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Abstract—This paper develops an empirical profile of BGP prefix
announcements that originate from multiple ASes, so-calte MOAS
announcements. Analysis of Oregon RouteViews data over oryear
shows that a small fraction of prefixes are responsible for aery large
fraction of all origin AS transitions observed at RouteViews. More-
over, these heavy-hitter prefixes oscillated between two igin ASes.
The prevalence of this behavior indicates that a clear profé of its
characteristics will inform a larger understanding of MOASes and
ultimately BGP.

The central contribution of this paper is a detailed analyss of
these MOAS multihoming oscillations at different time scaés. We
empirically derive a model of AS disturbance periods duringwhich
the origin AS observed oscillates with heavy tailed holdingimes.
We demonstrate that these disturbances arrive according t@a Pois-
son process. We also show that the update stream within thesks-
turbances exhibits long range dependence. Using simulatis, and
physical-based modeling of events at origin to drive theséraulations,
we demonstrate that heavy-tailed oscillation at the originis a possi-
ble explanation for our observations (while the complex inérplay of
the BGP protocol and network topology is not such an explanabn).
Comparison with BGP beacon data verifies our simulations thadis-
crete and singular events at the origin do not generate heavtailed os-
cillations at the viewpoint. In sum, we find that AS oscillatbns driven
by heavy-tailed oscillations between different multihome providers
are a widespread and important BGP phenomenon with complex it
recognizable signatures such as heavy-tailed holding tirseand long-
range dependence.

|I. INTRODUCTION

MOAS multihoming. The central contribution of this paper
is a detailed analysis of these MOAS multihoming oscilla-
tions at different time scales. We hypothesize the follow-
ing model. There are disturbance periods during which the
origin AS (observed at distant viewpoints) oscillates with
heavy tailed holding times. The “arrival” of these distur-
bances is given by a Poisson process. That is, the distri-
bution of the times between the beginning of consecutive
disturbance events is exponential.

To test this hypothesis we break up the oscillations into
disturbances periods that are separated by quiescent peri-
ods; i.e., periods without an origin transition. We pro-
vide empirical evidence for the model, demonstrate that
the heavy-tailed AS holding times are stable over time, and
postulate that the tail parameter of the AS holding times
may be a useful signature of legitimate MOAS for such
prefixes. We also discover that within each disturbance the
number of updates as a function of time exhibits long range
dependence over seven or eight time scales (roughly one
hour).

We postulate two potential causes of the heavy-tailed os-
cillations within disturbances at the RouteViews viewpoin
In the first model, there is a single discrete cutover from the
AS of one MOAS multihoming provider to the other. Then

This paper develops an empirical profile of BGP prenteractions between BGP and complex AS topology result

fix announcements that originate from multiple ASes, s the heavy-tailed AS oscillations at the viewpoint. The
called MOAS(Multiple Origin AS) announcements [1]second model postulates heavy-tailed oscillations betwee
Our model is driven by solid data analysis and physicahe two MOAS multihoming ASes which drive the oscilla-
based simulations. We analyze BGP updates observegighs at RouteViews.

Oregon RouteViews [2] from August, 2002 to July, 2003 14 jnyestigate the role of topology in the structure of the

for origin AS transitions. Surprisingly, a small fractioh 0 o5 gscillations and to test the first hypothesis, we develop
prefixes are responsible for a very large fraction of alltrag, gimpiified discrete-time simulation of BGP. We show that
sitions. Moreover, these heavy-hitter prefixes oscillé®d g lations of discrete singular switches between AS ori-
tween two origin ASes. In fact, in our dataset 23% of origing even on complex network topologies do not demon-
gin transitions were associated with the 473 prefixes thgfate any heavy-tailed behavior at distant viewpoints for
oscillated at least 50 times. The prevalence of this behayg ho|ging times. In this same simulator, we oscillate the
ior indicates that a clear profile of its characteristicd W'briginating AS of a prefix between two ASes with heavy-
inform a larger understanding of MOASes and ultimatelyjied holding times, the parameters of which are derived
BGP. o ) ) ] from the heavy-tailed BGP session down times measured
Several varieties of multihoming can lead a prefix to bg the origin. Indeed, distant viewpoints do observe heavy-
legitimately announced by two (or more) ASes. We hyjled origin oscillations. These simulations suggestahe

pothesize that the origin AS oscillations in our dataset af&r as a potential explanation for the oscillations (ancheli
the result of these types of multihoming which we denofgate the former).

We compare and contrast our analysis with update
streams as seen from RouteViews of the BGP Beacon
project [3]. The beacon data verify our simulations that
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discrete and singular events at the origin do not generate
heavy-tailed oscillations at the viewpoint. On the other
hand, these discrete events are on such small time scales yd N\
that the data are, in some sense, incomparable with MOAS 4
AS oscillation observations. If we do, however, adjust our B
time scales and define a much smaller time scale at which
update disturbances come to quiescence, the behavior we 3
observe in the MQAS update str_eam i_s consisteqt with the \.\ Internet [/
beacon data. It is clear that using this smaller time scale \ A /
misses the larger scale of the AS origin oscillations and ~— —
their associated long range dependence.

We also briefly study analogous behavior of the oscilla- (a) Regular Multihoming
tions of the second hop AS for regular multihoming to as-
certain whether our observations about MOAS multihom- e o
ing apply to the much more prevalent regular multihoming. / NN
In sum, we find that AS oscillations driven by heavy-tailed Ve / v \
oscillations between different multihomed providersarea  * '
widespread and important BGP phenomenon with complex
but recognizable signatures such as heavy-tailed holding
times and long-range dependence.

The rest of the paper is organized as follows. Section Il
definesorigin transition, explains the potential causes of
origin transitions, and describes our dataset. In Sectlon |

Second-Hop Transitions observed at a viewpoint X

prefix p

Aw ~prefixp

--------------

Internet

we present our model of AS oscillations. To identify physi- (b) MOAS Multihoming
cal explanations of our model, we use simulations and em-
pirical observations to drive input models for our simula- Fig. 1. Regular Multihoming and MOAS Multihoming.

tions in Section IV. In Section V, we compare and contrast

our results with those from the BGP Beacon project. We

briefly discuss the applicability of our observations to th&. Causes of MOAS and Origin Transitions

g]gét?ovr\:lij/(lelsp\;\jsasi r;emg;L?zreTgllgtr]e%mv:/g?kl na:c(je(\:/\t/frc]:o\g(.:lul ne Several recent works [1][6] identify the causes of MOAS

with Sectio,n VIl ' doghawqr. The.se causes m_clyde illegitimate reasons sucha
' misconfigurations and malicious attacks. According to [6]

there are roughly 200 MOAS conflicts caused by miscon-

figurations daily. Legitimate reasons for MOAS behavior

BGP [4] is the global routing protocol running betweeinclude aggregation (rare in practice according to [1]) and
Autonomous Systems(ASes) in the Internet. A destinatiseveral varieties of MOAS multihoming.
network in BGP is called a prefiy, and itsorigin ASis MOAS multihoming covers the following cases: (i) a
the AS who originates the announcement of a prefix prefix can be multihomed to two or more ASes through
Fig. 1(a) is an example of regular multihoming in whiclsome backdoor connections (e.qg., prefir Fig. 1(b)); (ii)
AS M is the origin for prefixp. In Fig. 1(b), both ASA a prefix is multihomed to multiple ASes using a private AS
and B are the origins for prefiy and we say that prefix number (which is stripped off by its provider ASes before
has multiple origin AS multihoming(odMOAS multihom- announced to the global Internet); (iii) an exchange point
ing). prefix is shared by multiple ASes; or (iv) a prefix is tem-

To understand more thoroughly MOAS behavior, wgorarily multi-homed to both the old provider and a new
study how the origin AS changes at a “viewpoint.” Foprovider when it switches providers.
a public BGP monitor (such as Oregon RouteViews[2] and Similarly, the origin transitions can happen for both le-
RIPE [5]), a viewpoint is a router in a participating AS thagitimate and illegitimate reasons. Misconfigurations and
has exterior BGP sessions with the monitor. We say thattacks will have some origin transitions but the final arigi
we have arorigin transitionfor a particular prefiy if two  AS will be the correct one; switching providers is an infre-
consecutive updates for from the same viewpoint havequent event for a fixed prefix and the origin AS of the pre-
two different origins. Fig. 1(b) provides one example timéx will stabilize with a new one. For MOAS multihoming
series of the origin of prefix at viewpointX (The second- prefixes, the origin transitions can be more frequent since
hop transitions in regular multihoming in Fig. 1(a) is anathey reflect BGP’s automatic reaction to (more frequent)
ogous to the origin transitions in MOAS multihoming). network topology changes.

Il. ORIGIN TRANSITIONS AND MOAS MULTIHOMING
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B. Collection of Origin Transitions

We collected the AS transitions from all the viewpoints
of RouteViews Server 2 from August 2002 to July 2003(a
one year study period). Note that we must clean some of
the data. First, there are some reserved address blocks
where are incorrectly announced by two or more origin
ASes. Such prefixes are called bogon prefixes [7]. Sec-
ond, some origin ASes in the BGP update message appears
as AS SET, thus we are not able to clearly define an ori-
gin transition. These two AS inconsistencies contribute to
about 5% of the total AS transitions and we remove them
E_OmzconSideration- The dataset composition is sShown 3. Top: percent prefixes’ contribution to the total origin traresits.

ig. 2.

We observe more than 6 million origin transitions in to- e
tal. We find 16,160 prefixes (more than 10% of about N
140,000 prefixes) and 5,144 ASes (more than one third o1
of about 14,000 ASes) are involved in at least one origin
transition. These results from the continuous BGP update 001
stream are consistent with other origin stability studigs u
ing BGP table snapshots such that in as [8].

percentage of total number of origin transitions(log)
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Fig. 4. Distribution according to the number of unique tiioss per

prefix.

that about 88% of the prefixes have only one or two unique
transitions, but they contribute more than 60% of the total
transitions.

Prefixes with two unique transitions give us a good start-
ing point for studying origin transitions and MOAS be-
) " ; avior. The dataset is large—60.2% of prefixes that have
for a very large fraction of all transitions. We first ranlYWO unique transitions contribute about 50.9% of all the

prefixes according to the number of transitions they EXPER transitions. Unfortunately, a prefix can experience two
ence. Fig. 3 shows that the top 0.1% of prefixes are respop; ’

ible for 18% of th | » h 1% of pref lique transitions for a variety of reasons, not necegsaril
sible for 18% of the total transitions, the top 1% of pre 'Xeﬁgcause that prefix is a MOAS prefix. While we cannot

generate 45% of the total ransitions, and the top 10% g rify that a prefix is MOAS multihomed directly, we can
prefixes have 81% of the total transitions. ’

Fig. 2. Data Set

C. MOAS Multihoming
Surprisingly, a small fraction of prefixes are responsib

prefix has. To this end, we examine the unique transitioN,‘soAS prefixes

from previous origin_to curr_ent originfor. eagh prefix, in- With this definition, we obtain a set of 473 prefixes and
dependent of the view p0|_nts. A prefix W'.th WO Unique, o ge prefixes contribute about 23% of total origin transi-
transitions means thls. prefix only has t_ransmons frdrio tions. Furthermore, these 473 prefixes contributes a rea-
B and from5 to A during the study period. sonably large fraction of BGP updates. We used the same
funi ) fix. The dashed h Wataset of AT&T internal BGP updates as [9] and found
of unique transitions per prefix. ' he dashed curve SNOWsy thege 473 prefixes (about 0.35% of total prefixes) con-
the CC.DF of number of total tranS|t!ons contr!puted by P'&fibute to about 0.8% percent of the total updates. Among
fixes with a particular number of unique transitions. We sgf top 100 prefixes with the most updates, four are from

1The number of viewpoints hovered around 30 during our pedbd these 473_ _prefix_es. Th_erefore, even fr_om the traditional
study. BGP stability point of view, understanding these MOAS



multihoming prefixes are important to understand BGP iSes of a MOAS multihoming prefix. These two random
general. In the rest of the paper, unless specified otheariables’ empirical complementary cumulative distribu-
wise, we focus on the AT&T viewpoint,and the results wéon functions (CCDFs)K(z) = 1 — F(z) = Pr(Y > z)
present are representative to this set of 473 prefixes, whidhrandom variabl&”) on log-log axes are shown in Fig. 6.
we denoteMOAS multihoming dataset The particular MOAS prefix is 198.69.224.0/22. On the

IIl. STATISTICAL STRUCTURE OFAS TRANSITIONS 1

In this section, we present the statistical structure of
the AS transitions and the analysis of the BGP updates
amongst these AS transitions. o1

CCDF(log)

A. AS holding times

We observe that the AS transitions can be numerous oot
and they can come in short bursts. In addition, there
are long stretches of time with no AS transitions. Fig. 5
shows the origin time series of a representative prefix oo L 2t CamRAS Y e
198.69.224.0/22 (whose two origin ASes are AS 22143 and * T Rmeescrangtretan
AS 209) for a one year period and for a two hour period.
Observe that at both large and small time scales, we ob-
serve AS transitions.

Fig. 6. AS holding time CCDF over the entire study period

one hand, this CCDF appears to be linear on alog-log scale
for several orders of magnitude; on the other hand, there is
typically an abrupt transition where the probability déysi
I function appears to tail off much more quickly. That s, the
Il CCDF appears to be an admixture of a heavy tailed distri-
IHH bution and an exponential distribution. We found such a
Il

CCDF is common is our MOAS multihoming dataset, and
we use prefix 98.68.224.0/22 in all of our analyses in the
rest of this section.

(@) One year period B. AS disturbances

We posit the following model of AS disturbances. There
are disturbance periods during which the origin AS oscil-
lates with heavy tailed holding times. The “arrival” of tiees
disturbances is given by a Poisson process. That s, the dis-
tribution of the times between the beginning of consecutive
events is exponential. To verify our claim, we break up our
AS oscillations into disturbances that are separated by pe-
riods of quiescence.

For a fixed viewpointX and a fixed prefiyp, we define
AS disturbances follows. The definitions are illustrated
in Fig. 7.

« AS disturbancés a period of time in which consecutive

To understand the different time scales of the origin trage " transitions ofp observed aX’ are separated by no

sitions, we define th&S holding timeof one origin A of ore thamA seconds.

' . . . L « AS quiescencis a period of time of at leagh seconds
prefixp at one viewpoiniX as the time thai's origin stays during which viewpointX observes no AS transitions of
with A at view pointX. We say that a random variab{ée 9 P

(b) Two hour period

Fig. 5. AS transition time series for prefix 198.69.224.0/22

; e e R prefix p.
Is heavy-tailecr follows a heavy-tailed distribution if « Interdisturbance timés the time between the beginnings
Pr(Y >a)~2"% asz—o00,0<a<?2 of two consecutive AS disturbances of prefiat viewpoint
X

Note that fora values less than 2, the random variable We choose\ according to the “knee” in the overall AS
X has infinite variance and faft < 1, infinite mean. holding time CCDF in log-log between the power law and
We define two random variables; each one is the holthe exponential law. For example, we chdse= 25,000

ing time over the entire dataset in one of the two origiseconds for prefix 198.69.224.0/24 for AS 22143. We can

4



AS quiescence: a period longer third transitions and last transitions within any disturbes

than » ... seconds and has no AS transition

_ — of AS22143 for prefix 198.168.224.0/22. The stability of
dieturbence t detarmanee 2 the holding times CCDF suggests that the tail parameters
wansition _transition transitlon transition may be a useful signature of legitimate MOAS for such
Astransitio_nsob_sel:ved 1 m mH me2 I’efiXeS.
at . ». viewpoint: l l l l l Time p
L |

AS holding time

AS time to quiescence

Inter-disturbance time

Fig. 7. Anillustration of the definitions for AS disturbance

see in Fig. 8 which is the CCDF of the interdisturbance
times (plotted on semi-log axes), that these times are con-
sistent with an exponential distribution. In addition, Fig

is a plot of the CCDF of the AS holding times within
the disturbances. This plot is consistent with a powerlaw
CCDF (with a cutoff atr = A). Thus, our data and our

CCDF(log)

0.01

.
100 1000 10000 100000
AS holding time in seconds(log)

model are consistent.

CCDF(log)

20
22143: inter-di
0.001 L L
0 200000 400000 600000 800000 1e+06 1.2e+06

Inter-Disturbance Time

9:inter-disturbance time
r-disturbance time -------

Fig. 8. Exponential interdisturbance time for prefix 198223.0/22.

209:AS holding time ——
22143: AS holding time -—-——-

100 1000 10000 100000
AS Holding Time(log)

CCDF(log)

0.001
10

Fig. 9. Heavy-tailed AS holding time within the disturbasder prefix
198.69.224.0/22.

Fig. 10. CCDF of AS holding times of any transitions, firstthiransi-
tions, and last third transitions of any disturbances.

C. Refined analysis of AS holding time

Fig. 9 are log-log complementary cumulative distribu-
tion function plots. They show the functidh(z) = 1 —
F(z) = Pr(Y > x) onlog-log axes. In these plots, heavy-
tailed distributions display linear behavior with slopaiah
to —a. Unfortunately, the eye is easily deceived by CCDF
plots; distributions which do not have truly heavy-tailed b
havior “appear” to have linear log-log CCDFs. To bolster
our intuition that the AS holding time within disturbances
is heavy-tailed, we perform a second, more reliable test of
heavy-tailed behavior. Fig. 11 shows the cumulative vari-
ance plots of the AS holding times for AS 209. We choose
the holding times for this AS because they seem to be the
most consistent with a heavy-tailed distribution. The cu-
mulative or sample variance is one of the oldest tests for
determining whether data has infinite variance or not. In
this plot, we plot the sample varian& from the firstn
observations as a function of If the data are drawn from
a distribution with finite variance, the plots will convertge
a finite value. If the data are from an infinite variance dis-
tribution, then the plots will diverge and show large jumps.
This is exactly the behavior we see in the figure.

While the log-log CCDF plot of the AS holding time
does show a linear relationship (and, hence, a heavy-tailed
distribution), it is difficult to calculate the exponeator

In addition, we find that the CCDF of the AS holdinghe tail weight exactly from this plot. To do so, we use the
times is stable over long periods of time. We comparedandard Hill estimator. LeY1,Ys,...,Y,, be a sequence
the CCDF of the holding times in first third transitions obf n observations drawn from a stationaryd. process
any disturbance and that in the last third transitions of amyith probability distributionF’, unknown. We assume that
disturbance, and found that they are very similar. Fig. 10 is heavy-tailed with tail weightv. LetY(;) > Y3 >
shows the CCDF of AS holding times in all transitions, first. . > Y,,) be the descending order statistics from our se-

5



D. Time to quiescence of AS disturbances

The previous subsections describe the spacing between
AS disturbances and the behavior of the AS holding times
within disturbances but they do not address how long dis-
turbances last. For that analysis, we turn toAlStime to
N guiescence For a viewpointX and prefixp, the AS time
s, \ to quiescencef a disturbance is the time between the first
) F and the last AS transitions of this disturbance observed at
viewpointX for prefixp. In other words, AS time to quies-

L ~ cence for a disturbance is simply the sum of the all the AS
\ N holding times within the disturbance. Fig. 13 shows that
the CCDF of the AS time to quiescence on semi-log axes.
o - Surprisingly, it appears to have an exponential distrdyuti
) M 2 ;S 480 In other words, the time to quiescence is the surkofan-
ro.ofsamples dom variablesH;, whereH,'s distribution is heavy-tailed
and K'’s is exponential.

1.5*10"8
L

sample variance

5+10°7
L

Fig. 11. Sample variance of AS holding time as a function ofgla size
for the prefix 198.69.224.0/22 and the AS 209.

1

quence of observations. The Hill estimator [10] is

k—1
1
ak) = P Zlog Y —logYy) fork>1
i=1

CCDF(log)

209:time-to-quiescence
22143: time-to-quiescence ———

and gives an estimate afas a function of. We plot the

estimate as a function éfand if it stabilizes to a consistent i‘?i';i o000 w00
value of, then this value provides an estimate of the tail

weight. Fig. 12 shows Hill estimator results for the holding ~ Fig- 13. AStime to quiescence for prefix 198.69.224.0/22.

times corresponding to AS 209. The estimator seems to h lot the distributi fth ber of .
give a consistent estimate afabout 0.8. Note that far Ve then plot the distribution of the number of transitions

in this range, our probability distributioRf has neither a within a disturbance in Fig. 14 to see whether it can give us
finite variance nor a finite mean some hints. On semi-log axes, this distribution appears to

be exponential and the average disturbance has only a small
number of transitions and most have fewer thani 20

is small). Our conjecture is that whéh is large enough,

we have a reasonable chance of drawing a ldiigeand

that large value swamps the sum.Hfis small, then with
reasonable probability most of thé;’s are small. Thus

the distribution of the sum aff; can look like exponential.
This conjecture seems to be consistent with what we see in
Fig. 13 and Fig. 14, but a more careful verification of this
conjecture is our future work.

1.4

alpha(k)
1.2

1.0

E. Long range dependence within disturbances

All of the analysis in the previous subsections concen-
trated on the AS transitions themselves rather than on the
stream of updates that imply the AS transitions. In this

0 10 20 B P subsection, we focus on the statistical behavior of these
K updates. We create a time series of the number of updates
] ] ) o ] ) for the given prefix received from all viewpoints of Route-
F'g'fﬁf'thggrgﬁf:?ggogg;éf g,gg'gg;'m: :Z ch)gmt'on of |msize \se\s in 30 second bins. This time series is divided up into
A ' disturbance periods as implied by our definition of AS dis-
turbance. That is, the time boundaries are the same as the

0.8




. ‘ | memeon ‘ a given signalt” that is simple, computationally efficient
and informative. For example, the scaling analysis of a
signal which is exactly self-similar will yield a linear glo

of log, E; vs. j for all scales. On the other hand, for an
asymptotically self-similar signal a linear relationsiig-
tweenlog, E; and scalej will be apparent only for large
times or scales. We can also estimate the Hurst parame-
ter from the scaling analysis. Experience with (asymptoti-
cally) self-similar time series and those arising in data ne
works [13] suggests that “dips” or bends in the the scaling

CCDF(log)

0.001
0

O erot s Tiantens perDitmance © analysis plots indicate periodic behavior or components in
) - ) ‘the time series.
Fig. 14. Number of transitions per AS disturbance for prefix . . .
198.69.224.0/22. In Fig. 15, we perform a scaling analysis on one long

disturbance from the prefix 198.69.224.0/22. We use the

aar wavelet for this analysis. We can see from the figure

. . . H
AS disturbance p_er_lods_ for that prefix. _V\_/e show that tqﬁat over a large number of time scales, the average energy
update counts within disturbances exhibit long range de'a linear function of scale so this disturbance is constste

pendence (LRD) over seven or eight time scales (rOUQh@ith long range dependence. We note that the Hurst param-
an hour). '

LetY — {Y(i),i > 1} be a stationary sequence. Let et.er estimate for this disturbance is 0.8, Whlch_ls gonsiste
with long range dependence. A complete qualitative analy-

1 km sis of the scaling analysis is beyond the scope of this paper
Y (k) == > Y(@), k=12, and is a direction for future research.
i=(k—1)m+1
be the sequence corresponding to averaged” obver 120 w0 7680 30720
blocks of sizem. If I
Y g ml*Hy(m) 51 b

4 4

where the equality is in the sense of finite dimensional di *[ |
tributions, then we say thaf is self-similar with Hurst pa-
rameterH . If equality holds over large values of (over
large scales), we say that is asymptotically self-similar
or long range dependent.

Wavelets with their built-in scale-localization ability *r ]
provide an ideal mathematical tool for investigating th
scaling behavior of self-similar processes across all (or
wide range of) time scales. (See [11] for more informatic _,
about wavelets.) Abry and Veitch [12] show thatifis a ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

1 2 3 4 5 6 7 8 9 10

log2(Energy(j)
~
T
I

0]

self-similar process with Hurst parametdr € (0.5,1), Scale
th.en. the ?XpeCtatlon. of tPe average ene@ytha.'t “?S Fig. 15. Energy plot analysis for an individual disturbarioe prefix
within a given bandwidti2 =7 around frequencf ™7 ) is 198.69.224.0/22.
given by
1 . . . .
E[E;] = E [F Z |dj,k|2:| (1) For most of the dlsturt_)ances from this particular p_reﬁx,
i % our Hurst parameter estimator generated values which are

_ . consistent with long range dependenté (< H < 1);
= 27N / AP 2H D (V)] dA, however, the qualitative analysis of their energy plots was
less convincing. Many of these energy plot analyses did
where)(\) is the Fourier transform of the wavelé(t), not show clear linear behavior over many time scales. A
Ao is a baseline frequency parameter that depends on theser look at the time series shows many very long runs of
wavelety, andN; is the number of wavelet coefficients aho updates. That is, there are small bursts of updates inter-
each scalg. By plotting log, F; against scalg (where spersed amongst long runs of zero updates. These distur-
j = 1 is the finest scale angl = N > 1 is the coars- bances show a delineation of time scales: bursts of updates
est) and identifying scaling regions, breakpoints and noan small time scales and correlated updates over long time
scaling behavior, we have an unbiased scaling analysissotles.



IV. CAUSES OFHEAVY-TAILED OSCILLATIONS

In the previous section we demonstrated that AS disty

bances are an exponential arrival process and AS holdjn

times within disturbances are heavy-tailed. We postulg

two potential causes of the heavy-tailed AS holding times
within disturbances at the RouteViews viewpoint. In the
first setting, there is a single discrete cut-over from the AP

of one MOAS multihoming provider to the other that is am
plified to produce large time scale oscillations. These-trg
sient events might interact with the powerlaw AS graph {
introduce additional propagation delay, and ultimatekly th
observed heavy tailed AS disturbances. A second sett
postulates that heavy-tailed oscillations between the t
MOAS multihoming ASes drive the oscillations at Route
Views; e.g., flapping between origins. That is, the distr
bution at the viewpoint is the result of some recurrent co
dition(s) at the origin. This section uses both simulatig
and investigation of real origin events to rule out the firs
hypothesis and to verify the second.

A. Simulating Disturbances

Our first hypothesis is that heavy-tailed AS disturbances

are the result of UPDATE propagation oddities occurrin
within the powerlaw topology [14] of the Internet AS
graph. As shown in Appendix A, a single origin transitio
can be amplified by network conditions and BGP polic
to result in multiple transitions at remote viewpoints. W,
posit that these events could resonate to create long ¢
turbances when occurring in bursts and propagating acr
structured AS graphs.

We attempt to replicate resonance events by simulatic n1

The agpmsimdiscrete-time-step simulator built for thig
study implements various models of BGP. The most cor
plex model, thehe Mini-path-vector modegintegrates ele-

ments of asynchronous update propagation and path sele

tion policy over arbitrary AS topologies. All experiments
in this section use the mini-path-vector model as detail
in Fig. 16.

There are two central parameters of the simulation th
affect the replication of origin disturbances on long tim
scales. The propagation rafe is the probabilistic rate

at which update information is forwarded to its neighbors
Propagation delays frequently occur in practice due to BG 4

timer asynchrony, network congestion, router load, orioth

The Mini-path-vector Model

'"A network is an undirected graghwith vertex sel” and
gdge sef. The neighborhood (v) of a nodev € V' is
fhe set of nodes that share an edge withVe define timg
}.
path P is defined as a totally ordered subset1of
_Given a nodey and a pathP, we assign a policy valy
nI'(P,v) to the pair. T'(0, -) is undefined. We fix a has
0func:tionH and assig’( P, v) the value ofH applied to
P andwv. This ensures that the policy (i.e., the hash fy
ion) remains fixed over time, but its value is different
" ach vertex and, possibly, for each time step. At tim
_the state of a node consists of a local best gath, ¢;)
.and a path state for each neighhore N(v), denoted
WQ(u,v, ;).
nAn experiment is defined as follows. Initially, all st
svariables are set to null (e.gB(v, %), Q(u,v,tp) = 0
forall v € V and for allu € N(v)). A primary node
r1 and a backup node, are selected at random. At tin
to, r1's State is set to contain a single node, itself (g
| P(r1,t0) = r1). Attimet;, i > 0 each nodes copies
ghbors’ local best path into the neighbor state
constant probability?. That is,

o=

1@ time t;, after updating all its neighbor state, each n
computesP(v, t;) as follows:
. ifYu € N(v),Q(u,v,t;) = 0, thenP(v,t;) = 0, (if
all neighbor state empty, no shortest path)
2. else,
n_
(@) compute sef\/ of shortest non-empty paths frg
eighbor state)M = shortest{Q(u,v,t;)|Ju € N(v)},
%Jse the shortest path, if unique)
; (b) selectP(v,t;) = Q(u*,v,t;) whereu* is the neigh
| 'bor with the largest policy valu&(Q(u*, v, t;) over all
aths inM, (break ties with policy).
he simulator models oscillation by withdrawing(e.g.,
P(ry,ti41) = 0), and announcing, as the origin (e.g
| P(ra,t;41) = 72), OF Vice-versa, according to a rand

t

1y
D

(s in discrete step&to, t1, . . .

n

ite

he
.g.,

"its nei with

9

S
Y Qu,v,t;) =

a}

Q(u, v, ti—l)
P(’U, ti—l)

with probability R,
with probabilityl — R.

ode

m

e

bDm
n a
5 N0

;' ariableS. A node is quiescent when it converges o
eshortest path to the originating node (and it perform

factors. Any simulation lacking delay would fix quiescenc

esubsequent transitions).

as distance from an origin, and hence its inclusion is essen-

tial to a complete model. The second paramétas the
probabilistic stability of the origin. That is§ defines the
AS transition distribution at the origin. Whil& affects

Fig. 16. The mini-path-vector model as implemented in dgpmsim
simulator. This models policy and asynchronous updateguaiion.

oscillation and the length of fine-grained (update) distucated in simulation on very simple graphs. For example,
bances,S will dictate the length and inter-arrival times ofFig. 17 shows the AS transitions seen by a single viewpoint
origin disturbances. in a ten node network in response to a single AS transition.
An initial suite of tests establishes that origin oscitbati A second set of experiments seeks to replicate heavy-
(as described in Appendix A) at viewpoints can be repltailed AS disturbances at the viewpoints. We perform

8



‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ lay (and its potential interaction with topology), and the
use of policy are not a key factors in generating heavy-
tailed behavior. This led us to investigate another hypothe
sis: something at the origin could be driving the observed
behavior.

‘‘‘‘‘ i B. Physical modeling of events at Origin

Fig. 17_. Origin time series (simulated): origin osgillattiseen by a'\(iew- Our second hypothesis for the heavy-tailed AS holding
point on ten node network in response to a single AS tramsitio . . ..
times is that there are recurrent events or conditions at the
origin that drive the heavy-tailed distribution we see &t th
! ‘ viewpoint. Note that in theory the origin oscillations may
N be the result of BGP session bounces at the origin ASes
o1} - 1 or elsewhere in along the AS paths. But in practice the
\ origin is most vulnerable to a single router’s BGP session
bounces; other ASes along AS paths are much resilient
to single router’s session bounces since they usually have
\ multiple peering sessions between them. In addition we
oo \ ] were able to confirm the former for some of our prefixes
1! for which we had sufficient visibility into logs for BGP ses-
00001 £ 1 1 sions at one or more of the origin ASes. We leave it as our

—

o
2
2
-
A

CCDF (log)

future work to look into more details the impact of failures
- = at intermediate ASes.
Time to Quiescence (in simulated tme units) Rather than postulating origin conditions with no sup-
Fig. 18. CCDF of simulated AS time to quiescence. porting empirical evidence, we turn to measurements to
drive our modeling. Thus, we practice physical-based
modeling. We begin by identifying a set of AS environ-
these tests on a 3,038 node (powerlaw) graph generatedignts we can reasonably profile. We identify 11 of the 437
INET [15]. We chose ai® = .5 and modeled as a binary MOAS prefixes which are originated by AT&T(AS 7018)
random variable, where the probability of an AS transitiodnd other ASes. Among these 11 prefixes, 203.76.160.0/20
between the two origins (per time step) was fixed at 109%as originated by both AS 7018 and AS 4858. AS 4858 is
(and a 90% chance of no AS transition). The test oscidjacent to AS 7018 and shares a single peering link with
lates between ASes accordingddor 100 time-steps and AT&T. We extracted 79 days (May 16, 2003 to July 31,
measures the time to quiescence for each of 10 viewpoiRfg03) of timestamped system logs from the routers sup-
following the oscillation period. porting peering sessions associated with the prefixée.
We measure the AS time to quiescence by recording tB¥tract BGP specific events from the system logs and re-
last transition seen by a viewpoint following the 100 inteiconstruct the session state over the 79 day period.
val oscillation (a transition was always performed at time A CCDF of the BGP session down times associated with
step 100). Fig. 18 shows a CCDF of the AS time to quthe router over which 203.76.160.0/20 was indirectly orig-
escence for one viewpoint over 10,000 repetitions of th@ated is shown in Fig. 19. Even with only 162 observa-
test. Note that there is no significant behavior at lardi®ns, the down times appear to be heavy-tailed. To ver-
time scales; the range of time to quiescence can readfly this claim, we show in Fig. 20 the sample variance and
be explained by the probabilistic delay of update propagllll estimator plots for this time series. Because the ex-
tion. The distribution is exponential and with high probtended length of some of the session down times is surpris-
ability the system achieves quiescence in a short numté®, we spot-check several of the session outages and cor-
of steps. We performed a raft of experiments on differelate them with network events. Almost all of the dozen or
ent network graphs (Erdos-Renyi random graphs, powég@ studied outages could be directly correlated with layer 2
law random graphs, and hypercubes) with a varietyzof outages; e.g., ATM failures. Interestingly, the session up
and S parameters. Thee results are similar and no expd#mes for this router were not similarly heavy tailed.
ment yielded heavy-tailed oscillations at a viewpoint. Note that down times of several days or weeks may be

The absence of large time scales indicates that whfigite natural, either as the result of some catastrophiateve
propagation may increase AS time to quiescence at sri&id-» backhoe through fiber) or as part of a planned outage

times scales, it does not directly result in long disturlzsnc , _
279 days was the longest uninterrupted feed of system logsgitire

or oscillation(such as those shown in Fig' 9)' Hen_ce, Vylgar long experiment, and hence was used to reconstruas@s®rma-
conclude that the powerlaw topology, the propagation deon.

1le-05
1
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sl9mo31ck.els-an.att.net(203.76.160.0/20) BGP Downtime (May 16, 2003 - July 31, 2003)

N S
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Fig. 19. CCDF of single router down times as measured overayd d 1, : : : :
period in 2003. 0 500 1000 1500 2000

no. of samples

(e.g., network upgrade). A session outage does not indicate (a) Sample variance of the router down times.
that the network is necessarily partitioned from the larger
Internet. The link will fail-over to an backup link if one is
available (as is the case in most multi-homing situations).

We conclude that the empirical evidence is consistent
with heavy-tailed BGP session times (especially down
times) at the origin and that we are justified in using a
heavy-tailed distribution in our simulation to generate os
cillations at the origin. Our goal is to determine whether
these heavy-tailed oscillations give rise to heavy-tailed
holding times at the viewpoint.

A new suite of tests modelS as a Pareto distributidn
with « and3 parameters similar to those exhibited by the
session down-times. The test repeated 162 oscillations
whose inter-transition time was randomly selected from a
Pareto distributiors with o = 0.85 and = 60.*

A CCDF of the AS holding times in response as seen by : w0 o i o
a single viewpoint in the simulated environment is shown n
in Fig. 21. Clearly, the Pareto generation of oscillation
leads to heavy tailed holding times. Hence, we conclude (b) Hill estimator of the router down times.
that it is highly likely that the heavy tails in the AS hold-
ing times are resulting from highly variable session dowmsg. 20. Sample variance and Hill estimator for BGP sessamrdimes.
times. In addition, we can conclude from our first suite of

tests that events at the origin which are short-lived (such

as single discrete cut-overs from one AS to another) &089in give rise to heavy-tailed oscillations at the view-
not sufficient, not even in conjunction with propagation ddoint (at least in simulation). In this section, we compare

lay on a powerlaw graph, to yield heavy-tailed AS holdingnd contrast our analysis with the update streams of prefix
times. 192.83.230.0/24 from the BGP Beacon project [3] as seen

from RouteViews.
V. COMPARISON WITHBGP BEACON BGP Beacon prefixes [3] are prefixes established to

. - I . . be announced or withdrawn according to publicly known
Section IV shows that origin oscillations drive the view- . ; . .

) o . o schedules and their updates are readily available at moni-
point oscillations and that heavy-tailed oscillationste t

toring point such as Oregon RouteViews or RIPE. Among
3The distribution functior¥' of a general Pareto distribution is given bya_-" the_ beacon pre_flxes, 192-8_3-230-0/24 megular mul-

F(z) =1— (8/z)> forz > 3. tihoming prefix (Fig. 1(b) has illustrated the regular mul-
4The o and 3 values were selected from estimates of similar prefixeﬁhoming) and its second-hop AS transitions (analogous

within our dataset. Note that the precise values of theibligion are not to origin transitions in MOAS muItihoming) is precisely

important. The regeneration of a similar distribution fionés to quies- ) ) X
cence is sufficient to support our thesis. driven by adiscretesecond-hop failure/recovery every two

alpha(m)
15 2.0

1.0

0.5
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update quiescence: a period longer than

\\M o «na_« Seconds and has no update
W disturbance 1 disturbance 2

updates received update 1 update n update n+1 ...
from ., viewpoints: .
01 \ Time

\ Inter-update disturbance time
0.01 Fig. 23. Anillustration of the definitions for update didiance.

B. Comparison using Update disturbances

CCDF (log)

0.001
1

w0 100 1000 o000 100000 For a direct comparison of the beacon data and the
forn Tre o e o) MOAS dataset, we should break up the beacon data into
Fig. 21. = CCDF of AS hold times resulting from simulated Paret AS disturbances (as defined in Section IlI); however, the
distributed AS transitions. beacon data at any large scale (two hours or more) are dis-
crete and the range of time scales in the beacon data is sim-
hoursscheduledccording to the setup shown in [16]. Thu®ly not large enough to afford such a disturbance defini-
this prefix's second-hop transition is a natural comparion(e.g., withA = 25,000). That is, the behavior in the
son point with the origin transition in MOAS multihom-beacon data and that in the MOAS data are incomparable
ing. The dataset is from June 2003 (when it first becanffethe AS disturbance level.

available) to April 2004. There is a more complex analysis we can perform, how-
ever, if we adjust our definition of disturbance accordingly
A. Basic Observation For this analysis we break origin (or second-hop) oscilla-

tions up according to anpdate disturbangea different
: definition of disturbance than the AS disturbance we use
L earlier. The updates received by multiple viewpoints are
i triggered by the same failure/recovery at the second-hop
in beacon. Previous measurements in [17] [3] show that
the majority of Internet route convergence takes less than
1 180 seconds. Thus it should be a clear indication that the
\ network has converged to the new sets of the stable path
after the triggering failure/recovery if there are no updat
from any viewpoints for a threshold of time (e.g. 120 sec-
1230 Conplete AS hlding e —— ‘ onds). We thus define thgpdate disturbancéor a fixed
e oo e imes set of viewpointsZ at RouteViews and a fixed prefix as
comresrertna e follows. The definitions are illustrated in Fig. 23.
Fig. 22. Second-hop AS Holding time for beacon 192.83.228.0 o Update disturbancés a period of time in which view-
point setZ receives consecutive updates for prefithat
For the beacon data, Fig. 22 shows that the second-tasp separated by no more thap seconds.
AS holding times are indeed quite discrete at the view- Update quiescencis a period of time of at leasf\,,
points. Not only do they show distinct jumps in time buseconds during which viewpoint sétreceives no updates
they also are not heavy-tailed. We also found that in dlom any viewpoint for prefixp.
most all the cases a viewpoint has only one second-heg-or a fixed viewpoint seZ, thetime to quiescenads the
transition around the scheduled time, and in only very fetime between the first and the last updates this disturbance
cases, a viewpoint can see two or more second-hop trargdiserved at the viewpoiut for prefix p.
tions around the scheduled time. In other words, we see lit-For the results in the rest of the paper, we choose
tle amplification of individual failure/recovery. Therefy a threshold ofA, = 120 seconds. We observe that
it seems clear that the discrete disturbance at the secoadr results are robust to changes 4f, as they did
hop that beacon creates on a regular basis cannot cangechange significantly with different values &, =
heavy-tailed AS transitions/second hop transitions at tH8, 60, 90, 120, 150, 180.
viewpoint. We thus conclude that the BGP beacon data ver-Measuring beacon’s second-hop AS holding time within
ify our simulations that discrete and singular origin egeneach update disturbance generates no data points (thus
do not give rise to heavy-tailed oscillations at the viewaot shown), confirming our early finding that there is at
point. most one second-hop transition at one viewpoint per fail-

CCDF(log)

0.001
10
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ure/recovery. Similarly, for the MOAS prefix there are too
few data points for the AS holding time within the update
disturbances to show a clear trend in Fig. 24. This is be-
cause most of the AS holding times in our data are signif-
icantly longer than the time required for updates to come
to quiescence after a single AS transition at the origin. It
is clear from this that using the time scale at which up-
dates come to quiescence misses the larger scale of the AS
origin oscillations and their associated long range depen-
dence. The above observation, plus the difference between oss murimema ek 18820088
Fig. 22 and Fig. 6, indicate that the update disturbances in i o Uit Qi n Secondst)
the beacon data are distinctly different from the AS distur-

bances in the MOAS data with respect to hoIding times. Fig. _25. A comparison of the time to quiescence for updateidiances
in the beacon and MOAS datasets.

CCDF(log)

VI. ANALOGOUS BEHAVIOR IN REGULAR
MULTIHOMING

In the previous sections, we describe several important
phenomena of MOAS multihoming and provide solid ex-
perimental and empirical evidence of models for this be-
havior. MOAS multihoming is, however, a special type
of multihoming while regular multihoming is much more
prevalent in the Internet. As a first step to determine how

CCDF(log)

oo | BRI universal our observations on MOAS multihoming are and

S Hoding Time(oo) how applicable they are to the much wider practice of reg-

Fig. 24. Not enough data points for AS holding time within afeddis- ljllar multlhomln_g., we take a Sma”_(random) set of 30 pre-
turbances for MOAS prefix. fixes whose origin ASes are multihomed to both AS 701

and AS 1239, two tier-1 ASes in the Internet. In the figures
On the other hand, we observe that the time to quiekgelow, we give results only for the prefix 129.121.0.0/16;

cence of update disturbances for both the beacon data GfeVer. the results are similar for the other 29 prefixes.
the MOAS data are similar. Both CCDFs show an expgye use the deflnltlons of AS disturbance from Sect|(_)n 1
nential tail with most disturbances dying out within two t&nd Use the notion of second-hop AS transition as in the
three hundred secon8MOAS prefix’s time to update qui- Prévious section, and = 10, 000 seconds. o
escence is slightly longer in the tail, and can be caused byWVe see in Fig. 26 that the second-hop AS holding times
two or more consecutive transitions at the origin, which f3ave a similar distribution as that in Fig. 6; the CCDF ap-
consistent with Fig. 24 which has some (although very feWgars to be the admixture of a heavy-tailed distribution and
data points for holding time within update disturbances. and an exponential distribution. Fig. 27 shows that, simi-

We conclude that, from one perspective, the BGP beacl(?ﬁ to Fig. 8 th_e interdisturbance time has approximatgly a
data verify our simulations that discrete and singuIarinrigeXponem""II distribution. The second-hop AS holding times

events do not give rise to heavy-tailed oscillations at t jthin disturbances shown in Fig. 28 has approximately a

viewpoint. From another perspective, these discrete sve ?avy—talled distribution(similar to Fig. 9), and the tiee

are on such small time scales that they are incomparaﬁ%ond'mpAS quiescence in Fig. 29 has approximately an

with the long time scales we observe in the MOAS oscille?-)(p(_)nential distribution(similar to Fig. 13).

tions. If we do, however, adjust our time scales and defineGven above similarities between regular multihom-
an update disturbance (that is naturally, a small time @yer?d @nd MOAS multihoming, and that the behavior of
the behavior we observe in the update stream of the MOA4OAS multihoming at the viewpoints is driven by the
data is consistent with that we see in the beacon data. {\{gAvY-tailed disturbances at the origin, its likely that
point out that this smaller time scale misses the largeesc&" regular multihoming the structure is also driven by

of the AS origin oscillations and their associated long andh€ link failures/recoveries between the origin AS and its
dependence. providers. We leave a detailed study of second-hop transi-

tions in regular multihoming our future work. In sum, our
. . , _ findings suggest that AS(or second-hop AS) oscillations
°Qur definition of time to update quiescence does not reflectatse dri bv h tailed illati bet diff ttiaul
damping effect [18] as oud,, is much shorter than the minimal damping rven by e_avy' aile OS_C' atons be wgen merentmu
time(20 minutes). homed providers are a widespread and important BGP phe-
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nomenon with complex but recognizable signatures such as
heavy-tailed holding times and long-range dependence.

701: time-to-quiescence —-—-

0 5000 10000 15000 20000 25000 30000 35000 40000
Time to Quiescence

ek wwwk Fig. 29. Second-hop AS time to quiescence of regular mutiihg prefix
oo 5% Compieis S heting ime = 129.121.0.0/16.

10 100 1000 10000 100000 1e+06 1e+07
Complete AS Holding Time(log)

Fig. 26. Second-hop AS holding time of regular multihomingfix

129.121.0.0/16 in the entire study period. The AS transition dynamics are closely related to the

BGP update dynamics as they are both triggered by un-
derlying topology changes (or policy changes). Thus, we
ey briefly review recent efforts on BGP update dynamics mea-
surement and modeling. Labovitz, et al. [20] measure the
update interarrival time of the tuple (viewpoint, prefix).
Labovitz,et al.[21] also show that Internet backbone paths
I, exhibit a mean time to fail-over (due to either physical
° failure or policy changes) of roughly two days and only
roughly 20% of paths unchanged in five days. Rexfetd,
al. [9] show that a large portion of the interarrival time is
around 30 seconds (the default BGP update rate limiting
timer value). This observation is confirmed by the mea-
surement of the controlled failures of beacon data by Mao,
et al.[3]. Based on the interarrival time distribution, Rex-
ford, et al. [9] use a time window to divide sequence of
updates into sequence of “events”. The authors measure
interarrival time of events and observe that most events are
short-lived. They also show that a small percent of the pre-
fixes contribute to majority of the events and conjecture
I, that one possible explanation is flapping devices.
¢ : Mao, et al. [3] provides interarrival modeling of the
beacon prefixes (prefixes with controlled failure/recoyery
They model the observed interarrival CCDFs using a com-
e — bination of mass distribution, geometric distributiondan
” T ket exponential distribution. They conjecture that the expene
Fig. 28. Second-hop AS holding time within disturbancesegisar mul- tial tail I_S Caus.e.d by BGP false damping (as dem(.)nStrated
tihoming prefix 129.121.0.0/16. by [18]); a legitimate sequence of updates can trigger the
BGP damping mechanism to stop announcing a prefix and
re-announce this prefix up to one hour later.
VIl. RELATED WORK Labovitz,et al.[17] discover in BGP it can take as long
In this section, we briefly review related work. Zhao2S 15 minutes for the network to converge to the new set

et al. measure the MOAS conflicts using BGP table sna@f paths after a topology change but majority of time-to-
shots and provide possible causes of the MOAS conflidsiescence is below 180 seconds.

in [1]. Previous work on the stability of origins of pre-
fixes includes [19] and [8]. Kengt al. [19] claim ori-
gins are very stable as measured by the number of newl he central contribution of this paper is a detailed analy-
announcements they encountered. Aiedibal. [8] also sis of the MOAS multihoming oscillations at different time
study the stability of origins using BGP table snapshotscales. We empirically derive a model of AS disturbance
and found 70-90% stability over a five month period angeriods during which the AS oscillates with heavy tailed
monthly churn of around 5% (of 143,215 prefixes). holding times. We demonstrate that these disturbances ar-

Fig. 27. Interdisturbance time of regular multihoming 091221.0.0/16.

VIIl. CONCLUSION

13



rive according to a Poisson process. We also show thed] S. Kent, C. Lynn, J. Mikkelson, and K. Seo, “Secure BorGate-
the update stream within these disturbances exhibits long Way Protocol (S-BGP) — Real World Performance and Deploymen
. . . . Issues,” inProceedings of Network and Distributed Systems Secu-
range dependence. Using simulations and physical-based iy 2000 Internet Society, February 2000.
modeling to drive these simulations, we demonstrate tHag] ff'nL%b%Vrgﬁg Sdilr\]/lasla:f, :gﬁll FS ijir;?r?gg'tgr?qtt?é?itgggmnswb”-
heavy-ta”ed OSCIIIatI(.)n at the.ongm S a poss@le explan [f21] CY‘ Labovitz, A. A?huja, and F.gJahéniaﬁ, “Experimenttiidy of
tion for our observations (while the complex interplay o Internet Stability and Wide-Area Network Failures,”Rmoceedings
the BGP protocol and network topology is not such an ex- of FTCS99June 1999.
planation). That is, “unusual” or heavy-tailed “operatbn
events” at the origin might be the root cause of our obse
vations rather than the intricacies of BGP. Research to “fix” Two factors can collude to amplify a single origin tran-
this behavior of BGP might be misguided. sition into origin oscillation at an observer: delay and BGP
Our work suggests that the tail parameters of AS holgolicy. Delays, whether caused by slow links, overloaded
ing times may be a useful signature of legitimate MOA®uters, or topology, slow the propagation of prefix an-
for prefixes. We also identify interesting scaling behaviarouncements. Because propagation time of an announce-
in BGP update streams—scaling behavior that might otherent or withdrawal can vary greatly, the same information
wise be missed with datasets such as the Beacon dataab®dut origin can arrive at an viewpoint through different

thorough investigation of this scaling behavior is just ongaths over time. Policy contributes directly to oscillatio

IAPPENDIXA - SINGLE EVENT ORIGIN OSCILLATION

possible direction for future work. by adding local autonomy to the decision process. For
example, a LOCAL PREF attribute can be used to prefer
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