerbates this observa-
tion, (2) across datasets, performance generalization is broadly
sensitive to £,-norm (with CIFAR-10 generalizing poorly ev-
erywhere), and (3) between robust and non-robust models,
attack rankings are largely a function of data phenomena
(e.g., image-based phenomena exhibit poor generalization,
regardless of the threat model).



Phishing L0

NSL-KDD

UNSWNB-15

MalMem
MNIST
FMNIST

CIFAR10
0.6

Phishing
NSL-KDD
UNSWNB-15

MalMem
MNIST
FMNIST
CIFAR10

0.0

Figure 5: Median Spearman Rank Correlation Coefficients
for 6 = 0 and 0 = 2 threat models—Results are segmented by
£,-norm. Entries correspond to a dataset pair.

5.4 When and Why Attacks Perform Well

With our metric for attack performance established and evalu-
ated, we proceed by asking, why do certain attacks perform
well? Here, we explore the general trends of attack compo-
nents and their influence on performance through a series of
hypothesis tests. We build a space of possible hypotheses of
relative attack performance (over all attack components), per-
form hypothesis testing against this space, and identify those
with the highest significance and effect size. We begin with
significant hypotheses of non-robust models and conclude
with hypotheses most affected by model robustness.

5.4.1 The Space of Hypotheses

We define a hypothesis as a comparison between two com-
ponent values (which we label as H; and H;), such as “us-
ing Cross—Entropy is better than Carlini-Wagner
Loss.” Now, we want to understand the conditions that
make a hypothesis true. These conditions can be using a
specific dataset, under a certain threat model, or based on
other component values. Building off our previous exam-
ple, this hypothesis paired with a condition could be “us-
ing Cross—Entropy is better than Carlini-Wagner
Loss, when the dataset is Phishing.” When we test a
hypothesis, we look at the statistical significance of the hy-
pothesis under all conditions to determine when a hypothesis
is true. Enumerating across all possible hypothesis and con-
dition pairs yielded 1690 candidate hypotheses. It should be
noted that the component values in hypotheses are always in
the same component, as comparing usefulness across compo-
nents would be nonsensical (e.g., “Using Cross-Entropy is
better than using Random-Restart” is not meaningful).
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Figure 6: Median Spearman Rank Correlation Coefficients
for robust and non-robust models—Results are segmented by
£,-norm. Data points correspond to a specific threat model.

5.4.2 Testing

We test the 1690 hypotheses with the Wilcoxon Signed-Rank
Test, a non-parametric pairwise test, equivalent to a pairwise
Mann-Whitney U Test, to determine its significance. We also
report the effect size of the test, defined as the percentage of
pairwise median areas (over ten trials, with trial counts fac-
tored into computed p-values) from component H; that were
smaller than component H; (recall, a smaller area corresponds
to a better attack, as it more closely tracks the PEA). Note that
the p-values for many hypotheses underflowed 64 bit floating
point precision, implying that the results of the test are highly
significant across all datasets and threat models. A subset of
of hypotheses are represented in Table 3.

We find many highly-significant correlations in the re-
sults across the space of hypotheses. Specifically, we set
a significance threshold proportional to the number of hy-
pothesis tests we evaluated to minimize false positives’:
p< % =5x 107°. We found that 1536 (90 %) of hypothe-
ses were below this threshold. We highlight the most promi-
nent conclusions among these 1536 hypothesis: (1) Change of
Variables was found to be disadvantageous—86 hypotheses
involving Change of Variables met our threshold; all 86 were
against its use, (2) Adam was superior to all other optimizers—
503 hypotheses comparing Adam to other optimizers met our
threshold, of which 50 % of them ruled in favor of Adam (with
SGD at 33 %, and MBS at 16 %), (3) Random-Restart was found
to be preferable across 61 % of hypotheses (51 of 83), (4) fw-
targeted attacks, at 79 % (163 of 205) were superior to both
{y- and ¢,-targeted (which were only favorable 16 % (34 of
205) and 4 % (8 of 205) of the time, respectively), (5) using
no saliency map (i.e., SMr) was better 70 % (131 of 187) of



Component H; Component H;

Condition p-value Effect Size

1. SGD is better than BWSGD

2. Adam is better than BWSGD
84. Identity Loss is better than Difference of Logits Ratio Loss
85. SGD is better than BWSGD

393. DeepFool Saliency Map is better than
394. Cross-Entropy is better than

Jacobian Saliency Map
Carlini-Wagner Loss

1689. lo is better than 23
1690. Identity Saliency Map is better than DeepFool Saliency Map

<22 x 107308 99 %
<2.2x 107308 99 %

when Dataset = MNIST
when Dataset = MNIST

when Dataset = NSL-KDD <22 x 107308 93 %

when SaliencyMap = Jacobian Saliency Map <2.2x 107308 92 %
when Dataset = FMNIST <5x107° 66 %
when  Change of Variables = Disabled <5x 107 61 %
when Threat Model =, + 1.0 9.8x 107! 50%
when Threat Model = (., +0.4 1.0 49 %

Table 3: The evaluated hypotheses for non-robust models. The top 344 hypotheses have a p-value that exhibits 64 bit underflow.
When sorted by effect size, the top 50 % of hypotheses have an effect size greater than 80 %.

the time, (6) perhaps surprisingly, using no loss function was
more advantageous 47 % (224 of 472) of the time, over CE
and CWL, which were useful 34 % (161 of 472) and 18 % (87
of 472) of the time, respectively, and (7) contrary to common
practice, using /.-based attacks were sometimes superior to
£-based attacks for ¢>-based threat models (21 of 42); this re-
sult would suggest that perturbing based on the magnitude of
gradients, while effective, can be excessive (when measuring
cost under /») and unnecessary to meet adversarial goals.

We highlight some key takeaways from this experiment: (1)
These hypothesis tests provide statistical evidence of some
common practices within the community (using Random-
Restart and the superiority of Adam), while also demonstrating
some perhaps surprising conclusions, such as the detriment
of using Cross-Entropy over no loss function at all. (2) We
emphasize the utility of hypothesis testing for threat modeling
as well: the tests provide a schema for performing worst-case
benchmarks in their respective domain. For example, when
benchmarking MNIST against /p-based adversaries, attacks
that use the Jacobian Saliency Map are likely to outper-
form attacks that use DeepFool Saliency Map.

5.4.3 The Effect of Model Robustness

As shown in Figure 6, robust models can have a significant im-
pact on attack rankings. Here, we investigate why such broad
phenomena occur. Specifically, we investigate how attack pa-
rameter choices change performance on a robust versus a
non-robust model. We repeat our hypothesis testing on robust
models only and compare the hypotheses most affected (that
is, the largest changes in effect size) by robust models.
Table 4 provides a listing of the top pairs of hypotheses,
sorted by the change in effect size from a non-robust to robust
model (labeled as delta). Many of the top hypotheses when
migrating from non-robust to robust models largely concern
CIFAR-10 and MalMem, which were broadly the most unique
phenomena across our experiments. Specifically, we see large
changes in losses and saliency maps for the attacks that were

20ne would expect evaluating 1000 hypotheses at p < 0.01 significance
would result in 10 false positives, for example.

effective at attacking robust models. The emphasis on CE
could be in part attributed to the fact that both the model is
trained on this loss as well as used by PGD, the attack used
to generate adversarial examples within minibatches. This
observation suggests that attacks using losses also used in
adversarial training are highly effective.

Beyond the influence of loss on CIFAR-10 and MalMem,
most of our tested hypotheses remained relatively unaffected
by model robustness: of the 1690 hypotheses tested, only
334 had an effect size change of 10 % or greater between
robust and non-robust models. This implies that, while many
of the factors that make attacks effective do not vary between
normally- and adversarially-trained models, the subset that
does vary accounts for a vast difference in attack effectiveness.

6 Discussion

Domain Constraints. While adversarial machine learning
research has been cast predominantly through images, the
threats imposed to machine-learning-based detection systems
via malware or network attacks are increasingly concerning.
However, producing legitimate adversarial examples in the
form of binaries or packet captures is a nuanced process;
there are constraints, dictated by the domain, that adversarial
examples must comply with [1,9,17,26,34,34,48,57,60].

In addition, adversarial goals in such domains are not pre-
cisely captured by Equation 1; attacks are commonly targeted
towards a specific class (such as, classifying a variety of mali-
cious network flows as benign traffic [31,48,50, 60] or mal-
ware families as legitimate software [1, 16, 17,23,27]). More-
over, recent work has shown the unique challenges of produc-
ing adversarial examples in the problem space [16,17,41].
Such works identified a set of properties input perturbations
must adhere to in order to be considered demonstrative of
malicious inputs in the respective problem space (e.g., packet
captures or binaries), such as semantic preservation, problem-
space transformations, robustness to preprocessing, among
other important attributes.

These necessary factors provide a more realistic perspective
on the robustness of machine learning systems in security-



Component H; Component H,

Condition p-value Effect Size Delta

Cross-Entropy

1.

2. Identity Saliency Map is better than DeepFool Saliency Map

3. Difference of Logits Ratio Loss is better than Carlini-Wagner Loss

4. Cross-Entropy is better than Identity Loss

5. Random-Restart: Disabled is better than Random-Restart: Enabled

6. Adam is better than SGD

7. Random-Restart: Disabled is better than Random-Restart: Enabled

8. Identity Loss is better than Difference of Logits Ratio Loss
9. Random-Restart: Disabled is better than Random-Restart: Enabled

10. Carlini-Wagner Loss is better than Difference of Logits Ratio Loss
11. Cross-Entropy is better than Carlini-Wagner Loss

12. Cross-Entropy is better than Difference of Logits Ratio Loss
13. Cross-Entropy is better than Identity Loss

14. Identity Saliency Map is better than DeepFool Saliency Map

15. Identity Saliency Map is better than Jacobian Saliency Map

is better than Difference of Logits Ratio Loss

<2.2x 107308 96 % 45%
<22x 107208 74% 44 %

<1x107 57% 4%
<2.2x 107208 69 % 43%
<2.2x 10730 92% 41%

when Dataset = CIFAR-10
when Dataset = CIFAR-10
when Dataset = NSL-KDD
when Dataset = MalMem
when Optimizer = BWSGD

when Dataset = MalMem <1x107° 46 % 39%
when Dataset = MalMem <2.2x1073% 90 % 35%
when Dataset = NSL-KDD <1x107 57 % 35%
when Dataset = UNSW-NB15 <1x107° 65% 33%
when Dataset = CIFAR-10 <2.2x 107308 81% 32%
when SaliencyMap = Identity Saliency Map <22 x 1073 83 % 31%
when Dataset = NSL-KDD 64x107° 55% 31%

<1x107 57% 30%
<2.2x 10708 79% 30%
<22 x1073% 79% 29%

when SaliencyMap = Identity Saliency Map
when Loss = Cross-Entropy
when Dataset = CIFAR-10

Table 4: The top 15 hypotheses for robust models. Delta represents the difference in effect size when changing to a robust model.

critical domains. While we did not explore these factors for
scope, we acknowledge their importance, and encourage sub-
sequent investigations to incorporate these factors (such as
ensuring perturbations are constraint-compliant at the £, layer
of surfaces or adapting loss functions to ensure adversarial
examples are misclassified as a specific target class).

The Threat Landscape. White-box adversaries are impor-
tant because they represent worst-case failure modes of ma-
chine learning systems. However, black-box adversaries have
demonstrated remarkable efficacy within their limited amount
of available knowledge (i.e., practical threats) [4,25,38,53].
While this initial application of our framework focused on
white-box adversaries for their prevalence in research, we
note that there natural extensions to support black-box ad-
versaries, such as using Backward Pass Differentiable
Approximation [2] in place of the model Jacobian, or
the Jacobian-based dataset augmentation [37] as a saliency
map for training substitute models, among other techniques.
As there are a variety of techniques for efficiently mount-
ing black-box attacks (historically through query minimiza-
tion) [11,38,51,53], we see value in instantiating our frame-
work with black-box components to understand the trade-offs
between such techniques.

Related Work. A natural limitation of AutoAttack that the
ensemble is fixed; while it was designed to be as diverse
as possible to common failures of defenses, it may fail on
defenses where an expert-designed adaptive attack would suc-
ceed. Thus, the Adaptive AutoAttack (&%) extension was
introduced to combine the efficacy of AutoAttack, while dy-
namically adapting to new defenses [61]. A frames building
adaptive attacks as a search problem, wherein a surrogate
model is built and a “backbone” attack (e.g., FGSM, PGD, CW,
among others) is greedily selected, paired with a loss function
and subroutines (such as Random-Restart). 1 builds upon
AutoAttack in that it enables searching through the attack
design space to find the most effective adaptive attack. Our
work is complementary in that we provide a broad, modu-
lar attack space, while A provides an approach for building
adaptive attacks dynamically.

7 Conclusion

In this paper, we introduced the space of adversarial strate-
gies. We first presented an extensible decomposition of cur-
rent attacks into their core components. We subsequently
constructed 568 previously unexplored attacks by permut-
ing these components. Through this vast attack space, we
measured attack optimality via the PEA: a theoretical attack
that upper-bounds attack performance. With the PEA, we stud-
ied how attack rankings change across datasets, threat mod-
els, and robust vs non-robust models. From these rankings,
we described the space of hypotheses, wherein we evaluated
how component choices conditionally impact attack efficacy.
Our investigation revealed that attack performance is highly
contextual—certain components can help (or hurt) attack per-
formance when a specific £,-norm, compute budget, domain,
and even phenomena is considered. The space of adversarial
strategies is rich with highly competitive attacks; meaningful
evaluations need to consider the myriad of contextual factors
that yield performant adversaries.
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A Miscellany

Table 5 provides a listing of model hyperparameters for each
of our datasets. Our selection was inspired by publications
that report state-of-the-art accuracy for the models we used.
Table 7 provides a listing of all symbols used in this paper and
their associated meanings. Table 6 provides the parameters
used for adversarial training. Finally, we provide Table 8 for
translating attack numbers to component values.

A.1 Attack Modifications

Carlini-Wagner Attack. As described in section 3,
the CW attack loss function includes a hyperparameter ¢ which
controls the trade-off between the distortion introduced and
misclassification. In the original attack definition, c is opti-
mized dynamically through binary-search [7]. This is cost-
prohibitive and prevents us from performing any meaningful
evaluation when computational cost is considered (as this
attack would exist on a separate scale, when compared to PGD
or even the JSMA, which requires the model Jacobian). To rem-
edy this, we select a constant value of ¢ in our experiments.
From the investigation on values of ¢ in [7] with respect to
attack success probability versus mean ¢, distance, we choose
a value of 1.0 for c in all experiments.

Jacobian-based Saliency Map Approach. The
original definition of the JSMA included a search space, which
defined the set of candidate features to be selected for pertur-
bation. In the original publication, the JSMA initially set o to
either 1 or 0 (that is, pixels were fully turned “off” or “on”).
We find that this underestimates the performance of the JSMA
on many datasets. Instead, we derive a more effective strategy
of instead setting the saliency map score for some feature i (in
an input x) to 0 if: (1) the saliency score for i is positive and
x; = 1, or (2) the saliency score for i is negative and x; = 0.
This prevents our version of the JSMA from selecting features
that are already at limits of valid feature values (i.e., 1 and 0).
Moreover, we do not select pixel pairs, as described in [39],
as we found our implementation to be at least as effective
(often more) as the original JSMA.

Difference of Logits Ratio Loss. The original
formulation of DLR requires takes the ratio of the differences
between: (1) the true logit and largest non-true-class logit,
and (2) the largest logit and the third largest logit. In our
evaluation, we used datasets that had less than three classes.
For those scenarios, we take the second largest logit.

Phishing NSL-KDD UNSW-NB15 MNIST FMNIST CIFAR-10 MalMem
(16,32)  (16,32)  (3,64,64,128,128,256,256,
Conv. Neurons 256,512,512.512,512,512,)
Kernel Size 3 3 3
Stride 1 1 1
Dropout Prob. 04 04 0.5
MaxPool Kernel 2 2 2
MaxPool Stride - - - 2 2 2 -
Linear Neurons (15,) (60,32) (15,) (128,) (512,) (512) (32,)
Activation ReLU ReLU ReLU ReLU  ReLU ReLU ReLU
Loss CCE CCE CCE CCE CCE CCE CCE
Optimizer Adam Adam Adam Adam Adam SGD Adam
Learning Rate le-2 le-2 le-2 le-3 le-3 5e-2 le-2
Epochs 40 4 40 20 20 300 180
Batch size 32 128 128 64 64 128 64
Table 5: Hyperparameters
Phishing NSL-KDD UNSW-NB15 MNIST FMNIST CIFAR-10 CIC-MalMem-2022
Attack PGD PGD PGD PGD PGD PGD PGD
Epochs 10 10 5 30 30 3 10
o 0.01 0.01 0.01 0.01 0.01 0.01 0.0
Random Restart 0.05 0.01 0.01 0.1 0.1 0.03 0.01

Table 6: Adversarial Training Hyperparameters

Symbol

Meaning

I R A N e e -
=
=
=

=

Q\wmcp'u

original input

adversarial example

perturbation added to x

x in tanh space

victim model

model logits

number of classes

true label

softmax output

closest class

loss function

single-step perturbation magnitude
total perturbation

Jacobian of a model

Saliency Map

parameter for some £,-norm
time importance parameter
budget equation

budget value for a given equation
space of attacks

Table 7:

Symbol usage and meaning

ATKy

Opt.

CoV

RR

‘)

SM

Loss

JSMA

DF

BIM

37

PGD

171

191

CwW

246

FAB

449

460
APGD-CE
APGD-DLR

SGD
SGD
SGD
SGD
SGD
Adam
Adam
Adam
Adam
BWSGD
MBS
MBS
MBS
MBS

False
False
False
True

False
False
True

True

False
False
False
False
False
False

False
False
False
False
True

False
False
False
True

False
False
False
True

True

L
%)
leo
2]
leo
by
leo
2]
lo
2]
leo
2]
leo
leo

SM;
SMp
SM;
SM;
SM;
SM;
SM;
SM;
SM;
SMyp
SMp
SM;
SM;
SM;

IL
IL
CE
IL
CE
DLR
CE
CWL
DLR
IL
CE
DLR
CE
DLR

Table 8: Attack Name Encodings.
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