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Abstract— The basis for all IPv4 network communication is the
address resolution protocol (ARP), which maps an IP address
to a device’s media access control identifier. ARP has long
been recognized as vulnerable to spoofing and other attacks,
and past proposals to secure the protocol have often involved
in modifying the basic protocol. Similarly, neighbor discovery
protocol (NDP) is the basis for all IPv6 network communication,
yet suffers from the same vulnerabilities as ARP. This paper
introduces arpsec, a secure ARP/RARP protocol suite which
a) does not require protocol modification, b) enables continual
verification of the identity of the target (respondent) machine
by introducing an address binding repository derived using a
formal logic that bases additions to a host’s ARP cache on a
set of operational rules and properties, c) utilizes the trusted
platform module (TPM), a commodity component now present
in the vast majority of modern computers, to augment the logic-
prover-derived assurance when needed, with TPM-facilitated
attestations of system state achieved at viably low-processing cost,
and d) supports IPv6 NDP (ndpsec) by extension of our previous
work. Using commodity TPMs as our attestation base, we show
that arpsec incurs an overhead ranging from 7% to 15.4% over
the standard Linux ARP implementation, a comparable overhead
against the standard Linux NDP implementation, and provides a
first step towards a formally secure and trustworthy networking
stack for both IPv4 and IPv6.

Index Terms— Access protocols, logic programming, message
authentication, network security.

I. INTRODUCTION

THE ADDRESS Resolution Protocol (ARP) [36] is a
fundamental part of IPv4 network connectivity. Operating

below the network layer, ARP binds an IP address to the Media
Access Control (MAC) identifier of a network device, e.g.,
an Ethernet card or a Wi-Fi adapter, which in turn completes
the process of routing the packet to its intended destination.
Such communication relies on the last hop for correct delivery.
ARP is subject to a variety of attacks including spoofing and
cache poisoning, as originally described by Bellovin [5]. Tools
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such as dsniff [42] and nemesis [28] can be used respectively to
easily launch such attacks. An attack on ARP can subsequently
enable more sophisticated denial-of-service (DoS) and man-in-
the-middle (MitM) [30] attacks.

While numerous methods have been proposed to secure
ARP [21], [31], [33], [46], [51], they fall short of offering a
comprehensive solution to these problems. First, a successful
security solution must ensure that the basic ARP protocol itself
remains unchanged. There is no “flag day” on which all ARP
implementations embedded into the large variety of Internet-
connected IPv4 devices will change. Second, the overhead
of the implementation should be as small as possible in
order to optimize system performance. Third, the ARP secu-
rity mechanism should be flexible and reliable. Hard-coded
security policies may not be applicable to varying network
environments. Last, we need to know if the remote machine
can be trusted. Trust here applies to both the authentication
and the system integrity state of the remote machine, e.g., even
if a binding is correct, we may not wish to add a remote host
that cannot attest to the correctness of its operation. While past
proposals have ranged from localized solutions to those involv-
ing public key infrastructures [6], [15], [23], they have not
been widely deployed, either due to requiring specific network
configurations, creating large system overheads, or requiring
fundamental changes to ARP.

In this paper, we propose arpsec, an ARP security approach
based on logic and the use of the Trusted Platform Mod-
ule (TPM) [48], to implement security guarantees. arpsec does
not change or extend the ARP itself. Instead of hard-coded
security policies, arpsec formalizes the ARP system binding
using logic. A logic prover then reasons about the validity of
an ARP reply from the remote machine based on the codified
logic rules and the previously stored binding history on the
local system. A TPM attestation protocol is also implemented
to challenge the remote machine if the logic layer fails to
determine the trustworthiness of the remote machine. Using
TPM hardware, we can authenticate (establish the identity) of
the remote and discover whether the remote machine is in a
good integrity state (i.e., not compromised). arpsec defends
from most categories of ARP attacks by tethering address
bindings to trusted hardware, establishing the basis for a
trustworthy networking stack.

We have implemented arpsec in the Linux 3.2 kernel, using
commodity TPMs and a Prolog engine. Our experiments show
that arpsec only introduces a small system overhead, ranging
from 7% to 15.4% compared to the original ARP and incurs
the lowest overhead when compared to the two PKI-based
ARP security proposals, S-ARP [6] and TARP [23].
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We have then expanded on this previous work, which
appeared in CODASPY’15 [45], by applying the idea
of arpsec to support the Neighbor Discovery Proto-
col (NDP). ARP is replaced by the Neighbor Discovery
Protocol (NDP) [27] in IPv6. NDP, like ARP is used
to establish bindings between a device’s IP address and
link-layer, or MAC, address. NDP also incorporates the
ICMP-based functionalities of router discovery and redirect.
Unfortunately, NDP shares many of the vulnerabilities of
its predecessor, being vulnerable to three main classes of
attack: Denial-of-Service (DoS), address spoofing, and router
spoofing [27]. Our new work, ndpsec, builds on our previous
framework for arpsec with the goal of providing a more
comprehensive solution to host protection, including in the
IPv6 setting. Our evaluation shows that ndpsec outperforms
SEND [3], [7], an alternative solution that relies heavily on
cryptography, by one order of magnitude.

In summary, our contributions include:
• Design and implementation of arpsec to secure ARP by

leveraging TPM hardware and logic reasonings.
• Comparison of arpsec with two other ARP security

solutions, S-ARP and TARP.
• Design and implementation of ndpsec to secure NDP, by

extending arpsec into IPv6.
• Comparison of ndpsec with the existing NDP security

solution SEND.
To the best of our knowledge, our work is the first solution

to consider building trusted networking for IPv4/IPv6 domains
starting from ARP/NDP using TPM, and ours is the first to
implement the defense algorithm using logic. This is the first
step to build a trusted and verifiable networking environment.

The remainder of this paper is structured as fol-
lows. Section 2 outlines the background on ARP and
NDP security issues as well as on trusted computing.
Section 3 details the design and architecture of arpsec and
ndpsec. Section 4 shows details and tradeoffs during the imple-
mentation. Section 5 describes a general procedure to deploy
arpsec and ndpsec in the wild. Section 6 provides the perfor-
mance evaluation of arpsec and ndpsec. Section 7 discusses
potential issues with arpsec and ndpsec alongside possible
solutions. Section 8 reviews the past efforts on ARP and NDP
security, and Section 9 concludes.

II. BACKGROUND

We first discuss ARP and NDP security issues based on
their current design and implementations, before explaining
common attacks against either protocol. As both arpsec and
its extension, ndpsec, use the TPM, a brief review of trusted
computing is provided.

A. ARP Security Issues

ARP [36] is the glue between Layer 3 and Layer 2 in
IPv4 networks, binding IP addresses to medium access con-
trol (MAC) addresses unique to a particular network inter-
face card (NIC).1 Before an IP packet is sent out from

1Reverse ARP [11] is generally obsolete in favor of other bootstrapping
protocols such as DHCP and BOOTP.

Fig. 1. An attack tree for ARP.

a NIC (e.g., an Ethernet card), the host’s ARP cache is queried
to find the MAC address assigned to the target IP address of the
packet. If the MAC/IP binding is not found, an ARP request
will be broadcast to the entire network segment (the broadcast
domain). Only the host with the target IP address should send
back an ARP reply containing its MAC address.

In reality, every machine in the network could send an ARP
reply claiming that it has the requested MAC address, as there
is no ARP reply authentication mechanism. In this case, most
operating systems either accept the first reply or the latest
one if multiple replies respond to the same request. They
further optimize performance by processing ARP requests
from other machines and adding MAC/IP bindings for future
use. Though all bindings in the ARP cache have some Time-
To-Live (TTL) control, the timer is usually large and designed
for performance rather than security. As an example, Linux
always accepts the first ARP reply to the request and ignores
others. It also rejects ARP replies without a request while
processing ARP requests from other machines. The TTL for
each entry in the Linux ARP cache is around 20 minutes [6].
Solaris and Windows have similar optimizations and hence,
similar security issues [26], [43].

One basic attack against ARP is message spoofing. The
adversary could inject a new MAC/IP binding into the victim’s
ARP cache simply by sending a forged ARP request or reply to
the victim. The other basic ARP attack is cache poisoning [51],
where the adversary generates the ARP reply using a certain
MAC address given the request from the victim. Both spoofing
and poisoning attacks attempt to insert a malicious MAC/IP
binding in the victim’s ARP cache.

As shown in Figure 1, the attacks described above act
as enablers for other adversary actions, such as man-in-the-
middle (MitM) attacks [30] and denial of service (DoS) [51]
attacks. For a DoS attack, the adversary can inject the victim’s
MAC address into a particular machine or substitute the
victim’s MAC address with another one. In the former case,
all the IP traffic from that machine targeting a certain address
will be redirected to the victim, while in the latter case, the
victim would never receive the messages intended for it to
provide the service. MitM attacks are particularly serious,
since with the help of ARP spoofing/poisoning, the adversary
can interpolate himself into the traffic between victims by
injecting his MAC/IP binding into both victims’ ARP cache.
Both attacks are also quite simple to implement, with small
usable scripts widely available, and these in turn can lead to
attacks compromising user identity or allowing the leakage of
secret information.
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B. NDP Security Issues

NDP [27] is the replacement to ARP in IPv6 networks. For a
particular link, NDP is involved in the following [27]: router
discovery by host devices, prefix discovery for enumerating
on-link destinations, discovery of either link (e.g., MTU) or
Internet (e.g., hop limit) parameters, stateless address auto-
configuration, address resolution (as with ARP, determine
the link layer address of an on-link destination given its
IP addresses), next-hop determination, neighbor unreachability
detection (NUD), duplicate address detection (DAD), and
redirect. The above functionality is provided by five types of
ICMP packets. The corresponding message types are [27]:

1) Router Solicitation (RS): sent by hosts, requesting
routers to generate Router Advertisement messages.

2) Router Advertisement (RA): periodically sent by routers,
making their presence and relevant parameters known.

3) Neighbor Solicitation (NS): sent to determine a neigh-
bor’s link-layer address or confirm reachability.

4) Neighbor Advertisement (NA): sent as a response to a
NS or as an announcement of link-layer address change.

5) Redirect: sent by routers, identifying a better first hop.
NDP does ignore packets from off-link senders and check Hop
Limit fields, but these measures alone are insufficient [27].

Despite being a more robust counterpart for ARP in
IPv6 networks, NDP remains vulnerable to three main classes
of attack: Denial-of-Service (DoS), address spoofing, and
router spoofing [27]. NDP’s vulnerability to such attacks
results from there being no means to verify whether a
particular node is authorized to send a particular type of
message. This means, for example, any non-router node may
launch a DoS attack by falsely advertising itself as a router.
Spoofed router solicitation or advertisement messages can
also allow man-in-the-middle attacks, enable parameter and
prefix spoofing, or seemingly kill router(s), thus invoking
direct Neighbor Discovery exchanges between nodes on the
link [29]. Similar effects may be achieved via spoofed redirect
messages. Spoofed neighbor solicitation or advertisement mes-
sages can cause packet redirection, block Neighbor Unreacha-
bility Detection, and leverage Duplicate Address Detection to
deny access to newly entering hosts [29], introducing similar
security problems as in ARP spoofing/poisoning.

C. Trusted Platform Module (TPM)

A Trusted Platform Module (TPM) is a cryptographic chip
embedded in motherboards. Though implemented by various
vendors, all TPM chips follow the TPM specification [48]
designed by the Trusted Computing Group (TCG). In con-
junction with the system BIOS, TPMs can be used to form
a root of trust in a system and to build the trust chain for
the software along the software stack, including boot loaders,
operating systems, and applications [16], [17], [32], [38].

TPMs can help to determine the true identity of a remote
host via the Attestation Identity Key (AIK) verification during
the TPM attestation. After creating an AIK pair, the TPM
hardware communicates with a Privacy Certification Author-
ity (PCA) or Attestation Certification Authority (ACA) using
the information embedded in itself to prove its identity and

Fig. 2. The architecture of arpsec.

get the AIK credentials. A remote machine proves its integrity
state by reporting the values of its Platform Configuration Reg-
isters (PCRs). If the measurement of PCR values during a TPM
attestation is different from what is expected, the remote may
be compromised and thus not be trustworthy. It is important to
realize that the AIK private key and the measurement of PCRs
are all stored in the TPM itself. Unless the TPM hardware is
compromised [44], there is no disclosed method of hacking
into the TPM through software and changing PCR values.

III. DESIGN

A. Threat Model

The hardware, BIOS, boot loader, operating system and the
corresponding system libraries, as well as the arpsecd daemon,
are trusted components in our local host. However, except
for the TPM hardware in the remote machine, we do not
trust anything generated by the remote machine. Moreover,
the adversary may have compromised the remote machine
and gained root permission, through which any ARP or NDP
attacks can be launched, including ARP message spoofing
and ARP cache poisoning. The adversary may also leak
secret information he has gotten from the victim and use this
information to impersonate the victim on another machine
while taking the victim machine offline. In short, for the
local arpsec host machine, the TCB includes all hardware
and system software required to start arpsecd; the local host
machine should also only trust the TPM hardware within the
remote machine during the ARP or NDP processing.

It is important to note that the TPM hardware attacks,
like TPM deconstructing [44] and TPM reset attack [17], are
not considered in this paper, nor are potential TPM relay
attacks, whose preferred solution is a special-purpose hardware
interface [32]. Also, arpsec is not designed for DoS/DDoS
attacks, though it has the ability to defend against simple DoS
attacks, which we discuss further in Section VII.

B. System Design

Compared to proposals such as S-ARP and TARP, which
take advantage of the PKI system to extend ARP, arpsec
formalizes ARP address binding and validates ARP messages
using both a logic prover and TPM attestations, all without
requiring any changes to the original protocol. The architecture
of arpsec, shared by ndpsec, is illustrated in Figure 2.

In the user space, arpsecd is the daemon process of arpsec
that runs in the local machine and takes control of processing
of all the ARP messages from the kernel. There are three
major components in the arpsecd daemon: the CPU read,
the logic layer and the TPM layer. The CPU read component
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Algorithm 1 ARP Message Processing Within arpsec

while there is an ARP msg from the kernel do
check the msg type;
if msg.type == ARP request then

if msg is for us then
reply the request;

else
drop the request;

end
else if msg.type == ARP reply then

if msg is for us then
if msg passes the logic layer then

add the MAC/IP binding into the ARP cache;
else

if msg passes the TPM layer then
add the MAC/IP binding into the ARP
cache;

else
drop the reply;

end
end

else
if msg passes the logic layer then

add the MAC/IP binding into the ARP cache;
else

drop the reply;
end

end

end

retrieves all ARP request/reply messages from the kernel space
and passes the preprocessed, logic-friendly messages to the
logic layer component. The logic layer component then tries
to handle these messages based on the message type, system
state and the logic rules. We will detail the logic layer in
the following section. For the ARP reply, if the logic layer
is unable to validate the message, the TPM layer will then
challenge the remote machine using the TPM attestation. Only
the MAC/IP bindings (in the ARP reply) validated by the logic
layer or TPM attestation could be added into the local ARP
cache. The pseudo code of arpsecd ARP processing is listed
in Algorithm 1. Note that arpsec ignores ARP requests not for
itself. These are usually processed by ARP implementations
for performance but leave the ARP cache vulnerable.

C. Logic Formulation

The logic layer in arpsec is the first filter used to testify the
trustiness of an ARP/RARP reply message. The logic layer
imposes minimal performance costs when compared to the
TPM layer, using a logic prover and a list of ARP logic
rules. To leverage the power of the logic reasoning, firstly,
we introduce an ARP system binding logic formulation.

1) Intuition: The logic layer tracks statements (attestations)
by systems that particular media addresses are mapped to

network addresses. The timing of these statements are tracked
such that the logic can “prove” exactly which binding is
the most authoritative at a given time. The logic judges a
binding to be authoritative if it is the most recent one received
from a trusted system. At runtime, the system generates,
if possible, the proof of a binding before using it for network
communication.

An instance of an ARP binding system is defined as
A = {N ,M,T ,S, S̄, R̄}, where

T = P

N = (ε, n0, . . . , na)

M = (ε, m0, . . . , mb)

S = (s0, . . . , sc)

S̄ = S × T
R̄ = S × N × M × T

Intuitively, T is a set of all positive integers representing
an infinite and totally ordered set of time epochs. N is the
collection of network addresses and M is the collection of
media addresses. For convenience, both address sets contain a
special address ε representing the lack of binding assignment,
described below. S is the set of systems that makes assertions
about the address bindings within the network. S̄ represents
the timing of system trust validations (e.g., system attesta-
tions); s̄i, j ∈ S̄ where system si was successfully vetted at
time t j . R̄ is the binding assertions made in the course of
operation of the ARP protocol, where R̄i, j,k,l ∈ R̄ if system
si asserts the binding (n j , mk) at time tl . Lastly, for ease of
exposition, we introduce the following derived binding and
trust time-state elements within the system:

A = (A0, . . . , A|P|)
B = (B0, . . . , B|P|)

R is the key conceptual element here; each element of R cap-
tures the fact that system si stated (through an attestation) a
binding of network address n j to media address mk at time tl .
The remainder of the logic simply reasons from the set of
statements which binding should be considered authoritative
at a given time.

2) Trust State: The trust state A of the system is a totally
ordered set of subsets of S representing the instantaneous
set of systems that have been determined to be in trusted
state in each epoch (e.g., have been vetted through system
attestations). The trust state of the A at time tk , Ak is:

Ah
k = {s | ∃ j, (k − h) ≤ j < k : (s, j) ∈ S̄}

Or simply, Ak is the set of all systems si ∈ S that have been
vetted as trustworthy within the last h epochs. The security
parameter h represents the durability of a system trust state.
In the initial state of the system all systems are untrusted, e.g.,
Ao = {∅}.

3) Binding State: We refer to the Bk as the binding state
at time Tk . The states of the binding system B are a totally
ordered sequence of Bk , which is a relation over N and M
representing the instantaneous binding of network to media
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addresses, where:

∀Bk ∈ B : Bk ⊂ N × M

It is worth noting further that each Bk is constrained by a set
of coherency properties that define correct operation of the
binding protocol. Namely, ∀Bk ∈ B:

(1) ∀ nl ∈ N : ∃ (nl , mo), mo ∈ M
(2) ∀ mo ∈ M : ∃ (nl , mo), nl ∈ N
(3) � ∃ (nl , mo), (n p, mq) : nl = n p �= ε

(4) � ∃ (nl , mo), (n p, mq) : mo = mq �= ε

That is, all network addresses (constraint 1) and media
addresses (2) must have an assignment at each epoch. Further,
the network address not bound to the unassigned element ε
must be bound to exactly one media address (3), and the media
address not bound to the unassigned element ε must be bound
to exactly one network address (4).

We define the set of rules with operational properties for
the binding set. We state that (n j , mk) ∈ Bl if and only if:

(5) ∃ R̄i, j,k,x ∈ R̄, x ≤ l, si ∈ Ax ,

� ∃ R̄v, j,p,y ∈ R̄, p �= k, y > x, sv ∈ Ay,

� ∃ R̄v,q,k,y ∈ R̄, j �= q, y > x, sv ∈ Ay

Constraint (5) indicates that any binding in Bl was asserted
at or prior to time tl by a trusted system, and no later assertion
for that network or media address was subsequently received
at or before tl was asserted.

Finally, by definition, all network and media addresses are
unassigned in the initial state B0:

B0 = ∀nl ∈ N , (nl , ε)
⋃

∀mo ∈ M, (ε, mo)

In general, constraint (5) is the core property used by the
logic prover to implement the ARP security. The logic layer
stores all the verified bindings with the remote system identi-
fiers and the time epochs. For any given MAC/IP binding in
the ARP/RARP reply message from the remote, if there exists
a binding record from the same (trusted) remote in the past
that is no older than a pre-defined number of epochs (security
parameter h) when compared to the current epoch. the logic
layer would trust this binding, add the binding to the local
ARP cache, and add this binding record into the logic prover
for future reasoning. Security parameter h represents a tradeoff
between reliability and performance, as it determines the time
range of the past we trust to validate the current event.

The Prolog engine continuously consumes assertions
received at an end host and infers Bk at each time epoch using
the above constraints. That generation thus provides a proof
of authority; if a binding (ni , m j ) ∈ Bk , then it is authoritative
and can be used for communication at time ti .

In summary, the security parameter h dominates how long
we trust the remote machine given the current MAC/IP bind-
ing, which is attested and trusted, by essentially setting a timer.
When the binding is updated (e.g., either by the host machine
solicitation or the remote machine), the timer gets extended
as long as the binding does not change and the timer has

Fig. 3. The AT Request/Reply.

not expired yet. This design introduces the minimum run-
time overhead given a benign environment, as the attestation
happens only once at the very start of the communication.
When the timer expires, or the binding changes, a new
attestation will be triggered before this binding is added into
the local cache, making sure that either the remote machine is
still in a good state or the remote machine is the one owning
this binding. The logic layer in ndpsec is extended from that
of arpsec and testifies to the trustiness of NDP messages.

D. TPM Attestation

If an incoming ARP/RARP request or reply, or NDP mes-
sage, cannot be validated by the logic layer, arpsec/ndpsec
turns to a TPM layer as a second line of defense. To establish
trust in the remote host, we use a TPM attestation [48], whose
general operation is described in Section II. A measurement is
taken based on the current state of the underlying hardware,
BIOS, boot loader, and operating system, with each value
stored in a PCR. The TPM is tamper-resistant and access
to PCRs is not possible except through expensive hardware
attacks. The Attestation Identification Key (AIK) thus provides
identity while the PCRs determine system integrity state.

We design the arpsec/ndpsec Attestation (AT) protocol for
communication between the local machine (also known as
the challenger) and the remote machine (also known as the
attester), as shown in Figure 3. The request contains a header,
a list of PCRs, and a nonce to prevent replay. The PCR list
indicates which registers are of interest - for our purposes,
these are registers 0 through 7.2 When the host receives this
challenge, it responds with a TPM Quote, which includes the
nonce, PCR values and their corresponding digest, signed by
the AIK private key, in the AT reply. If at this point any
of these values fail and the signature cannot be validated,
the address binding is purged from the ARP or NDP neighbor
cache. Note that we do not put any MAC/IP binding into the
AT reply. Comparing to the TPM, a MAC/IP binding is easy
to fake and thus not trustworthy.

IV. IMPLEMENTATION

We have implemented arpsec in Linux with the 3.2.0.55 ker-
nel, using C and Prolog. The implementation details of the
arpsecd daemon is shown in Figure 4. The primary goal of the
implementation is high performance, in order to minimize the
overhead of arpsec. We also focus on incremental deployment,
such that arpsec and standard ARP messages can coexist in
the same network.

Depicted in Figure 4, the relay mechanism [52] transports
ARP messages from kernel to user space, as it is designed

2PCRs 0 through 7 cover the measurement for hardware, BIOS, boot loader
and even OS [48] Other PCRs could be extended to cover system libraries
and even applications.
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Fig. 4. The implementation of arpsec daemon (arpsecd).

to manage large amounts of asymmetric traffic. We also use
a netlink socket to communicate from user to kernel space,
in order to manipulate the ARP cache. This provides similar
functionality to the ioctl() calls for cache management but
uses the low-level kernel APIs to get rid of the extra locking
in ioctl(). Using this netlink socket, we could also trigger
the kernel to send the ARP reply given any request, at which
point it is relayed to user space for efficient processing.

In user space, the logic formulation of the ARP binding
system is implemented in GNU Prolog (GProlog) [9]. We inte-
grate the GProlog-based logic prover into our C-based arpsecd
using the GProlog-C interfaces, providing a 50X performance
improvement compared to IPC between arpsecd and the
GProlog interpreter. We set a 5-second security parameter,
meaning that every 5 seconds we expect a new attestation
of the ARP binding.

We also implemented a whitelist and two blacklists before
logic processing occurs. The whitelist contains the MAC/IP
bindings known to be good under all conditions. The two
blacklists contain potentially malicious MAC addresses or
IP addresses, respectively. Currently, only the MAC/IP bind-
ings which failed the TPM attestation will be added into the
black list. All entries in the blacklists have the same TTL
of 200 seconds, at which point they are removed.

The arpsec TPM component is built on the top of the
Trousers API [47] following the TPM 1.2 specification [48].
TPM information (PCRs and AIK public keys) of remote hosts
is stored in an internal database. A TPM daemon (tpmd) is
also implemented for the remote machines to process the TPM
attestation from arpsecd. The PrivacyCA architecture is also
used to get the AIK credential for the TPM hardware. In
our current implementation and testing environment, we are
interested in the PCR 0-7. More PCRs could be covered and
extended if the measurement of applications is also desired.

Like arpsec, ndpsec has both kernel and user space com-
ponents. Unlike IPv4, the Linux kernel has imposed some
defensive checks in IPv6 before treating the NDP message to
be valid, including multicast address checking, DAD checking,
and ICMPv6 ND option checking. Once the NDP message
is validated by the kernel, it is relayed to the user-space

daemon arpsecd3 before being processed by the kernel. The
netlink socket used by arpsec has been extended to support
NDP message delivery of NS and NA messages. Accordingly,
we have extended arpsecd to support NDP message processing
as well. Similarly, tpmd is augmented to respond to the
IPv6-based TPM attestation. No changes are needed by the
Prolog engine, which is transparent towards IPv4 or IPv6.

V. DEPLOYMENT

To deploy arpsec/ndpsec in the wild, we need a TPM
Information Management Server (TIMS) that acts in a similar
manner to a Privacy CA as defined by the TCG. Below,
we detail the management of AIK key pairs by the TIMS.

As one TPM could generate multiple AIK pairs, we require
each new machine to create a new AIK pair using the TIMS
when firstly joining the network. Before the AIK generation,
the new machine has to verify that it is talking with the TIMS.
Instead of trying to verify the MAC/IP binding of the TIMS,
the new machine should challenge the TIMS using TPM. For
sure, all the new machines have to be configured with the
AIK public key of the TIMS before hand. Once the procedure
is done, the new machine has to send its MAC address and
PCR values (thought to be good values) via a secure channel,
(e.g., using SSL, via a httpd daemon with a SSL module), to
the TIMS. The TIMS then creates a new entry for this new
MAC/AIK/PCR binding in its database for this new machine
and distributes this new TPM Information Entry (TIE) to all
arpsecd daemons running on machines within the network via
a secure channel. Upon receiving the new TIE from the TIMS,
the arpsecd daemon will insert the entry into its own internal
database for future reference. It is worth noting that the AIK
and PCRs within a TIE, are also used for TPM attestation by
the TIMS for TIE update and revocation down below.

There are some special use cases we need to be cognizant
of within the arpsec/ndpsec network. If the MAC address is
changed for one machine, the machine must notify the TIMS.
In this case, the machine could send a TIE Update message
containing the old and new MAC addresses to the TIMS.

3Instead of creating a new ndpsecd, we enhanced arpsecd to support NDP.
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The TIMS should first launch a TPM attestation (just like
the arpsecd) towards the requesting machine. Only upon the
success of the attestation will the TIMS update the existing
TIE with the new MAC address and distribute the TIE Update
to other arpsecd daemons. If a new MAC address is added into
the machine, different actions will be taken based on whether
the existing AIK is reused or not. If the new MAC address is
bound with an existing AIK, a TIE Add message containing
the new MAC address and the existing AIK should be sent
to the TIMS. Again the TIMS will do the TPM attestation
before creating a new TIE in its database and distributing this
TIE Add to other arpsecds. If the new MAC address tries
to use a new AIK, then it is the same procedure as when
a new machine joins into the network except an extra TPM
attestation by the TIMS before the new AIK pair generation,
making sure the machine is in a good integrity state. Any time
one machine wants to discard its existing AIKs or change the
TPM hardware or upgrade the BIOS/operating system (and
thus changing the PCRs), it has to send a TIE Remove
with all the registered MAC addresses before it starts a new
registration. The TIMS will then clear all the TIEs with those
MAC addresses and notify all arpsecds to remove them as
well. Though a hybrid network is not desired, the arpsecd has
implemented a white list for the old machines, which may
not have TPM hardware but have to be trusted anyhow, like
gateway routers or DNS servers.

Besides the one-time effort of AIK creation, either TIE
update or revocation may be a major management overhead.
However, we argue here that both AIKs and OS (PCRs) are
stable compared to session keys and application software. The
distributing and updating for TPM information usually hap-
pens when hardware/OS upgrades, which is far less frequent
than updates from applications. TIE revocation is directly
related with AIK revocation, which usually happens when
the ownership of TPM hardware is changed - a TPM reset
in the BIOS. Once the TPM hardware is in use, we assume
AIK revocation is rare.

VI. PERFORMANCE EVALUATION

To fully understand the overhead of arpsec, we compare our
implementation with standard ARP as well as the proposals
that most closely mirror the security guarantees that we
provide, S-ARP and TARP. We follow the experiment settings
of TARP, providing macro- and microbenchmarks.

We also investigate the overhead of ndpsec, comparing it to
standard NDP as well as Secure Neighbor Discovery (SEND).
According to the report by the Rocky Mountain IPv6 Task
Force [10], there are three SEND implementations publicly
available: Easy-SEND [8], NDprotector [7], and IPv6-Send-
CGA [13]. Easy-SEND is a Java GUI-based implementation,
which imposes extra overhead besides SEND processing.
IPv6-Send-CGA is an old kernel patch based on Linux
kernel 2.6, which is too old for current Linux systems.
Unfortunately, there is no official SEND implementation in
the Linux kernel (which also reflects the limited deployment
of SEND in the wild). We choose NDprotector because it is
a Python and C based implementation, which uses libpcap to
capture and process IP packets in the user space efficiently.

Our testing environment involves 4 Dell Optiplex
7010 desktop PCs with quad-Core Intel i5-3470 3.20 GHz
CPU, 8GB memory with Intel Pro/1000 full duplex Ethernet
cards, running Ubuntu LTS 12.04 (x86-64) with Linux kernel
version 3.2.0.55. All machines are equipped with TPM hard-
ware from STM (version 1.2 and firmware 13.12), running
Trousers API 1.2 rev 0.3. To eliminate the impact from exterior
network traffic, all machines are isolated on a 1000-Mbps
HP ProCurve switch. As S-ARP and TARP were written on
Linux kernel 2.6, we have forward-ported the S-ARP and
TARP implementations to our testing environment. We have
also fixed some bugs in NDprotector and made sure it works
correctly before running the evaluation.

A. Macro-Benchmark Testing of arpsec

We benchmark performance based on the round-trip-
time (RTT) using ping to provide overhead from an appli-
cation’s or user’s perspective. This benchmark we used is
also consistent with what was used by S-ARP and TARP.
Like TARP, we also implemented a custom ping command:
ncping (no-cache ping), which clears the local ARP cache
before each ICMP echo request is sent. With ncping, we can
get the performance evaluation in the worst case and reveal
the true overhead of different methods.

We have performed three groups of experiments: (a) ping
with the target MAC/IP binding in the ARP cache, (b) ping
without the target MAC/IP binding in the ARP cache,
and (c) ncping. Each test consists of 1000 ICMP echo
requests or 10 × 1000 requests for the ping without caching.

Figure 5a shows the RTT average (mean), min (mean −
2σ 2) and max (mean + 2σ 2) from the ping command with
the target binding in the ARP cache. In all experiments,
internal caching of S-ARP and TARP is enabled to maximize
performance. Once the target binding is in the ARP cache,
RTT average values of all these methods look similar, ranging
from 0.210 to 0.240 ms. The max and min values among these
methods are also comparable, which is intuitive given no ARP
processing is occurring. We attribute arpsec’s slightly faster
processing time to efficiency of processing in user space and
of the relay system.

Figure 5b demonstrates the most common scenario, where
the target binding is initially absent from the ARP cache. The
first ping now takes much more time, as the ARP request
will be broadcast and the corresponding reply will be handled
before the binding can be added to the cache. Once the reply
is processed and the binding is added, the performance is the
same as in Figure 5a and the average RTTs converge to be
similar to standard ARP.

To show the average time of the first-ARP-Reply processing,
we repeated the 1000-run ping for 10 times. S-ARP, TARP
and arpsec daemons were restarted each time to show the real
processing time without caching. As shown in the figure, the
left bar is the average over all 1000 pings, and the right bar
is the average of 10 first-time pings. The left bars show the
amortized costs are close to cached processing. From the right
bars, we see that after standard ARP, arpsec has the smallest
overhead by 15.4%. S-ARP, without the help of caching,
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Fig. 5. The macro-benchmark of arpsec. (a) The average RTT (ms) of ping command with the target binding in the ARP cache for 1000 ICMP echo
requests. (b) The average RTT (ms) of ping command without target binding in the ARP cache for 1000 ICMP echo requests over 10 runs. The right bar
is the average RTT of the first ping during the 10 runs. (c) The average RTT (ms) of ncping command for 1000 ICMP echo requests.

Fig. 6. The macro-benchmark of ndpsec. (a) The average RTT (ms) of ping command with the target binding in the neighbor cache for 1000 ICMP echo
requests. (b) The average RTT (ms) of ping command without target binding in the neighbor cache for 1000 ICMP echo requests. (c) The average RTT (ms)
of ncping command for 1000 ICMP echo requests.

introduces the biggest overhead, taking on average 64 ms for
the new MAC/IP binding.4

Figure 5c displays worst-case performance using the
ncping command, where the ARP cache will be flushed
before each ICMP echo request is sent. With the help of
internal caching and one-setup signature validation, TARP
introduces a small overhead of 19.9% comparing with the
original ARP. Even with caching, S-ARP still shows the
largest overhead with the RTT average value 8.4 ms (not
shown in the figure) because of the time synchronization and
communication with the AKD. Comparing with S-ARP and
TARP, arpsec performs the best, introducing a 7% overhead.
Note that the TPM attestation is not triggered until the logic
prover fails. The security parameter used by the prover is
5 seconds in our testing. Also, the RTT value of arpsec does
not mean that TPM operation is fast, only that a quote can
be amortized in the overhead. Because of the asynchronous
operation of the TPM, the RTT value of arpsec is free from the
degradation caused by the TPM attestation, but only limited
by the user vs. kernel space communication and the logic
prover. We will detail this in the later section.

B. Macro-Benchmark Testing of ndpsec

In a similar manner to the benchmarking of arpsec for
IPv4, we benchmark the performance of ndpsec based on the

4Although the overhead improvements of arpsec over S-ARP and TARP are
less than 1 ms in most cases, even such small improvements are significant
for kernel operations. Also note the averaging of times over 1000 runs makes
the improvement less obvious for a simple operation as single ICMP echo
requests.

round-trip-time (RTT) using ping to provide overhead from
an application’s or user’s perspective. We test ndpsec against
base NDP without any modifications and against SEND using
NDprotector. We also use a modified ncping to clear the
local neighbor cache before each ICMP echo request is sent.

We have performed three groups of experiments, with
each experiment consisting of 1000 ICMP echo requests:
(a) ping with the target MAC/IP binding in the neighbor
cache, (b) ping without the target MAC/IP binding in the
neighbor cache, and (c) ncping.

In all experiments, internal caching of base NDP and SEND
is enabled to maximize performance. Though we did not
encounter such a problem when evaluating performance in
the IPv4 setting, neighbor cache bindings in the IPv6 setting
are periodically cleared more frequently than the ARP cache
bindings in the IPv4 setting, regardless of the protocol in
use. As a result, after every 10-20 ICMP echo requests,
the RTT of the following request would take time rivaling
that of the request when no binding is available. Instead of
tuning the expiration timer for the neighbor bindings, we leave
the original system parameters unchanged, and include these
values when calculating the average RTTs in order to remain
faithful to the actual behavior of neighbor discovery in our
default IPv6 setting.

Figure 6a shows the RTT average (mean) of the ping
command with the target binding in the neighbor cache. The
error bars show the range of values from mean − 2σ 2 to
mean + 2σ 2. The RTT average for ndpsec and base NDP is
similar, 0.467 ms for ndpsec and 0.665 ms for NDP. The range
of values is also similar, though ndpsec posts a larger standard

Authorized licensed use limited to: Penn State University. Downloaded on April 28,2021 at 16:14:03 UTC from IEEE Xplore.  Restrictions apply. 



TIAN et al.: SECURING ARP/NDP FROM THE GROUND UP 2139

deviation of 0.191 ms vs. NDP’s 0.156 ms. The greater varia-
tion seen in ndpsec is a result of the longer intermittent pings,
when compared to NDP. The RTT average for SEND is much
larger at 10.71 ms, with a standard deviation of 54.82 ms.
As was the case for arpsec, we attribute ndpsec’s slightly
faster processing time to offloading the NDP processing from
the kernel space to user space, which essentially makes the
ICMPv6 software stack of the kernel simpler.

Figure 6b demonstrates the most common scenario, in which
the target binding is initially absent from the neighbor cache.
Shown are the RTT average (mean), mean − 2σ 2, and
mean + 2σ 2. The first ping now takes much more time,
as the neighbor solicitation and corresponding neighbor adver-
tisement messages need be transmitted before the binding is
entered into the cache. Once this step is completed and the
binding is added, the performance is no different from that
reflected in Figure 6a. Because of the longer intermittent pings,
the first ping was no longer the sole outlier, so the timing of
the first ping was not excluded. Again, the RTT average for
ndpsec and base NDP is similar, being 0.532 ms for ndpsec
and 0.686 ms for NDP. The range of values is also similar,
but ndpsec again shows more performance variation, partly due
to its larger max RTT (that of the initial ping) of 2.64 ms
compared to the 1.49 ms max of NDP. The longer intermittent
pings also contributed to the greater variation of ndpsec. The
standard deviation for ndpsec was 0.222 ms, while ndp results
showed a deviation of 0.090 ms. SEND’s performance is well
behind, with an average RTT of 9.144 ms and a standard
deviation of 50.67 ms.

Figure 6c displays worst-case performance using the
ncping command, which removes the target binding from the
neighbor cache before each ICMP echo request is sent. Shown
are the RTT average (mean), mean − 2σ 2, and mean + 2σ 2.
In this worst-case setting, ndpsec introduces a 73.3% over-
head compared to base NDP. The average RTT for ndpsec
was 2.359 ms, compared to NDP’s 1.361 ms; the difference
between average RTTs is only about 1 millisecond. SEND,
on the other hand, with its average RTT of 307 ms (not
shown in the figure), takes almost 225x the time of base NDP.
Furthermore, ndpsec actually has the least variation of the
three when performing ncping, with a standard deviation
of 0.083 ms vs. NDP’s 0.120 ms and SEND’s 7.276 ms.

C. Micro-Benchmark of arpsec

Using the GProlog-C interfaces, the logic prover can run as
a pure C component without affecting performance of arpsecd.
The prominent bottleneck in arpsec is then the TPM hardware,
which is slow compared to a CPU [39].

Table I shows the key generation time of different meth-
ods. Here TARP* shows the ticket generation instead of the
public/private key pair generation. arpsec is the cost of TPM
AIK pair generation and the AIK public key certification.
S-ARP has a mean key generation time of 90.364 ms. TARP
is the fastest with the mean time 32.012 ms (public/private key
pair + ticket). By contrast, arpsec is the slowest with the mean
time 12.841 seconds, because we use the PrivacyCA to certify
the AIK public key generated by the local TPM, following
the complicated AIK certificate enrollment scheme described

TABLE I

THE KEY GENERATION TIME (ms) WITH THE KEY
LENGTH 1024 BITS AVERAGED BY 100 RUNS

TABLE II

THE TPM OPERATION TIME (ms) AVERAGED BY 100 RUNS

in the previous section. Fortunately, the AIK generation and
certification is one-time effort. After this, the AIK private
key is stored in the TPM and could be used in a secure
manner. Moreover, both S-ARP and TARP have either the key
expiration or the ticket expiration issue, which means after a
certain time, either the key or the ticket has to be re-generated
for each host within the network. In the long run, the time of
arpsec’s one-time, offline key generation will be amortized by
the key/ticket re-generation of S-ARP or TARP.

Table II profiles some TPM operations used by arpsec:
AIK generation, cost of obtaining a random value, a TPM
quote, signature verification, and TPM attestation verification,
respectively. AIKgen is time consuming, as we saw from
Table I. Otherwise, the quote operation is the slowest with
the mean time 336.109 ms. We summarize the comparison
among S-ARP, TARP and arpsec in Table III.

D. Micro-Benchmark of ndpsec

To better understand the disparity between ndpsec and
SEND, we inspect the operation costs of each. Table IV
presents the timing of operations used by SEND: key gener-
ation, cryptographically generated address (CGA) generation
and verification, and signature generation and verification. The
greatest cost is incurred when generating the CGA, taking
681.45 ms on average, but this is a one-time cost. RSA
signature generation and verification together takes 218.14 ms.
Though hosts typically need only perform a few such opera-
tions as part of neighbor discovery [3], these crypto operations
take most time in runtime, and are one concern of SEND’s
adoption in the real world. Since there is no change in the
TPM attestation protocol and the Prolog engine, ndpsec shares
the same performance bottleneck as arpsec does, including the
TPM hardware speed in Table I and Table II.

E. Effectiveness and Advantages of arpsec/ndpsec

Like S-ARP and TARP, arpsec is designed to defend against
ARP spoofing attacks; ndpsec is designed to defend against
spoofed neighbor solicitation or advertisement messages.
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TABLE III

GENERAL COMPARISON AMONG S-ARP, TARP AND arpsec

TABLE IV

THE SEND OPERATION TIME (ms) AVERAGED BY 100 RUNS
OF NDPROTECTOR USING ITS BENCHMARKING TOOL

We use one machine to craft an ARP spoofing response
with the victim’s IP address and its own MAC address. This
spoofing message is sent to the target machine, which is
running arpsec and has a cache mapping of the victim’s IP
and true MAC address. The logic layer within arpsec then
fails the verification, since the MAC address presented in the
spoofed response does not match that in the old MAC/IP
binding. The TPM attestation which follows fails as well
since arpsec cannot verify the signature of the attestation
response using the victim’s AIK public key, let alone the PCR
measurement. Thus, the spoofing attack is defeated. ndpsec
can defend against NDP spoofing attacks in similar fashion.

Note that unlike S-ARP and TARP, which can be defeated
once the private key is leaked or the ticket is forged, e.g.,
when the host kernel is compromised, arpsec/ndpsec does
not rely on the integrity of the remote machine, because the
AIK private key is generated and saved inside the TPM. The
fact that attackers cannot forge the TPM attestation response
provides arpsec/ndpsec the strongest guarantee, in addition to
introducing less system overhead than alternative solutions.

VII. DISCUSSION

arpsec and ndpsec are comprised of both a Logic Layer and
a TPM Layer; we now discuss the implications of each of these
layers. The logic formulation for the ARP binding system we
have created (extensible to NDP) is simple, straightforward
and intuitive, due in part to the simple design of ARP.
Even with these simple logic rules, we are able to record
all ARP cache update events, which implicitly capture the
provenance history of the ARP cache. This could potentially
allow the logic prover to act as a forensic system identifying
compromised hosts, and the logic system itself can be extended
to formalize other network protocols that build on ARP/NDP.

To implement the TPM attestation protocol, every machine
must run a TPM daemon, which runs in user space. Even if
this daemon is compromised, the attacker would be unable to
circumvent the TPM attestation protocol. This would require
either a forged TPM Quote on known-good PCR values, or for
the attacker to possess the AIK private key. An attacker would

be unable to recover AIK or edit the PCRs because they are
stored onboard the TPM.

By adding a host to the ARP/NDP cache and purg-
ing it if the attestation fails, we make a design trade-off.
In the worst case, we have made an incorrect binding for
300-500 ms until a TPM quote fails and a binding is removed
from the cache. This can be exacerbated by TCP transmission
delays. Currently, we set the TCP socket timeout to be 2 s.
To optimize for security of the binding, we can purge it
immediately after the challenge is sent and wait for the
attestation before we update the cache again. This creates
considerable overhead, however. Alternately, the ARP request
could carry the challenge and the ARP reply could encapsulate
the AT reply, at the cost of creating a protocol change to ARP
or similar change to NDP.

Another limitation of using TPM attestation is that it only
attests to what was loaded into the system at boot time (or
load-time using integrity measurement). Runtime integrity
checking provides more guarantees at the cost of requiring
extra processors or significant overhead. The need for extra
security co-processors or the incurring of significant system
overhead prevents it from actual deployment. Integrity systems
such as IMA [38] or PRIMA [16] could be integrated with
arpsec/ndpsec. To further reduce the TCB size, we could
potentially run arpsec/ndpsec in an isolated root of trust
environment with a dynamic root of trust as offered by
Flicker [25] or TrustVisor [24]. Even more, to detect the
correct IP and MAC settings of the machine and endorse them,
a trusted path system [53], [54] is needed for arpsec/ndpsec
to securely retrieve settings from NICs.

Though not designed to defend against DoS attacks, arpsec
could handle certain attacks against ARP, as could ndpsec for
NDP attacks. As mentioned before, once the TPM attestation
fails, the malicious MAC address or IP address will be
added into the corresponding black list. When the same MAC
address or IP address is contained in the following ARP/RARP
reply, the reply will be dropped without processing. However,
if the malicious MAC address or IP address keeps changing,
arpsec has to examine each message, as the black list does
not help in this case. Moreover, if the DoS attack is triggered
from a higher-level network protocol, this would be out of
the scope of arpsec. Such protection could be helpful against
spanning tree attacks and VLAN hopping, however [41].

Each machine has to prove its identity using the TPM hard-
ware and provide the good PCRs for future reference before
joining the network. As long as the PCRs stay unchanged,
we trust this machine. However, machines with good PCRs
could still play MitM attacks by injecting a new TIE with
a new MAC address into the TIMS. The IP address could
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include the TIE, but IP addresses can be changed, and the
solution would also burden the management of the TIE and
complicate the design of the TIMS.

The performance of arpsec/ndpsec is limited by the TPM
hardware. The TPM chip is designed to be cheap - only a few
dollars. While the low price helps embed a TPM chip into
each machine, even in mobile phones, it limits the scope of
TPM usages. As shown in Table II, TPM Quotes impose a
336 ms delay when TPM attestation is required. As the TPM
2.0 library specification is published for review now, new TPM
implementations based on it could further reduce the cost of
Quote operations.

While TPMs have been widely deployed in servers,
desktops, laptops and even mobile devices, many legacy
machines lack them. For these machines, software TPMs
could be used as a replacement, such as libtpm mentioned
above, or vTPMs [34] in cloud environments. However, as the
TPM Quote command occurs in software rather than hardware,
a secure, trusted and isolated execution path [53], [54] is
needed to guarantee trustworthiness. For the Cloud Computing
environment, vTPM [34] can provide a working base. Sub-
stituting a software TPM may also result in more incurred
computational overhead by both arpsec and ndpsec.

Intel’s Software Guard Extensions (SGX) may provide an
alternative to TPMs. SGX provides a means of verifying iden-
tity of both hardware environment and enclave through remote
attestation [2]. Proving integrity is not so easy, as a quote
only confirms the integrity of a particular enclave, as opposed
to that of the entire system [14]. If stronger guarantees are
required beyond those provided by PCR measurements, some
sensitive portions of neighbor discovery may be placed into
an enclave for attestation purposes. Requests by a possibly
compromised remote machine could then be ignored if the
associated code or data does not match what is expected.

VIII. RELATED WORK

The security of address binding operations in IPv4 contexts,
particularly ARP, has received considerable attention, focused
on the problems summarized in previous sections. Although
the threats are in a LAN context, as they impact correct packet
delivery to destinations, it is critical that countermeasures to
them be successfully employed.

Alternatives range from early suggestions for static bind-
ings [5], which at normal scale on any type of network
with frequent host additions/removals is intractable; to ARP
modifications in S-ARP [6] and TARP [23] which introduce
signed attestations, in the form of addresses bound to a public
key or a ticket. S-ARP participants self-generate key pairs
and register the public key in the central Authoritative Key
Distributor (AKD). The AKD maintains the public key/MAC
bindings and distributes these to all S-ARP hosts. TARP relies
on Kerberos-style tickets and a central ticket-granting service
to provide authentication, and is hence faster due to the use of
symmetric keys. These approaches all require modifications to
ARP itself, which limits adoption.

Another solution that does not require a modification to the
ARP protocol examines a middleware approach to preventing
ARP spoofing through a STREAMS based subsystem used

to implement a Cache Poisoning Checker [46] that intercepts
ARP requests and responses and inspects them for correctness.
A more wide-ranging approach that deals with detecting
spoofing of addresses in general and considers confidentiality
is described in [40]. If IP address assignment is dynamic, as is
likely to be the case, given the shortage of IPv4 addresses,
this approach could be limited in its usability. It also does
not address the problem of IP to lower level address binding,
either in the discovery or allocation phases.

Other solutions use security policies to prevent ARP attacks.
ArpON [33] defines different ARP binding policies for differ-
ent networks, including static, dynamic, or hybrid networks.
Instead of a centralized management server, hosts within the
network all run the ArpON daemon and respect the same
policies, thus adding complexity to defining and updating
policies for different network environments.

Few proposals have considered a more holistic perspective
of overall protocol design. A class of effort which incorporates
a more fundamental evaluation of what can be done to inte-
grate network security from protocol design to verification is
proposed in [50]. It illustrates examples using BGP and meta-
routing but does not look at address binding. Generally there
has been little emphasis as yet on approaches that tie together
the use of system attestations utilizing hardware roots of trust
with formally verifiable correct operation of infrastructural
Internet protocols. In the case of arpsec, this is done using
logic adjuncts to supplement sections of the existing protocol
stack, so as to retrofit stricter trust properties to specific
portions of the IPv4 network subsystem. From a hardware
standpoint, while the Trusted Computing Group defines the
TPM standard for roots of trust, and standardizes uses of
the same through protocols categorized into different contexts
such as trusted network connect (network access control),
protocol operations supporting Internet infrastructure however
have not yet been considered [12], [49].

The use of IPV4, and thus ARP, is relevant for the
foreseeable future, but IPv6 deployment is increasing. The
IPv6 Neighbor Discovery Protocol (NDP) [27] has capabilities
beyond ARP, relying on autoconfiguration based on address
binding. However, these new features do not immediately
translate into heightened security, as many of the issues faced
by ARP also carry over into NDP.

The IPv6 Neighbor Discovery specification suggests a cou-
ple of cryptographic solutions to NDP security: SEND [3]
and IPsec for IP-layer authentication [20]. SEND relies on
router authorization over certification paths, verification of
senders’ address ownership using cryptographically generated
addresses (CGAs), RSA signatures, nonces, and timestamps.
Besides NDprotector, user space implementations of SEND
are provided by send-0.2, Easy-SEND, and Windows Secure
Neighbor Discovery (WinSEND) [37], while kernel implemen-
tations include send-0.3 and ipv6-send-cga [1]. The practical
adoption of SEND is limited by the high overhead of time-
consuming cryptographic operations used in both generation
and verification of CGAs and signatures. The IPv6 Router
Advertisement Guard (RA Guard) [22] is proposed to over-
come the deployment issues of SEND by providing light-
weight filtering in the layer 2 network. However, as its name
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implies, RA Guard focuses on router discovery/advertisement,
leaving end users vulnerable to spoofing attacks.

The IPsec solution is composed of either one or both of
IP Authentication Headers (AH) [18] and IP Encapsulating
Security Payloads (ESP) [19]. This solution operates on the
IP layer above NDP. AH provides integrity and data origin
authentication, while ESP also provides confidentiality [20].
Despite the potential of IPsec, the complexity of manual key
exchange, along with slowed performance, has discouraged its
adoption to solve even network-layer problems.

An alternative Trust Based Neighbor Discovery
Protocol (T-NDP) uses elliptic curve cryptography as a
substitute for RSA to reduce both transmission delay and
traffic overhead [35]. T-NDP incurs a 9% traffic overhead
when a network contains 50 nodes, an improvement over
SEND, but ndpsec outperforms this in the average case and
in smaller local networks.

Besides attempts to secure the underlying protocol, another
line of work is concerned with monitoring NDP activities.
NDPMon is such a tool which monitors node activity and link-
layer address changes, detecting attacks based on variations in
behavior [4]. Such work is promising, though a monitor does
not provide a complete solution and needs to be paired with
adequate countermeasures to defeat detected attacks.

IX. CONCLUSION

This work has proposed arpsec, a secure ARP protocol
that provides a logic prover to reason about the validity of
ARP/RARP replies and uses TPM attestation to guarantee the
trust in remote hosts. Compared to the original ARP, arpsec
introduces only 7% − 15.4% system overhead. ndpsec is then
implemented to apply the idea of arpsec for the NDP protocol
in IPv6. The evaluation shows that ndpsec outperforms SEND
by one order of magnitude. Both arpsec and ndpsec use a logic
prover and TPM hardware and minimize system overhead
without impacting current implementations. These formally-
defined protocols based on bottom-up trust provide a first step
towards a formally secure and trustworthy networking stack
for both IPv4 and IPv6.
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