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Abstract—This paper develops an empirical pro le of BGP pre x
announcements that originate from multiple ASes, so-calt: MOAS
announcements. Analysis of Oregon RouteViews data over oryear
shows that a small fraction of pre xes are responsible for a ery large
fraction of all origin AS transitions observed at RouteViews. More-
over, these heavy-hitter pre xes oscillated between two dégin ASes.
The prevalence of this behavior indicates that a clear pro k of its
characteristics will inform a larger understanding of MOASes and
ultimately BGP.

The central contribution of this paper is a detailed analyss of
these MOAS multihoming oscillations at different time scaés. We
empirically derive a model of AS disturbance periods duringwhich
the origin AS observed oscillates with heavy tailed holdingimes.
We demonstrate that these disturbances arrive according t@a Pois-
son process. We also show that the update stream within thesks-
turbances exhibits long range dependence. Using simulatis, and
physical-based modeling of events at origin to drive theséraulations,
we demonstrate that heavy-tailed oscillation at the originis a possi-
ble explanation for our observations (while the complex inérplay of
the BGP protocol and network topology is not such an explanabn).
Comparison with BGP beacon data veri es our simulations tha dis-
crete and singular events at the origin do not generate heavtailed os-
cillations at the viewpoint. In sum, we nd that AS oscillations driven
by heavy-tailed oscillations between different multihome providers
are a widespread and important BGP phenomenon with complex it
recognizable signatures such as heavy-tailed holding tinseand long-
range dependence.

|I. INTRODUCTION

MOAS multihoming. The central contribution of this paper
is a detailed analysis of these MOAS multihoming oscilla-
tions at different time scales. We hypothesize the follow-
ing model. There are disturbance periods during which the
origin AS (observed at distant viewpoints) oscillates with
heavy tailed holding times. The “arrival” of these distur-
bances is given by a Poisson process. That is, the distri-
bution of the times between the beginning of consecutive
disturbance events is exponential.

To test this hypothesis we break up the oscillations into
disturbances periods that are separated by quiescent peri-
ods; i.e., periods without an origin transition. We pro-
vide empirical evidence for the model, demonstrate that
the heavy-tailed AS holding times are stable over time, and
postulate that the tail parameter of the AS holding times
may be a useful signature of legitimate MOAS for such
pre xes. We also discover that within each disturbance the
number of updates as a function of time exhibits long range
dependence over seven or eight time scales (roughly one
hour).

We postulate two potential causes of the heavy-tailed os-
cillations within disturbances at the RouteViews viewoin
Inthe rst model, there is a single discrete cutover from the
AS of one MOAS multihoming provider to the other. Then

This paper develops an empirical pro le of BGP premteractions between BGP and complex AS topology result

x announcements that originate from multiple ASes, Sdn the heavy-tailed AS oscillations at the viewpoint. The
called MOAS(Multiple Origin AS) announcements [1]second model postulates heavy-tailed oscillations betwee
Our model is driven by solid data analysis and physicahe two MOAS multihoming ASes which drive the oscilla-
based simulations. We analyze BGP updates observedighs at RouteViews.
Oregon RouteViews [2] from August, 2002 to July, 2003 14 jnvestigate the role of topology in the structure of the
for origin AS transitions. Surprisingly, a small fractioh 0 og oscillations and to test the rst hypothesis, we develop
pre xes are responsible for a very large fraction of all ran, gimplj ed discrete-time simulation of BGP. We show that
sitions. Moreover, these heavy-hitter pre xes oscillaed  gjyyations of discrete singular switches between AS ori-
tween two origin ASes. In fact, in our dataset 23% of 0rigins even on complex network topologies do not demon-
gin transitions were associated with the 473 pre xes thgfrate any heavy-tailed behavior at distant viewpoints for
oscillated at least 50 times. The prevalence of this behgyg ho|ding times. In this same simulator, we oscillate the
ior indicates that a clear pro le of its characteristics |W'|0riginating AS of a pre x between two ASes with heavy-
inform a larger understanding of MOASes and ultimateljjied holding times, the parameters of which are derived
BGP. o ) ) from the heavy-tailed BGP session down times measured
Several varieties of multihoming can lead a pre x to bt the origin. Indeed, distant viewpoints do observe heavy-
legitimately announced by two (or more) ASes. We hygiled origin oscillations. These simulations suggestahe

pothesize that the origin AS oscillations in our dataset afgr as a potential explanation for the oscillations (anheli
the result of these types of multihoming which we denofgate the former).

We compare and contrast our analysis with update
streams as seen from RouteViews of the BGP Beacon
project [3]. The beacon data verify our simulations that
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discrete and singular events at the origin do not generate
heavy-tailed oscillations at the viewpoint. On the other
hand, these discrete events are on such small time scales

Second-Hop Transitions observed at a viewpoint X

that the data are, in some sense, incomparable with MOAS
AS oscillation observations. If we do, however, adjust our
time scales and de ne a much smaller time scale at which
update disturbances come to quiescence, the behavior we
observe in the MOAS update stream is consistent with the
beacon data. It is clear that using this smaller time scale
misses the larger scale of the AS origin oscillations and
their associated long range dependence.

We also brie y study analogous behavior of the oscilla-
tions of the second hop AS for regular multihoming to as-
certain whether our observations about MOAS multihom- AS Transtions observed at & viewpoint X
ing apply to the much more prevalent regular multihoming. ,/ TN SN
In sum, we nd that AS oscillations driven by heavy-tailed v / h \
oscillations between different multihomed providers area  * ‘ ‘H
widespread and important BGP phenomenon with complex
but recognizable signatures such as heavy-tailed holding
times and long-range dependence.

The rest of the paper is organized as follows. Section Il
de nes origin transition, explains the potential causes of
origin transitions, and describes our dataset. In Sectlon |
we present our model of AS oscillations. To identify physi-
cal explanations of our model, we use simulations and em-
pirical observations to drive input models for our simula-
tions in Section IV. In Section V, we compare and contrast
our results with those from the BGP Beacon project. We
brie y discuss the applicability of our observations to thé\. Causes of MOAS and Origin Transitions

more widespread regulgr multihoming in Section V1. In Several recent works [1][6] identify the causes of MOAS
Section VII, we summarize related work, and we concludoe

with Section VII| ghavior. Thgse causes inp!ude illegitimate reasons sucha
' miscon gurations and malicious attacks. According to [6]
there are roughly 200 MOAS con icts caused by miscon-
gurations daily. Legitimate reasons for MOAS behavior
BGP [4] is the global routing protocol running betweeinclude aggregation (rare in practice according to [1]) and
Autonomous Systems(ASes) in the Internet. A destinati¢everal varieties of MOAS multihoming.
network in BGP is called a pre ), and itsorigin ASis MOAS multihoming covers the following cases: (i) a
the AS who originates the announcement of a pre.x pre x can be multihomed to two or more ASes through
Fig. 1(a) is an example of regular multihoming in whiclsome backdoor connections (e.g., pr@in Fig. 1(b)); (i)
AS M s the origin for pre xp. In Fig. 1(b), both ASA a pre x is multihomed to multiple ASes using a private AS
andB are the origins for pre ¥ and we say that pre  number (which is stripped off by its provider ASes before
has multiple origin AS multihoming(odMOAS multihom- announced to the global Internet); (iii) an exchange point
ing). pre x is shared by multiple ASes; or (iv) a pre x is tem-
To understand more thoroughly MOAS behavior, wgorarily multi-homed to both the old provider and a new
study how the origin AS changes at a “viewpoint.” Foprovider when it switches providers.
a public BGP monitor (such as Oregon RouteViews[2] and Similarly, the origin transitions can happen for both le-
RIPE [5]), a viewpoint is a router in a participating AS thagitimate and illegitimate reasons. Miscon gurations and
has exterior BGP sessions with the monitor. We say thatttacks will have some origin transitions but the nal onigi
we have arorigin transitionfor a particular pre xp if two ~ AS will be the correct one; switching providers is an infre-
consecutive updates far from the same viewpoint havequent event for a xed pre x and the origin AS of the pre-
two different origins. Fig. 1(b) provides one example timex will stabilize with a new one. For MOAS multihoming
series of the origin of pre »p at viewpointX (The second- pre xes, the origin transitions can be more frequent since
hop transitions in regular multihoming in Fig. 1(a) is analthey re ect BGP's automatic reaction to (more frequent)
ogous to the origin transitions in MOAS multihoming). network topology changes.

prefix p

\‘\ Internet [/

(a) Regular Multihoming

Internet

(b) MOAS Multihoming

Fig. 1. Regular Multihoming and MOAS Multihoming.

Il. ORIGIN TRANSITIONS AND MOAS MULTIHOMING



B. Collection of Origin Transitions

We collected the AS transitions from all the viewpoints

of RouteViews Server 2 from August 2002 to July 2003(a
one year study period). Note that we must clean some of
the data. First, there are some reserved address blocks
where are incorrectly announced by two or more origin
ASes. Such pre xes are called bogon pre xes [7]. Sec-
ond, some origin ASes in the BGP update message appears
as AS SET, thus we are not able to clearly de ne an ori-
gin transition. These two AS inconsistencies contribute to

100

percentage of total number of origin transitions(log)

1
0.001

about 5% of the total AS transitions and we remove them

from consideration. The dataset composition is shown gy 3

Fig. 2.

We observe more than 6 million origin transitions in to- L

tal. We nd 16,160 pre xes (more than 10% of about

140,000 pre xes) and 5,144 ASes (more than one third o1
of about 14,000 ASes) are involved in at least one origin
transition. These results from the continuous BGP update 001

stream are consistent with other origin stability studigs u

ing BGP table snapshots such that in as [8].

dataset #transitions(percent) # pre x(percent)
Complete | 6,898,383 (100%) | 16,474 (100%)
bogon 351(0.005%) 12 (0.07%)

AS SET 351,791 (5.1%) 302 (1.8%)
Cleaned 6,546,055 (94.9%) | 16,160 (98.1%)
2-transition| 3,514,696(50.9%) | 10,211 (62.0%)
MOAS 1,630,064 (23.6%) | 473 (2.87%)

Fig. 2. Data Set

C. MOAS Multihoming

Surprisingly, a small fraction of pre xes are responsiblﬂavior.
for a very large fraction of all transitions. We rst rank
pre xes according to the number of transitions they expe
ence. Fig. 3 shows that the top 0.1% of pre xes are resp
sible for 18% of the total transitions, the top 1% of pre xeg,
generate 45% of the total transitions, and the top 10%

pre xes have 81% of the total transitions.

Because a small number of pre xes generate a lar

number of the total AS transitions, it's worthwhile to askXes with two unique transitions, we consider those have
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Fig. 4. Distribution according to the number of unique tiioss per

pre X.

that about 88% of the pre xes have only one or two unique
transitions, but they contribute more than 60% of the total

transitions.

Pre xes with two unique transitions give us a good start-
ing point for studying origin transitions and MOAS be-

The dataset is large—60.2% of pre xes that have

two unique transitions contribute about 50.9% of all the

'KS transitions. Unfortunately, a pre x can experience two

Ol'jlﬁique transitions for a variety of reasons, not necessaril

ggcause that pre x is a MOAS pre x. While we cannot

rify that a pre x is MOAS multihomed directly, we can
construct a simple heuristic to narrow the pre xes which

e will study in the rest of the paper. Among those pre-

how many unique transitions there are and how many eq‘ﬁ%re than 50 transitions observed at AT&T viewpoint as

pre x has. To this end, we examine the unique transitiorﬁOAS pre xes.
from previous originto current origin for each pre x, in-

dependent of the view points. A pre x with two uniquet
transitions means this pre x only has transitions frénto

B and fromB to A during the study period.

The solid curve in Fig. 4 shows the CCDF of the numb%r
of unique transitions per pre x. The dashed curve shon
the CCDF of number of total transitions contributed by pre

xes with a particular number of unique transitions. We se

With this de nition, we obtain a set of 473 pre xes and

hese pre xes contribute about 23% of total origin transi-

tions. Furthermore, these 473 pre xes contributes a rea-
sonably large fraction of BGP updates. We used the same

ataset of AT&T internal BGP updates as [9] and found
Rat these 473 pre xes (about 0.35% of total pre xes) con-
ribute to about 0.8% percent of the total updates. Among
fhe top 100 pre xes with the most updates, four are from

1The number of viewpoints hovered around 30 during our pedibd these 473_ _pre X(?S. Th?refore' even frc_)m the traditional
BGP stability point of view, understanding these MOAS

study.



multihoming pre xes are important to understand BGP iASes of a MOAS multihoming pre x. These two random
general. In the rest of the paper, unless speci ed othesariables' empirical complementary cumulative distribu-
wise, we focus on the AT&T viewpoint,and the results waon functions (CCDFS)E(x) =1 F(x) = Pr(Y >x)

present are representative to this set of 473 pre xes, whitdr random variablé&’') on log-log axes are shown in Fig. 6.
we denoteMOAS multihoming dataset The particular MOAS pre x is 198.69.224.0/22. On the

IIl. STATISTICAL STRUCTURE OFAS TRANSITIONS 1

In this section, we present the statistical structure of
the AS transitions and the analysis of the BGP updates
amongst these AS transitions. o1

CCDF(log)

A. AS holding times

We observe that the AS transitions can be numerous oot
and they can come in short bursts. In addition, there
are long stretches of time with no AS transitions. Fig. 5
shows the origin time series of a representative pre x oo L 2t CamRAS Y e
198.69.224.0/22 (whose two origin ASes are AS 22143 and * T Rmeescrangtretan
AS 209) for a one year period and for a two hour period.
Observe that at both large and small time scales, we ob-

serve AS transitions.

Fig. 6. AS holding time CCDF over the entire study period

one hand, this CCDF appears to be linear on a log-log scale
for several orders of magnitude; on the other hand, there is
typically an abrupt transition where the probability deysi

I function appears to tail off much more quickly. That is, the

|H| ||| CCDF appears to be an admixture of a heavy tailed distri-

IHH bution and an exponential distribution. We found such a
Il

CCDF is common is our MOAS multihoming dataset, and
we use pre x19868:2240=22in all of our analyses in the
rest of this section.

(@) One year period B. AS disturbances

We posit the following model of AS disturbances. There
are disturbance periods during which the origin AS oscil-
lates with heavy tailed holding times. The “arrival” of tiees
disturbances is given by a Poisson process. That s, the dis-
tribution of the times between the beginning of consecutive
events is exponential. To verify our claim, we break up our
AS oscillations into disturbances that are separated by pe-
riods of quiescence.

For a xed viewpointX and a xed pre x p, we de ne
AS disturbances follows. The de nitions are illustrated
in Fig. 7.

AS disturbancés a period of time in which consecutive

To understand the different time scales of the origin trage 9" transitions ofp observed aK  are separated by no

sitions, we de ne theAS holding timeof one originA of more than seconds.

re X b at one viewnoinK as the time that's oriin stavs AS quiescencis a period of time of at least seconds
pre x pato WP a gin stay during which viewpointX observes no AS transitions of
with A at view pointX . We say that a random variabYe

(b) Two hour period

Fig. 5. AS transition time series for pre x 198.69.224.0/22

. . o o pre x p.
Is heavy-tailecr follows a heavy-tailed distribution if Interdisturbance timés the time between the beginnings
Pr(Y >x) x ; asx!l ,0< < 2 of two consecutive AS disturbances of prgpat viewpoint
X

Note that for values less than 2, the random variable We choose according to the “knee” in the overall AS
X has in nite variance and for < 1, innite mean. holding time CCDF in log-log between the power law and
We de ne two random variables; each one is the holdhe exponential law. For example, we chose25 ;000
ing time over the entire dataset in one of the two origiseconds for pre x 198.69.224.0/24 for AS 22143. We can

4



10,1%"+#*+)*+2,(,3+&"4!, + H ' ' H H H
$70, e e e third transitions and last transitions within any disturbaes

T — of AS22143 for pre x 198.168.224.0/22. The stability of
e e the holding times CCDF suggests that the tail parameters
SBOHS), SAOFSY), SO ). SEOFE), may be a useful signature of legitimate MOAS for such
oSS s | >>>‘;l i | “1" b pre xes.
L]
10,8+ S, 196"+ +)+ 10,7456,$"+ !
|
QB+&=IHENE!()*+ "+
Fig. 7. Anillustration of the de nitions for AS disturbance o1 \

see in Fig. 8 which is the CCDF of the interdisturbance ¢
times (plotted on semi-log axes), that these times are con- oo
sistent with an exponential distribution. In addition, Fég
is a plot of the CCDF of the AS holding times within e
the disturbances. This plot is consistent with a powerlaw oo L P
CCDF (with a cutoffat = ). Thus, our data and our As hldng me i seconds(og)
model are consistent. Fig. 10. CCDF of AS holding times of any transitions, rstiitransi-

tions, and last third transitions of any disturbances.

} C. Re ned analysis of AS holding time

Fig. 9 are log-log complementary cumulative distribu-

T tion function plots. They show the functidn(x) = 1

: F(x) = Pr(Y >x) onlog-log axes. In these plots, heavy-
tailed distributions display linear behavior with slopaial

CCDF(log)

iiner to . Unfortunately, the eye is easily deceived by CCDF
o0 20000 plots; distributions which do not have truly heavy-tailed b
havior “appear” to have linear log-log CCDFs. To bolster
Fig. 8. Exponential interdisturbance time for pre x 198884.0/22.  our intuition that the AS holding time within disturbances
is heavy-tailed, we perform a second, more reliable test of
heavy-tailed behavior. Fig. 11 shows the cumulative vari-
ance plots of the AS holding times for AS 209. We choose
the holding times for this AS because they seem to be the
most consistent with a heavy-tailed distribution. The cu-
o1 \ mulative or sample variance is one of the oldest tests for

determining whether data has in nite variance or not. In
this plot, we plot the sample varian& from the rstn
observations as a function of If the data are drawn from

CCDF(log)

\. a distribution with nite variance, the plots will converte
"‘ a nite value. If the data are from an in nite variance dis-
ooy LRSI T tribution, then the plots will diverge and show large jumps.
* P cramtmeon This is exactly the behavior we see in the gure.
Fig. 9. Heavy-tailed AS holding time within the disturbasder pre x While the log-log CCDF plot of the AS holding time
198.69.224.0/22. does show a linear relationship (and, hence, a heavy-tailed

distribution), it is dif cult to calculate the exponent or
In addition, we nd that the CCDF of the AS holdingthe tail weight exactly from this plot. To do so, we use the

the CCDF of the holding times in rst third transitions ofof n observations drawn from a stationarid. process
any disturbance and that in the last third transitions of amyith probability distributionF , unknown. We assume that
disturbance, and found that they are very similar. Fig. 10 is heavy-tailed with tail weight . Let Yy Y

shows the CCDF of AS holding times in all transitions, rst:: Y,y be the descending order statistics from our se-

5



D. Time to quiescence of AS disturbances

The previous subsections describe the spacing between
AS disturbances and the behavior of the AS holding times
within disturbances but they do not address how long dis-
turbances last. For that analysis, we turn toAl&time to
“ quiescence For a viewpointX and pre x p, the AS time
s \ to quiescencef a disturbance is the time between the rst
) ‘ and the last AS transitions of this disturbance observed at

1.5*10"8
L

sample variance

\ viewpointX for pre x p. In other words, AS time to quies-
\ ~_ cence for a disturbance is simply the sum of the all the AS

\\\ holding times within the disturbance. Fig. 13 shows that
the CCDF of the AS time to quiescence on semi-log axes.
o - Surprisingly, it appears to have an exponential distrdyuti

0 m 200 0 0 In other words, the time to quiescence is the suid afin-
ro.ofsamples dom variabledH;, whereH;'s distribution is heavy-tailed

andK 's is exponential.

5+10°7
L

Fig. 11. Sample variance of AS holding time as a function ofgla size
for the pre x 198.69.224.0/22 and the AS 209.

1

quence of observations. The Hill estimator [10] is

CCDF(log)

1 X*
(k) = ﬁ |Og Y(i) |Og Y(k) fork> 1
i=1

209:time-to-quiescence
22143: time-to-quiescence ———

and gives an estimate ofas a function ok. We plot the

estimate as a function &fand if it stabilizes to a consistent i‘?i';i o000 w00
value of , then this value provides an estimate of the tail

weight. Fig. 12 shows Hill estimator results for the holding ~ Fig- 13. AStime to quiescence for pre x 198.69.224.0/22.

times corresponding to AS 209. The estimator seems to h lot the distributi fth ber of .
give a consistent estimate ofabout 0.8. Note that for Ve then plotthe distribution of the number of transitions

in this range, our probability distributioi has neither a within a disturbance in Fig. 14 to see whether it can give us
nite variance nor a nite mean some hints. On semi-log axes, this distribution appears to

be exponential and the average disturbance has only a small
number of transitions and most have fewer thani20 K

is small). Our conjecture is that whéh is large enough,

we have a reasonable chance of drawing a latgeand

that large value swamps the sumKifis small, then with
reasonable probability most of thé;'s are small. Thus

the distribution of the sum dfl; can look like exponential.
This conjecture seems to be consistent with what we see in
Fig. 13 and Fig. 14, but a more careful veri cation of this
conjecture is our future work.

1.4

alpha(k)
1.2

1.0

E. Long range dependence within disturbances

All of the analysis in the previous subsections concen-
trated on the AS transitions themselves rather than on the
stream of updates that imply the AS transitions. In this

0 10 20 B P subsection, we focus on the statistical behavior of these
K updates. We create a time series of the number of updates
] ] ] o ) ) for the given pre x received from all viewpoints of Route-
F'g‘fﬁ‘th:"grgs)f'rlngastfggéggs'o?gdg‘n%tt'rTee:SS gof;nc“on of saimsize V_iews in 30 secqnd bins_. Th.is time series i; (_1ivided up i_nto
disturbance periods as implied by our de nition of AS dis-
turbance. That is, the time boundaries are the same as the

0.8




. ‘ | memeon ‘ a given signalY that is simple, computationally ef cient
and informative. For example, the scaling analysis of a
signal which is exactly self-similar will yield a linear glo

of log, E; vs.j for all scales. On the other hand, for an
asymptotically self-similar signal a linear relationsihig-
tweenlog, E; and scalg will be apparent only for large
times or scales. We can also estimate the Hurst parame-
ter from the scaling analysis. Experience with (asymptoti-
cally) self-similar time series and those arising in data ne
works [13] suggests that “dips” or bends in the the scaling

CCDF(log)

0.001
0

O erot s Tiantens perDitmance © analysis plots indicate periodic behavior or components in
) . ) the time series.
Fig. 14. Number of transitions per AS disturbance for pre x . . .
198.69.224.0/22. In Fig. 15, we perform a scaling analysis on one long

disturbance from the pre x 198.69.224.0/22. We use the

AS disturbance periods for that pre x. We show that thHaar wavelet for this anaIyS|_s. We can see from the gure
at over a large number of time scales, the average energy

update counts within disturbances exhibit long range de-_ .. ) S )
. . S a linear function of scale so this disturbance is consiste
pendence (LRD) over seven or eight time scales (rough
ith long range dependence. We note that the Hurst param-
an hour). ) g . e
o - . eter estimate for this disturbance is 0.8, which is consiste
LetY = fY(i);i 1gbe a stationary sequence. Let . _—
with long range dependence. A complete qualitative analy-

sis of the scaling analysis is beyond the scope of this paper

1 . : o
Y (M (k) = = Y(@i);, k=1;2:::; and is a direction for future research.
i=(k 1Lym+1
be the sequence corresponding to average¥ obver 120 w0 e 7680 20720
blocks of sizem. If S
y € mt Hym il ]

4k 4

where the equality is in the sense of nite dimensional dis
tributions, then we say that is self-similar with Hurst pa-
rameterH . If equality holds over large values af (over
large scales), we say th#t is asymptotically self-similar
or long range dependent.

Wavelets with their built-in scale-localization ability *r ]
provide an ideal mathematical tool for investigating th
scaling behavior of self-similar processes across all (or
wide range of) time scales. (See [11] for more informatio | |
about wavelets.) Abry and Veitch [12] show thatvifis a ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

1 2 3 4 5 6 7 8 9 10

N
T
I

log2(Energy(j)

0]

self-similar process with Hurst parametdr 2 (0:5; 1), scale
th.en. the ?XpeCtatlon. of th-e average ene&"yth-at “?S Fig. 15. Energy plot analysis for an individual disturbarioe pre x
within a given bandwidtt2 ! around frequencg ! ¢ is 198.69.224.0/22.
given by
X . . .
E[E;] = E 1 jdix j2 1) For most of the disturbances from this particular pre x,
N; ’

K our Hurst parameter estimator generated values which are
_ z A consistent with long range dependenfbsb(< H < 1);
G2 1 ot At 2MiT()jPd; however, the qualitative analysis of their energy plots was
less convincing. Many of these energy plot analyses did
where "( ) is the Fourier transform of the wavele(t), not show clear linear behavior over many time scales. A
o is a baseline frequency parameter that depends on theser look at the time series shows many very long runs of
wavelet , andN; is the number of wavelet coef cients atno updates. That is, there are small bursts of updates inter-
each scalg. By plotting log, E; against scalg¢ (where spersed amongst long runs of zero updates. These distur-
j = 1 isthe nest scale angl = N > 1 is the coars- bances show a delineation of time scales: bursts of updates
est) and identifying scaling regions, breakpoints and noan small time scales and correlated updates over long time
scaling behavior, we have an unbiased scaling analysissotles.



IV. CAUSES OFHEAVY-TAILED OSCILLATIONS
In the previous section we demonstrated that AS disty

bances are an exponential arrival process and AS holdjn

times within disturbances are heavy-tailed. We postuls

two potential causes of the heavy-tailed AS holding times
within disturbances at the RouteViews viewpoint. In the

rst setting, there is a single discrete cut-over from the A
of one MOAS multihoming provider to the other that is am
pli ed to produce large time scale oscillations. These {ra
sient events might interact with the powerlaw AS graph {
introduce additional propagation delay, and ultimately th
observed heavy tailed AS disturbances. A second sett
postulates that heavy-tailed oscillations between the ty
MOAS multihoming ASes drive the oscillations at Route
Views; e.g., apping between origins. That is, the distri
bution at the viewpoint is the result of some recurrent co
dition(s) at the origin. This section uses both simulatig
and investigation of real origin events to rule out the rg
hypothesis and to verify the second.

A. Simulating Disturbances

Our rst hypothesis is that heavy-tailed AS disturbance
are the result of UPDATE propagation oddities occurrin
within the powerlaw topology [14] of the Internet AS
graph. As shown in Appendix A, a single origin transitio
can be ampli ed by network conditions and BGP policy
to result in multiple transitions at remote viewpoints. W,
posit that these events could resonate to create long ¢
turbances when occurring in bursts and propagating acr
structured AS graphs.

We attempt to replicate resonance events by simulatid n1

The agpmsimdiscrete-time-step simulator built for thig
study implements various models of BGP. The most cor
plex model, thehe Mini-path-vector modegintegrates ele-

ments of asynchronous update propagation and path sele

tion policy over arbitrary AS topologies. All experiments
in this section use the mini-path-vector model as detail
in Fig. 16.

There are two central parameters of the simulation th
affect the replication of origin disturbances on long tim
scales. The propagation rake is the probabilistic rate

at which update information is forwarded to its neighbors
Propagation delays frequently occur in practice due to BG 4

timer asynchrony, network congestion, router load, orioth

The Mini-path-vector Model

'"A network is an undirected graghwith vertex sev/ and
gdge seE. The neighborhoodll (v) of a nodev 2 V is

t(ln‘he set of nodes that share an edge withiVe de ne time

D

"Is in discrete stepbto;ty;:::g.
gA path P is de ned as a totally ordered subset @f
_Given a noder and a pathP, we assign a policy valy
L, T(P;v) to the pair. T(; ; ) is unde ned. We x a has}
c)func:tionH and assigi (P;v) the value oH applied tg
P andv. This ensures that the policy (i.e., the hash fU
n ion) remains xed over time, but its value is different f
" ach vertex and, possibly, for each time step. At ttm
_the state of a node consists of a local best fati; t;)
| and a path state for each neighko2 N (v), denoted
HQ(U; Vi ti).
nAn experiment is de ned as follows. Initially, all sta
+ variables are set to null (e.dR,(v;to); Q(u; v;to) = ;
forallv 2 V and for allu 2 N(v)). A primary node
r1 and a backup node are selected at random. At tin
to, r1's state is set to contain a single node, itself (&
SP(rl;to) = ry). Attimet;;i > 0 each nodes copies
its neighbors' local best path into the neighbor state
Yconstant probabilityR. That is,

0]

te

he
g.,

with

(
! Q(u;v:ti 1) with probabilityR,

Vi) = - il
Q(u; v;ty) P(Vit 1) with probabilityl R.

a}
-

1$S°$t time t;, after updating all its neighbor state, each n
computes (v; tj) as follows:
. if8u 2 N(v); Q(u;v;t)) = ;, thenP(v;t;) = ;, (if
all neighbor state empty, no shortest path)
h2- else,
(@) compute seM of shortest non-empty paths frg
eighbor stateM = shortestf Q(u; v;ti)ju 2 N(v)g,
%Jse the shortest path, if unique)
L4 (b) selecP(v;ti) = Q(u ;v;t;) whereu isthe neigh
“%or with the largest policy valu& (Q(u ;v;t;) over all
e

pde

m

aths inM , (break ties with policy).
he simulator models oscillation by withdrawing(e.g.,
P(ri;ti+1) = ;), and announcing, as the origin (e.g
L P(r2;ti+1) = r32), or vice-versa, according to a random
n a

5 N0

[ yariableS. A node is quiescent when it converges o

p

shortest path to the originating node (and it perform

e "
bsequent transitions).

| su

factors. Any simulation lacking delay would x quiescenc

as distance from an origin, and hence its inclusion is essen-

tial to a complete model. The second param&es the
probabilistic stability of the origin. That isS de nes the
AS transition distribution at the origin. WhilR affects

Fig. 16. The mini-path-vector model as implemented in dgpmsim
simulator. This models policy and asynchronous updateguaiion.

oscillation and the length of ne-grained (update) distureated in simulation on very simple graphs. For example,
bancesS will dictate the length and inter-arrival times offFig. 17 shows the AS transitions seen by a single viewpoint
origin disturbances. in a ten node network in response to a single AS transition.
An initial suite of tests establishes that origin oscibati A second set of experiments seeks to replicate heavy-
(as described in Appendix A) at viewpoints can be repltailed AS disturbances at the viewpoints. We perform
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‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ lay (and its potential interaction with topology), and the
use of policy are not a key factors in generating heavy-
tailed behavior. This led us to investigate another hypothe
sis: something at the origin could be driving the observed
behavior.

‘‘‘‘‘ i B. Physical modeling of events at Origin

Fig. 17_. Origin time series (simulated): origin osgillaftiseen by a_\(iew- Our second hypothesis for the heavy—tailed AS holding
point on ten node network in response to a single AS tramsitio . . ..
times is that there are recurrent events or conditions at the
origin that drive the heavy-tailed distribution we see &t th
! ‘ viewpoint. Note that in theory the origin oscillations may
N be the result of BGP session bounces at the origin ASes
o1} - 1 or elsewhere in along the AS paths. But in practice the
\ origin is most vulnerable to a single router's BGP session
bounces; other ASes along AS paths are much resilient
to single router's session bounces since they usually have
\ multiple peering sessions between them. In addition we
oo \ ] were able to con rm the former for some of our pre xes
for which we had suf cient visibility into logs for BGP ses-
00001 £ 1 1 sions at one or more of the origin ASes. We leave it as our

—

o
2
2
-
A

CCDF (log)

future work to look into more details the impact of failures
- = at intermediate ASes.
Time to Quiescence (in simulated tme units) Rather than postulating origin conditions with no sup-
Fig. 18. CCDF of simulated AS time to quiescence. porting empirical evidence, we turn to measurements to
drive our modeling. Thus, we practice physical-based
modeling. We begin by identifying a set of AS environ-
these tests on a 3,038 node (powerlaw) graph generatedignts we can reasonably pro le. We identify 11 of the 437
INET [15]. We chose aR = :5and modele® as a binary MOAS pre xes which are originated by AT&T(AS 7018)
random variable, where the probability of an AS transitiodnd other ASes. Among these 11 pre xes, 203.76.160.0/20
between the two origins (per time step) was xed at 10%as originated by both AS 7018 and AS 4858. AS 4858 is
(and a 90% chance of no AS transition). The test oscidjacent to AS 7018 and shares a single peering link with
lates between ASes accordingSdor 100 time-steps and AT&T. We extracted 79 days (May 16, 2003 to July 31,
measures the time to quiescence for each of 10 viewpoidf$03) of timestamped system logs from the routers sup-
following the oscillation period. porting peering sessions associated with the preide
We measure the AS time to quiescence by recording tB¥tract BGP speci ¢ events from the system logs and re-
last transition seen by a viewpoint following the 100 inteiconstruct the session state over the 79 day period.
val oscillation (a transition was always performed at time A CCDF of the BGP session down times associated with
step 100). Fig. 18 shows a CCDF of the AS time to quthe router over which 203.76.160.0/20 was indirectly orig-
escence for one viewpoint over 10,000 repetitions of th@ated is shown in Fig. 19. Even with only 162 observa-
test. Note that there is no signi cant behavior at largons, the down times appear to be heavy-tailed. To ver-
time scales; the range of time to quiescence can readifly this claim, we show in Fig. 20 the sample variance and
be explained by the probabilistic delay of update propagilll estimator plots for this time series. Because the ex-
tion. The distribution is exponential and with high probtended length of some of the session down times is surpris-
ability the system achieves quiescence in a short numt@®, we spot-check several of the session outages and cor-
of steps. We performed a raft of experiments on differelate them with network events. Almost all of the dozen or
ent network graphs (Erdos-Renyi random graphs, powé@ studied outages could be directly correlated with layer 2
law random graphs, and hypercubes) with a varietiRof outages; e.g., ATM failures. Interestingly, the session up
andS parameters. Thee results are similar and no expe#mes for this router were not similarly heavy tailed.
ment yielded heavy-tailed oscillations at a viewpoint. Note that down times of several days or weeks may be

The absence of large time scales indicates that whfigite natural, either as the result of some catastrophiateve
propagation may increase AS time to quiescence at sri&i9-» Packhoe through ber) or as part of a planned outage

times scales, it does not directly result in long disturlesnc _ _
279 days was the longest uninterrupted feed of system logagitire

or oscillation(such as those shown in Fig' 9)' Hen_ce, Vylgar long experiment, and hence was used to reconstrugsas®rma-
conclude that the powerlaw topology, the propagation dgsn.

1le-05
1
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sl9mo31ck.els-an.att.net(203.76.160.0/20) BGP Downtime (May 16, 2003 - July 31, 2003)

N X
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1 10 100 1000 10000 100000 1e+06 le+07
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Fig. 19. CCDF of single router down times as measured overasd d i : : : :
period in 2003. 0 500 1000 1500 2000

no. of samples

(e.g., network upgrade). A session outage does not indicate (a) Sample variance of the router down times.
that the network is necessarily partitioned from the larger
Internet. The link will fail-over to an backup link if one is
available (as is the case in most multi-homing situations).

We conclude that the empirical evidence is consistent
with heavy-tailed BGP session times (especially down
times) at the origin and that we are justi ed in using a
heavy-tailed distribution in our simulation to generate os
cillations at the origin. Our goal is to determine whether
these heavy-tailed oscillations give rise to heavy-tailed
holding times at the viewpoint.

A new suite of tests mode8 as a Pareto distributién
with  and parameters similar to those exhibited by the
session down-times. The test repeated 162 oscillations
whose inter-transition time was randomly selected from a
Pareto distributios with = 0:85and =60.4

alpha(m)
15 2.0

1.0

0.5

A CCDF of the AS holding times in response as seen by : w0 o i o
a single viewpoint in the simulated environment is shown n
in Fig. 21. Clearly, the Pareto generation of oscillation
leads to heavy tailed holding times. Hence, we conclude (b) Hill estimator of the router down times.

that it is highly likely that the heavy tails in the AS hold-

ing times are resulting from highly variable session dowsg. 20. Sample variance and Hill estimator for BGP sessamrdimes.
times. In addition, we can conclude from our rst suite of

tests that events at the origin which are short-lived (such

as single discrete cut-overs from one AS to another) #f&din give rise to heavy-tailed oscillations at the view-
not suf cient, not even in conjunction with propagation deP0int (at least in simulation). In this section, we compare

lay on a powerlaw graph, to yield heavy-tailed AS holdingnd contrast our analysis with the update streams of pre x
times. 192.83.230.0/24 from the BGP Beacon project [3] as seen

from RouteViews.
V. COMPARISON WITHBGP BEACON BGP Beacon pre xes [3] are pre xes established to

. - _— . . be announced or withdrawn according to publicly known
Section IV shows that origin oscillations drive the view- : - . .

) o ) I schedules and their updates are readily available at moni-
point oscillations and that heavy-tailed oscillations e t

toring point such as Oregon RouteViews or RIPE. Among
3The distribution functiorF of a general Pareto distribution is given bya_-II the_ beacon pre xes, 192-83-230-0/24 isegular mul-

F(x)=1 (=x) forx . tihoming pre x (Fig. 1(b) has illustrated the regular mul-
4The and values were selected from estimates of similar pre xegihoming) and its second-hop AS transitions (analogous

within our dataset. Note that the precise values of theibligion are not to origin transitions in MOAS muItihoming) is precisely

important. The regeneration of a similar distribution fionés to quies- ) ) X
cence is suf cient to support our thesis. driven by adiscretesecond-hop failure/recovery every two

10
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B. Comparison using Update disturbances

CCDF (log)

0.001
1

w0 100 1000 o000 100000 For a direct comparison of the beacon data and the
forn Tre o e o) MOAS dataset, we should break up the beacon data into
Fig. 21 CCDF of AS__hoId times resulting from simulated Paret AS disturbances (as de ned in Section |||); however, the
distributed AS transitions. .
beacon data at any large scale (two hours or more) are dis-
crete and the range of time scales in the beacon data is sim-
hoursscheduledccording to the setup shown in [16]. Thu$ly not large enough to afford such a disturbance de ni-
this pre x's second-hop transition is a natural comparition(e.g., with = 25 ;000). That is, the behavior in the
son point with the origin transition in MOAS multihom-beacon data and that in the MOAS data are incomparable
ing. The dataset is from June 2003 (when it rst becari@ the AS disturbance level.

available) to April 2004. There is a more complex analysis we can perform, how-
ever, if we adjust our de nition of disturbance accordingly
A. Basic Observation For this analysis we break origin (or second-hop) oscilla-

tions up according to anpdate disturbancgea different

: de nition of disturbance than the AS disturbance we use
L earlier. The updates received by multiple viewpoints are

i triggered by the same failure/recovery at the second-hop
in beacon. Previous measurements in [17] [3] show that
the majority of Internet route convergence takes less than
1 180 seconds. Thus it should be a clear indication that the
\ network has converged to the new sets of the stable path
after the triggering failure/recovery if there are no updat
from any viewpoints for a threshold of time (e.g. 120 sec-

CCDF(log)

1230 Conplete AS hlding e —— ) onds). We thus de ne thepdate disturbancéor a xed
aoor o set of viewpointZ at RouteViews and a xed pre y, as
SR follows. The de nitions are illustrated in Fig. 23.
Fig. 22. Second-hop AS Holding time for beacon 192.83.22@.0 Update disturbancés a period of time in which view-

point setZ receives consecutive updates for preoxhat
For the beacon data, Fig. 22 shows that the second-tasp separated by no more thag seconds.

AS holding times are indeed quite discrete at the view- Update quiescencis a period of time of at least
points. Not only do they show distinct jumps in time buseconds during which viewpoint sétreceives no updates
they also are not heavy-tailed. We also found that in dlom any viewpoint for pre xp.
most all the cases a viewpoint has only one second-hog-or a xed viewpoint seZ , thetime to quiescenads the
transition around the scheduled time, and in only very fetime between the rst and the last updates this disturbance
cases, a viewpoint can see two or more second-hop trargdiserved at the viewpoiit for pre x p.
tions around the scheduled time. In other words, we see lit-For the results in the rest of the paper, we choose
tle ampli cation of individual failure/recovery. Therefe, a threshold of , = 120 seconds. We observe that
it seems clear that the discrete disturbance at the secoadr results are robust to changes of, as they did
hop that beacon creates on a regular basis cannot cangechange signi cantly with different values of , =
heavy-tailed AS transitions/second hop transitions at th&; 60; 90; 120, 150, 180.
viewpoint. We thus conclude that the BGP beacon data ver-Measuring beacon's second-hop AS holding time within
ify our simulations that discrete and singular origin egeneach update disturbance generates no data points (thus
do not give rise to heavy-tailed oscillations at the viewaot shown), con rming our early nding that there is at
point. most one second-hop transition at one viewpoint per fail-
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ure/recovery. Similarly, for the MOAS pre x there are too
few data points for the AS holding time within the update
disturbances to show a clear trend in Fig. 24. This is be-
cause most of the AS holding times in our data are signif-
icantly longer than the time required for updates to come
to quiescence after a single AS transition at the origin. It
is clear from this that using the time scale at which up-
dates come to quiescence misses the larger scale of the AS
origin oscillations and their associated long range depen-
dence. The above observation, plus the difference between oss murimema ek 18820088
Fig. 22 and Fig. 6, indicate that the update disturbances in i o Uit Qi n Secondst)
the beacon data are distinctly different from the AS distur-

bances in the MOAS data with respect to hoIding times. Fig. _25. A comparison of the time to quiescence for updateidiances
in the beacon and MOAS datasets.

CCDF(log)

VI. ANALOGOUS BEHAVIOR IN REGULAR
MULTIHOMING

In the previous sections, we describe several important
phenomena of MOAS multihoming and provide solid ex-
perimental and empirical evidence of models for this be-
havior. MOAS multihoming is, however, a special type
of multihoming while regular multihoming is much more
prevalent in the Internet. As a rst step to determine how

CCDF(log)

oo | BRI universal our observations on MOAS multihoming are and

S Hoding Time(oo) how applicable they are to the much wider practice of reg-

Fig. 24. Not enough data points for AS holding time within afeldis- ular m“'“hom'ﬂgl we take a Smal! (random) set of 30 pre-
turbances for MOAS pre x. xes whose origin ASes are multihomed to both AS 701

and AS 1239, two tier-1 ASes in the Internet. In the gures

On the other hand, we observe that the time to quiek%‘?'ow’ we give results only fqr the pre x 129.121.0.0/16;
cence of update disturbances for both the beacon data Gfever. the results are similar for the other 29 pre xes.
the MOAS data are similar. Both CCDFEs show an expgye use the de n.|t|0ns of AS disturbance from_ Sectlo.n Il
nential tail with most disturbances dying out within two t&2nd Use the notion of second-hop AS transition as in the
three hundred secon8MOAS pre x's time to update qui- Prévious section, and= 10 ;000seconds. o
escence is slightly longer in the tail, and can be caused byWWe see in Fig. 26 that the second-hop AS holding times
two or more consecutive transitions at the origin, which f3ave a similar distribution as that in Fig. 6; the CCDF ap-
consistent with Fig. 24 which has some (although very feWgars to be the admixture of a heavy-tailed distribution and
data points for holding time within update disturbances. @nd an exponential distribution. Fig. 27 shows that, simi-

We conclude that, from one perspective, the BGP beacl&'i to Fig. 8 th_e interdisturbance time has approxir_‘natglya
data verify our simulations that discrete and singuIarinrigeXponem'aII distribution. The second-hop AS holding times

events do not give rise to heavy-tailed oscillations at t jthin disturbances shown in Fig. 28 has approximately a

viewpoint. From another perspective, these discrete sve §avy—talled distribution(similar to Fig. 9), and the tine

are on such small time scales that they are incomparaﬁ%ond'hOPAS quiescence in Fig. 29 has approximately an

with the long time scales we observe in the MOAS oscilla?-)(p(_)nentlal dlstrlb_ut|_on(s_|mllar to Fig. 13). )
Given above similarities between regular multihom-

tions. If we do, however, adjust our time scales and de ne ! i !
an update disturbance (that is naturally, a small time gyerffd @nd MOAS multihoming, and that the behavior of

the behavior we observe in the update stream of the MOA4OAS multihoming at the viewpoints is driven by the
data is consistent with that we see in the beacon data. Y\gAvY-tailed disturbances at the origin, its likely that
point out that this smaller time scale misses the largeesc&" regular multihoming the structure is also driven by

of the AS origin oscillations and their associated long mndn€ link failures/recoveries between the origin AS and its
dependence. providers. We leave a detailed study of second-hop transi-

tions in regular multihoming our future work. In sum, our
__ _ _ ndings suggest that AS(or second-hop AS) oscillations
50ur de nition of time to update quiescence does not re ect talse dri bv h tailed illati betw diff ttiaul
damping effect [18] as our  is much shorter than the minimal damping rven by e_avy' aile OS_C' ations be e_en lerentmu
time(20 minutes). homed providers are a widespread and important BGP phe-
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nomenon with complex but recognizable signatures such as
heavy-tailed holding times and long-range dependence.

701: time-to-quiescence —-—-

0 5000 10000 15000 20000 25000 30000 35000 40000
Time to Quiescence

ek wwwk Fig. 29. Second-hop AS time to quiescence of regular muttihg pre x
R v 129.121.0.0/16.

10 100 1000 10000 100000 1e+06 1e+07
Complete AS Holding Time(log)

Fig. 26. Second-hop AS holding time of regular multihoming p

129.121.0.0/16 in the entire study period. The AS transition dynamics are closely related to the

BGP update dynamics as they are both triggered by un-
derlying topology changes (or policy changes). Thus, we
ey brie y review recent efforts on BGP update dynamics mea-
surement and modeling. Labovitz, et al. [20] measure the
update interarrival time of the tuple (viewpoint, pre x).
Labovitz,et al.[21] also show that Internet backbone paths
I, exhibit a mean time to fail-over (due to either physical
° failure or policy changes) of roughly two days and only
roughly 20% of paths unchanged in ve days. Rexfaet],
al. [9] show that a large portion of the interarrival time is
around 30 seconds (the default BGP update rate limiting
timer value). This observation is con rmed by the mea-
surement of the controlled failures of beacon data by Mao,
et al.[3]. Based on the interarrival time distribution, Rex-
ford, et al. [9] use a time window to divide sequence of
updates into sequence of “events”. The authors measure
interarrival time of events and observe that most events are
short-lived. They also show that a small percent of the pre-
xes contribute to majority of the events and conjecture
I, that one possible explanation is apping devices.
¢ : Mao, et al. [3] provides interarrival modeling of the
beacon pre xes (pre xes with controlled failure/recoviry
They model the observed interarrival CCDFs using a com-
e — bination of mass distribution, geometric distributiondan
” T ket exponential distribution. They conjecture that the expene
Fig. 28. Second-hop AS holding time within disturbancesegisar mul- tial tail I_S Caus.e.d by BGP false damping (as dem(.)nStrated
tihoming pre x 129.121.0.0/16. by [18]); a legitimate sequence of updates can trigger the
BGP damping mechanism to stop announcing a pre x and
re-announce this pre x up to one hour later.
VIl. RELATED WORK Labovitz,et al.[17] discover in BGP it can take as long
In this section, we brie y review related work. Zhao,as 15 minutes for the network to converge to the new set

et al. measure the MOAS con icts using BGP table snag?f paths after a topology change but majority of time-to-
shots and provide possible causes of the MOAS con icgiliescence is below 180 seconds.

in [1]. Previous work on the stability of origins of pre-
xes includes [19] and [8]. Kentet al. [19] claim ori-
gins are very stable as measured by the number of newl he central contribution of this paper is a detailed analy-
announcements they encountered. Aiedibal. [8] also sis of the MOAS multihoming oscillations at different time
study the stability of origins using BGP table snapshotscales. We empirically derive a model of AS disturbance
and found 70-90% stability over a ve month period angberiods during which the AS oscillates with heavy tailed
monthly churn of around 5% (of 143,215 pre xes). holding times. We demonstrate that these disturbances ar-

Fig. 27. Interdisturbance time of regular multihoming 091221.0.0/16.

VIII. CONCLUSION
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rive according to a Poisson process. We also show thed] S. Kent, C. Lynn, J. Mikkelson, and K. Seo, “Secure BorGate-
the update stream within these disturbances exhibits long Way Protocol (S-BGP) — Real World Performance and Deploymen
. . . . Issues,” inProceedings of Network and Distributed Systems Secu-
range dependence. Using simulations and physical-based iy 2000 internet Society, February 2000.
modeling to drive these simulations, we demonstrate tHag) ff'nL%b%Vrgig Sdilr\]/laslagf, Aagﬁn FS iJir(mgg,tgrr:qtgg:eltgggmnstabil-
heavy-ta”ed OSCIIIatI(.)n at the.ongm S a possﬂale explan [f21] CY‘ Labovitz, A. A?huja, and F.gJahéniaﬁ, “Experimenttiidy of
tion for our observations (while the complex interplay o Internet Stability and Wide-Area Network Failures,”"Rmoceedings
the BGP protocol and network topology is not such an ex- of FTCS99June 1999.
planation). That is, “unusual” or heavy-tailed “operatibn
events” at the origin might be the root cause of our obse
vations rather than the intricacies of BGP. Research to “ x” Two factors can collude to amplify a single origin tran-
this behavior of BGP might be misguided. sition into origin oscillation at an observer: delay and BGP
Our work suggests that the tail parameters of AS holgolicy. Delays, whether caused by slow links, overloaded
ing times may be a useful signature of legitimate MOA®uters, or topology, slow the propagation of pre x an-
for pre xes. We also identify interesting scaling behavionouncements. Because propagation time of an announce-
in BGP update streams—scaling behavior that might otherent or withdrawal can vary greatly, the same information
wise be missed with datasets such as the Beacon dataabfdut origin can arrive at an viewpoint through different

thorough investigation of this scaling behavior is just ongaths over time. Policy contributes directly to oscillatio

IAPPENDIXA - SINGLE EVENT ORIGIN OSCILLATION

possible direction for future work. by adding local autonomy to the decision process. For
example, a LOCAL PREF attribute can be used to prefer
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