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Abstract—This paper develops an empirical pro�le of BGP pre�x
announcements that originate from multiple ASes, so-called MOAS
announcements. Analysis of Oregon RouteViews data over oneyear
shows that a small fraction of pre�xes are responsible for a very large
fraction of all origin AS transitions observed at RouteViews. More-
over, these heavy-hitter pre�xes oscillated between two origin ASes.
The prevalence of this behavior indicates that a clear pro�le of its
characteristics will inform a larger understanding of MOASes and
ultimately BGP.

The central contribution of this paper is a detailed analysis of
these MOAS multihoming oscillations at different time scales. We
empirically derive a model of AS disturbance periods duringwhich
the origin AS observed oscillates with heavy tailed holdingtimes.
We demonstrate that these disturbances arrive according toa Pois-
son process. We also show that the update stream within thesedis-
turbances exhibits long range dependence. Using simulations, and
physical-based modeling of events at origin to drive these simulations,
we demonstrate that heavy-tailed oscillation at the originis a possi-
ble explanation for our observations (while the complex interplay of
the BGP protocol and network topology is not such an explanation).
Comparison with BGP beacon data veri�es our simulations that dis-
crete and singular events at the origin do not generate heavy-tailed os-
cillations at the viewpoint. In sum, we �nd that AS oscillations driven
by heavy-tailed oscillations between different multihomed providers
are a widespread and important BGP phenomenon with complex but
recognizable signatures such as heavy-tailed holding times and long-
range dependence.

I. I NTRODUCTION

This paper develops an empirical pro�le of BGP pre-
�x announcements that originate from multiple ASes, so-
called MOAS(Multiple Origin AS) announcements [1].
Our model is driven by solid data analysis and physical-
based simulations. We analyze BGP updates observed at
Oregon RouteViews [2] from August, 2002 to July, 2003
for origin AS transitions. Surprisingly, a small fraction of
pre�xes are responsible for a very large fraction of all tran-
sitions. Moreover, these heavy-hitter pre�xes oscillatedbe-
tween two origin ASes. In fact, in our dataset 23% of ori-
gin transitions were associated with the 473 pre�xes that
oscillated at least 50 times. The prevalence of this behav-
ior indicates that a clear pro�le of its characteristics will
inform a larger understanding of MOASes and ultimately
BGP.

Several varieties of multihoming can lead a pre�x to be
legitimately announced by two (or more) ASes. We hy-
pothesize that the origin AS oscillations in our dataset are
the result of these types of multihoming which we denote
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MOAS multihoming. The central contribution of this paper
is a detailed analysis of these MOAS multihoming oscilla-
tions at different time scales. We hypothesize the follow-
ing model. There are disturbance periods during which the
origin AS (observed at distant viewpoints) oscillates with
heavy tailed holding times. The “arrival” of these distur-
bances is given by a Poisson process. That is, the distri-
bution of the times between the beginning of consecutive
disturbance events is exponential.

To test this hypothesis we break up the oscillations into
disturbances periods that are separated by quiescent peri-
ods; i.e., periods without an origin transition. We pro-
vide empirical evidence for the model, demonstrate that
the heavy-tailed AS holding times are stable over time, and
postulate that the tail parameter of the AS holding times
may be a useful signature of legitimate MOAS for such
pre�xes. We also discover that within each disturbance the
number of updates as a function of time exhibits long range
dependence over seven or eight time scales (roughly one
hour).

We postulate two potential causes of the heavy-tailed os-
cillations within disturbances at the RouteViews viewpoint.
In the �rst model, there is a single discrete cutover from the
AS of one MOAS multihoming provider to the other. Then
interactions between BGP and complex AS topology result
in the heavy-tailed AS oscillations at the viewpoint. The
second model postulates heavy-tailed oscillations between
the two MOAS multihoming ASes which drive the oscilla-
tions at RouteViews.

To investigate the role of topology in the structure of the
AS oscillations and to test the �rst hypothesis, we develop
a simpli�ed discrete-time simulation of BGP. We show that
simulations of discrete singular switches between AS ori-
gins even on complex network topologies do not demon-
strate any heavy-tailed behavior at distant viewpoints for
AS holding times. In this same simulator, we oscillate the
originating AS of a pre�x between two ASes with heavy-
tailed holding times, the parameters of which are derived
from the heavy-tailed BGP session down times measured
at the origin. Indeed, distant viewpoints do observe heavy-
tailed origin oscillations. These simulations suggest thelat-
ter as a potential explanation for the oscillations (and elim-
inate the former).

We compare and contrast our analysis with update
streams as seen from RouteViews of the BGP Beacon
project [3]. The beacon data verify our simulations that



discrete and singular events at the origin do not generate
heavy-tailed oscillations at the viewpoint. On the other
hand, these discrete events are on such small time scales
that the data are, in some sense, incomparable with MOAS
AS oscillation observations. If we do, however, adjust our
time scales and de�ne a much smaller time scale at which
update disturbances come to quiescence, the behavior we
observe in the MOAS update stream is consistent with the
beacon data. It is clear that using this smaller time scale
misses the larger scale of the AS origin oscillations and
their associated long range dependence.

We also brie�y study analogous behavior of the oscilla-
tions of the second hop AS for regular multihoming to as-
certain whether our observations about MOAS multihom-
ing apply to the much more prevalent regular multihoming.
In sum, we �nd that AS oscillations driven by heavy-tailed
oscillations between different multihomed providers are a
widespread and important BGP phenomenon with complex
but recognizable signatures such as heavy-tailed holding
times and long-range dependence.

The rest of the paper is organized as follows. Section II
de�nes origin transition, explains the potential causes of
origin transitions, and describes our dataset. In Section III,
we present our model of AS oscillations. To identify physi-
cal explanations of our model, we use simulations and em-
pirical observations to drive input models for our simula-
tions in Section IV. In Section V, we compare and contrast
our results with those from the BGP Beacon project. We
brie�y discuss the applicability of our observations to the
more widespread regular multihoming in Section VI. In
Section VII, we summarize related work, and we conclude
with Section VIII.

II. ORIGIN TRANSITIONS AND MOAS MULTIHOMING

BGP [4] is the global routing protocol running between
Autonomous Systems(ASes) in the Internet. A destination
network in BGP is called a pre�xp, and itsorigin ASis
the AS who originates the announcement of a pre�xp.
Fig. 1(a) is an example of regular multihoming in which
AS M is the origin for pre�x p. In Fig. 1(b), both ASA
andB are the origins for pre�xp and we say that pre�xp
has multiple origin AS multihoming(orMOAS multihom-
ing).

To understand more thoroughly MOAS behavior, we
study how the origin AS changes at a “viewpoint.” For
a public BGP monitor (such as Oregon RouteViews[2] and
RIPE [5]), a viewpoint is a router in a participating AS that
has exterior BGP sessions with the monitor. We say that
we have anorigin transitionfor a particular pre�xp if two
consecutive updates forp from the same viewpoint have
two different origins. Fig. 1(b) provides one example time
series of the origin of pre�xp at viewpointX (The second-
hop transitions in regular multihoming in Fig. 1(a) is anal-
ogous to the origin transitions in MOAS multihoming).

(a) Regular Multihoming

(b) MOAS Multihoming

Fig. 1. Regular Multihoming and MOAS Multihoming.

A. Causes of MOAS and Origin Transitions

Several recent works [1][6] identify the causes of MOAS
behavior. These causes include illegitimate reasons such as
miscon�gurations and malicious attacks. According to [6]
there are roughly 200 MOAS con�icts caused by miscon-
�gurations daily. Legitimate reasons for MOAS behavior
include aggregation (rare in practice according to [1]) and
several varieties of MOAS multihoming.

MOAS multihoming covers the following cases: (i) a
pre�x can be multihomed to two or more ASes through
some backdoor connections (e.g., pre�xp in Fig. 1(b)); (ii)
a pre�x is multihomed to multiple ASes using a private AS
number (which is stripped off by its provider ASes before
announced to the global Internet); (iii) an exchange point
pre�x is shared by multiple ASes; or (iv) a pre�x is tem-
porarily multi-homed to both the old provider and a new
provider when it switches providers.

Similarly, the origin transitions can happen for both le-
gitimate and illegitimate reasons. Miscon�gurations and
attacks will have some origin transitions but the �nal origin
AS will be the correct one; switching providers is an infre-
quent event for a �xed pre�x and the origin AS of the pre-
�x will stabilize with a new one. For MOAS multihoming
pre�xes, the origin transitions can be more frequent since
they re�ect BGP's automatic reaction to (more frequent)
network topology changes.
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B. Collection of Origin Transitions

We collected the AS transitions from all the viewpoints1

of RouteViews Server 2 from August 2002 to July 2003(a
one year study period). Note that we must clean some of
the data. First, there are some reserved address blocks
where are incorrectly announced by two or more origin
ASes. Such pre�xes are called bogon pre�xes [7]. Sec-
ond, some origin ASes in the BGP update message appears
as AS SET, thus we are not able to clearly de�ne an ori-
gin transition. These two AS inconsistencies contribute to
about 5% of the total AS transitions and we remove them
from consideration. The dataset composition is shown in
Fig. 2.

We observe more than 6 million origin transitions in to-
tal. We �nd 16,160 pre�xes (more than 10% of about
140,000 pre�xes) and 5,144 ASes (more than one third
of about 14,000 ASes) are involved in at least one origin
transition. These results from the continuous BGP update
stream are consistent with other origin stability studies us-
ing BGP table snapshots such that in as [8].

dataset #transitions(percent) # pre�x(percent)
Complete 6,898,383 (100%) 16,474 (100%)
bogon 351(0.005%) 12 (0.07%)
AS SET 351,791 (5.1%) 302 (1.8%)
Cleaned 6,546,055 (94.9%) 16,160 (98.1%)
2-transition 3,514,696(50.9%) 10,211 (62.0%)
MOAS 1,630,064 (23.6%) 473 (2.87%)

Fig. 2. Data Set

C. MOAS Multihoming

Surprisingly, a small fraction of pre�xes are responsible
for a very large fraction of all transitions. We �rst rank
pre�xes according to the number of transitions they experi-
ence. Fig. 3 shows that the top 0.1% of pre�xes are respon-
sible for 18% of the total transitions, the top 1% of pre�xes
generate 45% of the total transitions, and the top 10% of
pre�xes have 81% of the total transitions.

Because a small number of pre�xes generate a large
number of the total AS transitions, it's worthwhile to ask
how many unique transitions there are and how many each
pre�x has. To this end, we examine the unique transitions
from previous originto current origin for each pre�x, in-
dependent of the view points. A pre�x with two unique
transitions means this pre�x only has transitions fromA to
B and fromB to A during the study period.

The solid curve in Fig. 4 shows the CCDF of the number
of unique transitions per pre�x. The dashed curve shows
the CCDF of number of total transitions contributed by pre-
�xes with a particular number of unique transitions. We see

1The number of viewpoints hovered around 30 during our periodof
study.
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Fig. 4. Distribution according to the number of unique transitions per
pre�x.

that about 88% of the pre�xes have only one or two unique
transitions, but they contribute more than 60% of the total
transitions.

Pre�xes with two unique transitions give us a good start-
ing point for studying origin transitions and MOAS be-
havior. The dataset is large–60.2% of pre�xes that have
two unique transitions contribute about 50.9% of all the
AS transitions. Unfortunately, a pre�x can experience two
unique transitions for a variety of reasons, not necessarily
because that pre�x is a MOAS pre�x. While we cannot
verify that a pre�x is MOAS multihomed directly, we can
construct a simple heuristic to narrow the pre�xes which
we will study in the rest of the paper. Among those pre-
�xes with two unique transitions, we consider those have
more than 50 transitions observed at AT&T viewpoint as
MOAS pre�xes.

With this de�nition, we obtain a set of 473 pre�xes and
these pre�xes contribute about 23% of total origin transi-
tions. Furthermore, these 473 pre�xes contributes a rea-
sonably large fraction of BGP updates. We used the same
dataset of AT&T internal BGP updates as [9] and found
that these 473 pre�xes (about 0.35% of total pre�xes) con-
tribute to about 0.8% percent of the total updates. Among
the top 100 pre�xes with the most updates, four are from
these 473 pre�xes. Therefore, even from the traditional
BGP stability point of view, understanding these MOAS
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multihoming pre�xes are important to understand BGP in
general. In the rest of the paper, unless speci�ed other-
wise, we focus on the AT&T viewpoint,and the results we
present are representative to this set of 473 pre�xes, which
we denoteMOAS multihoming dataset.

III. STATISTICAL STRUCTURE OFAS TRANSITIONS

In this section, we present the statistical structure of
the AS transitions and the analysis of the BGP updates
amongst these AS transitions.

A. AS holding times

We observe that the AS transitions can be numerous
and they can come in short bursts. In addition, there
are long stretches of time with no AS transitions. Fig. 5
shows the origin time series of a representative pre�x
198.69.224.0/22 (whose two origin ASes are AS 22143 and
AS 209) for a one year period and for a two hour period.
Observe that at both large and small time scales, we ob-
serve AS transitions.
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Fig. 5. AS transition time series for pre�x 198.69.224.0/22

To understand the different time scales of the origin tran-
sitions, we de�ne theAS holding timeof one originA of
pre�x p at one viewpointX as the time thatp's origin stays
with A at view pointX . We say that a random variableY
is heavy-tailedor follows a heavy-tailed distribution if

P r(Y > x ) � x � � ; asx ! 1 , 0 < � < 2.

Note that for� values less than 2, the random variable
X has in�nite variance and for� < 1, in�nite mean.
We de�ne two random variables; each one is the hold-
ing time over the entire dataset in one of the two origin

ASes of a MOAS multihoming pre�x. These two random
variables' empirical complementary cumulative distribu-
tion functions (CCDFs) (�F (x) = 1 � F (x) = P r(Y > x )
for random variableY) on log-log axes are shown in Fig. 6.
The particular MOAS pre�x is 198.69.224.0/22. On the

0.001

0.01

0.1

1

10 100 1000 10000 100000 1e+06 1e+07

C
C

D
F

(lo
g)

Complete AS Holding Time(log)

209:Complete AS holding time
22143: Complete AS holding time

Fig. 6. AS holding time CCDF over the entire study period

one hand, this CCDF appears to be linear on a log-log scale
for several orders of magnitude; on the other hand, there is
typically an abrupt transition where the probability density
function appears to tail off much more quickly. That is, the
CCDF appears to be an admixture of a heavy tailed distri-
bution and an exponential distribution. We found such a
CCDF is common is our MOAS multihoming dataset, and
we use pre�x198:68:224:0=22in all of our analyses in the
rest of this section.

B. AS disturbances

We posit the following model of AS disturbances. There
are disturbance periods during which the origin AS oscil-
lates with heavy tailed holding times. The “arrival” of these
disturbances is given by a Poisson process. That is, the dis-
tribution of the times between the beginning of consecutive
events is exponential. To verify our claim, we break up our
AS oscillations into disturbances that are separated by pe-
riods of quiescence.

For a �xed viewpointX and a �xed pre�x p, we de�ne
AS disturbanceas follows. The de�nitions are illustrated
in Fig. 7.
� AS disturbanceis a period of time in which consecutive
origin transitions ofp observed atX are separated by no
more than� seconds.
� AS quiescenceis a period of time of at least� seconds
during which viewpointX observes no AS transitions of
pre�x p.
� Interdisturbance timeis the time between the beginnings
of two consecutive AS disturbances of pre�xp at viewpoint
X .

We choose� according to the “knee” in the overall AS
holding time CCDF in log-log between the power law and
the exponential law. For example, we chose� = 25 ; 000
seconds for pre�x 198.69.224.0/24 for AS 22143. We can
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Fig. 7. An illustration of the de�nitions for AS disturbance.

see in Fig. 8 which is the CCDF of the interdisturbance
times (plotted on semi-log axes), that these times are con-
sistent with an exponential distribution. In addition, Fig. 9
is a plot of the CCDF of the AS holding times within
the disturbances. This plot is consistent with a powerlaw
CCDF (with a cutoff at� = � ). Thus, our data and our
model are consistent.
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Fig. 8. Exponential interdisturbance time for pre�x 198.69.224.0/22.

0.001

0.01

0.1

1

10 100 1000 10000 100000

C
C

D
F

(lo
g)

AS Holding Time(log)

209:AS holding time
22143: AS holding time

Fig. 9. Heavy-tailed AS holding time within the disturbances for pre�x
198.69.224.0/22.

In addition, we �nd that the CCDF of the AS holding
times is stable over long periods of time. We compared
the CCDF of the holding times in �rst third transitions of
any disturbance and that in the last third transitions of any
disturbance, and found that they are very similar. Fig. 10
shows the CCDF of AS holding times in all transitions, �rst

third transitions and last transitions within any disturbances
of AS22143 for pre�x 198.168.224.0/22. The stability of
the holding times CCDF suggests that the tail parameters
may be a useful signature of legitimate MOAS for such
pre�xes.
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Fig. 10. CCDF of AS holding times of any transitions, �rst third transi-
tions, and last third transitions of any disturbances.

C. Re�ned analysis of AS holding time

Fig. 9 are log-log complementary cumulative distribu-
tion function plots. They show the function�F (x) = 1 �
F (x) = P r(Y > x ) on log-log axes. In these plots, heavy-
tailed distributions display linear behavior with slope equal
to � � . Unfortunately, the eye is easily deceived by CCDF
plots; distributions which do not have truly heavy-tailed be-
havior “appear” to have linear log-log CCDFs. To bolster
our intuition that the AS holding time within disturbances
is heavy-tailed, we perform a second, more reliable test of
heavy-tailed behavior. Fig. 11 shows the cumulative vari-
ance plots of the AS holding times for AS 209. We choose
the holding times for this AS because they seem to be the
most consistent with a heavy-tailed distribution. The cu-
mulative or sample variance is one of the oldest tests for
determining whether data has in�nite variance or not. In
this plot, we plot the sample varianceS2

n from the �rst n
observations as a function ofn. If the data are drawn from
a distribution with �nite variance, the plots will convergeto
a �nite value. If the data are from an in�nite variance dis-
tribution, then the plots will diverge and show large jumps.
This is exactly the behavior we see in the �gure.

While the log-log CCDF plot of the AS holding time
does show a linear relationship (and, hence, a heavy-tailed
distribution), it is dif�cult to calculate the exponent� or
the tail weight exactly from this plot. To do so, we use the
standard Hill estimator. LetY1; Y2; : : : ; Yn be a sequence
of n observations drawn from a stationaryi.i.d. process
with probability distributionF , unknown. We assume that
F is heavy-tailed with tail weight� . Let Y(1) � Y(2) �
: : : � Y(n ) be the descending order statistics from our se-
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Fig. 11. Sample variance of AS holding time as a function of sample size
for the pre�x 198.69.224.0/22 and the AS 209.

quence of observations. The Hill estimator [10] is

� (k) =
1

k � 1

k � 1X

i =1

logY( i ) � logY(k ) for k > 1

and gives an estimate of� as a function ofk. We plot the
estimate as a function ofk and if it stabilizes to a consistent
value of� , then this value provides an estimate of the tail
weight. Fig. 12 shows Hill estimator results for the holding
times corresponding to AS 209. The estimator seems to
give a consistent estimate of� about 0.8. Note that for�
in this range, our probability distributionF has neither a
�nite variance nor a �nite mean.
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Fig. 12. Hill estimator of AS holding time as a function of sample size
for the pre�x 198.69.224.0/22 and the AS 209.

D. Time to quiescence of AS disturbances

The previous subsections describe the spacing between
AS disturbances and the behavior of the AS holding times
within disturbances but they do not address how long dis-
turbances last. For that analysis, we turn to theAS time to
quiescence. For a viewpointX and pre�x p, theAS time
to quiescenceof a disturbance is the time between the �rst
and the last AS transitions of this disturbance observed at
viewpointX for pre�x p. In other words, AS time to quies-
cence for a disturbance is simply the sum of the all the AS
holding times within the disturbance. Fig. 13 shows that
the CCDF of the AS time to quiescence on semi-log axes.
Surprisingly, it appears to have an exponential distribution.
In other words, the time to quiescence is the sum ofK ran-
dom variablesH i , whereH i 's distribution is heavy-tailed
andK 's is exponential.
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Fig. 13. AS time to quiescence for pre�x 198.69.224.0/22.

We then plot the distribution of the number of transitions
within a disturbance in Fig. 14 to see whether it can give us
some hints. On semi-log axes, this distribution appears to
be exponential and the average disturbance has only a small
number of transitions and most have fewer than 20 (i.e., K
is small). Our conjecture is that whenK is large enough,
we have a reasonable chance of drawing a largeH i and
that large value swamps the sum. IfK is small, then with
reasonable probability most of theH i 's are small. Thus
the distribution of the sum ofH i can look like exponential.
This conjecture seems to be consistent with what we see in
Fig. 13 and Fig. 14, but a more careful veri�cation of this
conjecture is our future work.

E. Long range dependence within disturbances

All of the analysis in the previous subsections concen-
trated on the AS transitions themselves rather than on the
stream of updates that imply the AS transitions. In this
subsection, we focus on the statistical behavior of these
updates. We create a time series of the number of updates
for the given pre�x received from all viewpoints of Route-
Views in 30 second bins. This time series is divided up into
disturbance periods as implied by our de�nition of AS dis-
turbance. That is, the time boundaries are the same as the
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198.69.224.0/22.

AS disturbance periods for that pre�x. We show that the
update counts within disturbances exhibit long range de-
pendence (LRD) over seven or eight time scales (roughly,
an hour).

Let Y = f Y(i ); i � 1g be a stationary sequence. Let

Y (m ) (k) =
1
m

kmX

i =( k � 1)m +1

Y (i ); k = 1 ; 2; : : : ;

be the sequence corresponding to averages ofY over
blocks of sizem. If

Y d= m1� H Y (m )

where the equality is in the sense of �nite dimensional dis-
tributions, then we say thatY is self-similar with Hurst pa-
rameterH . If equality holds over large values ofm (over
large scales), we say thatY is asymptotically self-similar
or long range dependent.

Wavelets with their built-in scale-localization ability
provide an ideal mathematical tool for investigating the
scaling behavior of self-similar processes across all (or a
wide range of) time scales. (See [11] for more information
about wavelets.) Abry and Veitch [12] show that ifY is a
self-similar process with Hurst parameterH 2 (0:5; 1),
then the expectation of the average energyE j that lies
within a given bandwidth2� j around frequency2� j � 0 is
given by

E[E j ] = E
�

1
N j

X

k

jdj;k j2
�

(1)

= cj2� j � 0 j1� 2H
Z

j� j1� 2H j  ̂ (� )j2 d�;

where ̂ (� ) is the Fourier transform of the wavelet (t),
� 0 is a baseline frequency parameter that depends on the
wavelet , andN j is the number of wavelet coef�cients at
each scalej . By plotting log2 E j against scalej (where
j = 1 is the �nest scale andj = N > 1 is the coars-
est) and identifying scaling regions, breakpoints and non-
scaling behavior, we have an unbiased scaling analysis of

a given signalY that is simple, computationally ef�cient
and informative. For example, the scaling analysis of a
signal which is exactly self-similar will yield a linear plot
of log2 E j vs. j for all scales. On the other hand, for an
asymptotically self-similar signal a linear relationshipbe-
tweenlog2 E j and scalej will be apparent only for large
times or scales. We can also estimate the Hurst parame-
ter from the scaling analysis. Experience with (asymptoti-
cally) self-similar time series and those arising in data net-
works [13] suggests that “dips” or bends in the the scaling
analysis plots indicate periodic behavior or components in
the time series.

In Fig. 15, we perform a scaling analysis on one long
disturbance from the pre�x 198.69.224.0/22. We use the
Haar wavelet for this analysis. We can see from the �gure
that over a large number of time scales, the average energy
is a linear function of scale so this disturbance is consistent
with long range dependence. We note that the Hurst param-
eter estimate for this disturbance is 0.8, which is consistent
with long range dependence. A complete qualitative analy-
sis of the scaling analysis is beyond the scope of this paper
and is a direction for future research.
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Fig. 15. Energy plot analysis for an individual disturbancefor pre�x
198.69.224.0/22.

For most of the disturbances from this particular pre�x,
our Hurst parameter estimator generated values which are
consistent with long range dependence (0:5 < H < 1);
however, the qualitative analysis of their energy plots was
less convincing. Many of these energy plot analyses did
not show clear linear behavior over many time scales. A
closer look at the time series shows many very long runs of
no updates. That is, there are small bursts of updates inter-
spersed amongst long runs of zero updates. These distur-
bances show a delineation of time scales: bursts of updates
on small time scales and correlated updates over long time
scales.
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IV. CAUSES OFHEAVY-TAILED OSCILLATIONS

In the previous section we demonstrated that AS distur-
bances are an exponential arrival process and AS holding
times within disturbances are heavy-tailed. We postulate
two potential causes of the heavy-tailed AS holding times
within disturbances at the RouteViews viewpoint. In the
�rst setting, there is a single discrete cut-over from the AS
of one MOAS multihoming provider to the other that is am-
pli�ed to produce large time scale oscillations. These tran-
sient events might interact with the powerlaw AS graph to
introduce additional propagation delay, and ultimately the
observed heavy tailed AS disturbances. A second setting
postulates that heavy-tailed oscillations between the two
MOAS multihoming ASes drive the oscillations at Route-
Views; e.g., �apping between origins. That is, the distri-
bution at the viewpoint is the result of some recurrent con-
dition(s) at the origin. This section uses both simulation
and investigation of real origin events to rule out the �rst
hypothesis and to verify the second.

A. Simulating Disturbances

Our �rst hypothesis is that heavy-tailed AS disturbances
are the result of UPDATE propagation oddities occurring
within the powerlaw topology [14] of the Internet AS
graph. As shown in Appendix A, a single origin transition
can be ampli�ed by network conditions and BGP policy
to result in multiple transitions at remote viewpoints. We
posit that these events could resonate to create long dis-
turbances when occurring in bursts and propagating across
structured AS graphs.

We attempt to replicate resonance events by simulation.
The agpmsimdiscrete-time-step simulator built for this
study implements various models of BGP. The most com-
plex model, thethe Mini-path-vector model, integrates ele-
ments of asynchronous update propagation and path selec-
tion policy over arbitrary AS topologies. All experiments
in this section use the mini-path-vector model as detailed
in Fig. 16.

There are two central parameters of the simulation that
affect the replication of origin disturbances on long time
scales. The propagation rateR is the probabilistic rate
at which update information is forwarded to its neighbors.
Propagation delays frequently occur in practice due to BGP
timer asynchrony, network congestion, router load, or other
factors. Any simulation lacking delay would �x quiescence
as distance from an origin, and hence its inclusion is essen-
tial to a complete model. The second parameterS is the
probabilistic stability of the origin. That is,S de�nes the
AS transition distribution at the origin. WhileR affects
oscillation and the length of �ne-grained (update) distur-
bances,S will dictate the length and inter-arrival times of
origin disturbances.

An initial suite of tests establishes that origin oscillation
(as described in Appendix A) at viewpoints can be repli-

The Mini-path-vector Model
A network is an undirected graphG with vertex setV and
edge setE . The neighborhoodN (v) of a nodev 2 V is
the set of nodes that share an edge withv. We de�ne time
is in discrete stepsf t0; t1; : : : g.
A path P is de�ned as a totally ordered subset ofV .
Given a nodev and a pathP, we assign a policy value
T(P; v) to the pair. T (; ; �) is unde�ned. We �x a hash
functionH and assignT(P; v) the value ofH applied to
P andv. This ensures that the policy (i.e., the hash func-
tion) remains �xed over time, but its value is different for
each vertex and, possibly, for each time step. At timet i ,
the state of a node consists of a local best pathP(v; t i )
and a path state for each neighboru 2 N (v), denoted
Q(u; v; t i ).
An experiment is de�ned as follows. Initially, all state
variables are set to null (e.g.,P(v; t0); Q(u; v; t0) = ;
for all v 2 V and for allu 2 N (v)). A primary node
r1 and a backup noder2 are selected at random. At time
t0, r1 's state is set to contain a single node, itself (e.g.,
P(r1; t0) = r1). At time t i ; i > 0 each nodev copies
its neighbors' local best path into the neighbor state with
constant probabilityR. That is,

Q(u; v; t i ) =

(
Q(u; v; t i � 1) with probabilityR,
P(v; t i � 1) with probability1 � R.

At time t i , after updating all its neighbor state, each node
computesP(v; t i ) as follows:
1. if 8u 2 N (v); Q(u; v; t i ) = ; , thenP(v; t i ) = ; , (if
all neighbor state empty, no shortest path)
2. else,
(a) compute setM of shortest non-empty paths from

neighbor state,M = shortestf Q(u; v; t i )ju 2 N (v)g,
(use the shortest path, if unique)
(b) selectP(v; t i ) = Q(u� ; v; t i ) whereu� is the neigh-

bor with the largest policy valueT(Q(u� ; v; t i ) over all
paths inM , (break ties with policy).
The simulator models oscillation by withdrawingr1 (e.g.,
P(r1; t i +1 ) = ; ), and announcingr2 as the origin (e.g.,
P(r2; t i +1 ) = r2), or vice-versa, according to a random
variableS. A node is quiescent when it converges on a
shortest path to the originating node (and it performs no
subsequent transitions).

Fig. 16. The mini-path-vector model as implemented in theagpmsim
simulator. This models policy and asynchronous update propagation.

cated in simulation on very simple graphs. For example,
Fig. 17 shows the AS transitions seen by a single viewpoint
in a ten node network in response to a single AS transition.

A second set of experiments seeks to replicate heavy-
tailed AS disturbances at the viewpoints. We perform
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Fig. 18. CCDF of simulated AS time to quiescence.

these tests on a 3,038 node (powerlaw) graph generated by
INET [15]. We chose anR = :5 and modeledS as a binary
random variable, where the probability of an AS transition
between the two origins (per time step) was �xed at 10%
(and a 90% chance of no AS transition). The test oscil-
lates between ASes according toS for 100 time-steps and
measures the time to quiescence for each of 10 viewpoints
following the oscillation period.

We measure the AS time to quiescence by recording the
last transition seen by a viewpoint following the 100 inter-
val oscillation (a transition was always performed at time
step 100). Fig. 18 shows a CCDF of the AS time to qui-
escence for one viewpoint over 10,000 repetitions of the
test. Note that there is no signi�cant behavior at large
time scales; the range of time to quiescence can readily
be explained by the probabilistic delay of update propaga-
tion. The distribution is exponential and with high prob-
ability the system achieves quiescence in a short number
of steps. We performed a raft of experiments on differ-
ent network graphs (Erdös-Renyi random graphs, power-
law random graphs, and hypercubes) with a variety ofR
andS parameters. Thee results are similar and no experi-
ment yielded heavy-tailed oscillations at a viewpoint.

The absence of large time scales indicates that while
propagation may increase AS time to quiescence at small
times scales, it does not directly result in long disturbances
or oscillation(such as those shown in Fig. 9). Hence, we
conclude that the powerlaw topology, the propagation de-

lay (and its potential interaction with topology), and the
use of policy are not a key factors in generating heavy-
tailed behavior. This led us to investigate another hypothe-
sis: something at the origin could be driving the observed
behavior.

B. Physical modeling of events at Origin

Our second hypothesis for the heavy-tailed AS holding
times is that there are recurrent events or conditions at the
origin that drive the heavy-tailed distribution we see at the
viewpoint. Note that in theory the origin oscillations may
be the result of BGP session bounces at the origin ASes
or elsewhere in along the AS paths. But in practice the
origin is most vulnerable to a single router's BGP session
bounces; other ASes along AS paths are much resilient
to single router's session bounces since they usually have
multiple peering sessions between them. In addition we
were able to con�rm the former for some of our pre�xes
for which we had suf�cient visibility into logs for BGP ses-
sions at one or more of the origin ASes. We leave it as our
future work to look into more details the impact of failures
at intermediate ASes.

Rather than postulating origin conditions with no sup-
porting empirical evidence, we turn to measurements to
drive our modeling. Thus, we practice physical-based
modeling. We begin by identifying a set of AS environ-
ments we can reasonably pro�le. We identify 11 of the 437
MOAS pre�xes which are originated by AT&T(AS 7018)
and other ASes. Among these 11 pre�xes, 203.76.160.0/20
was originated by both AS 7018 and AS 4858. AS 4858 is
adjacent to AS 7018 and shares a single peering link with
AT&T. We extracted 79 days (May 16, 2003 to July 31,
2003) of timestamped system logs from the routers sup-
porting peering sessions associated with the pre�xes.2 We
extract BGP speci�c events from the system logs and re-
construct the session state over the 79 day period.

A CCDF of the BGP session down times associated with
the router over which 203.76.160.0/20 was indirectly orig-
inated is shown in Fig. 19. Even with only 162 observa-
tions, the down times appear to be heavy-tailed. To ver-
ify this claim, we show in Fig. 20 the sample variance and
Hill estimator plots for this time series. Because the ex-
tended length of some of the session down times is surpris-
ing, we spot-check several of the session outages and cor-
relate them with network events. Almost all of the dozen or
so studied outages could be directly correlated with layer 2
outages; e.g., ATM failures. Interestingly, the session up-
times for this router were not similarly heavy tailed.

Note that down times of several days or weeks may be
quite natural, either as the result of some catastrophic event
(e.g., backhoe through �ber) or as part of a planned outage

279 days was the longest uninterrupted feed of system logs during the
year long experiment, and hence was used to reconstruct session informa-
tion.
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Fig. 19. CCDF of single router down times as measured over 79 day
period in 2003.

(e.g., network upgrade). A session outage does not indicate
that the network is necessarily partitioned from the larger
Internet. The link will fail-over to an backup link if one is
available (as is the case in most multi-homing situations).

We conclude that the empirical evidence is consistent
with heavy-tailed BGP session times (especially down
times) at the origin and that we are justi�ed in using a
heavy-tailed distribution in our simulation to generate os-
cillations at the origin. Our goal is to determine whether
these heavy-tailed oscillations give rise to heavy-tailed
holding times at the viewpoint.

A new suite of tests modelsS as a Pareto distribution3

with � and� parameters similar to those exhibited by the
session down-times. The test repeated 162 oscillations
whose inter-transition time was randomly selected from a
Pareto distributionS with � = 0 :85and� = 60.4

A CCDF of the AS holding times in response as seen by
a single viewpoint in the simulated environment is shown
in Fig. 21. Clearly, the Pareto generation of oscillation
leads to heavy tailed holding times. Hence, we conclude
that it is highly likely that the heavy tails in the AS hold-
ing times are resulting from highly variable session down-
times. In addition, we can conclude from our �rst suite of
tests that events at the origin which are short-lived (such
as single discrete cut-overs from one AS to another) are
not suf�cient, not even in conjunction with propagation de-
lay on a powerlaw graph, to yield heavy-tailed AS holding
times.

V. COMPARISON WITH BGP BEACON

Section IV shows that origin oscillations drive the view-
point oscillations and that heavy-tailed oscillations at the

3The distribution functionF of a general Pareto distribution is given by
F (x) = 1 � (�=x ) � for x � � .

4The � and� values were selected from estimates of similar pre�xes
within our dataset. Note that the precise values of the distribution are not
important. The regeneration of a similar distribution for times to quies-
cence is suf�cient to support our thesis.
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Fig. 20. Sample variance and Hill estimator for BGP session down times.

origin give rise to heavy-tailed oscillations at the view-
point (at least in simulation). In this section, we compare
and contrast our analysis with the update streams of pre�x
192.83.230.0/24 from the BGP Beacon project [3] as seen
from RouteViews.

BGP Beacon pre�xes [3] are pre�xes established to
be announced or withdrawn according to publicly known
schedules and their updates are readily available at moni-
toring point such as Oregon RouteViews or RIPE. Among
all the beacon pre�xes, 192.83.230.0/24 is aregular mul-
tihoming pre�x (Fig. 1(b) has illustrated the regular mul-
tihoming) and its second-hop AS transitions (analogous
to origin transitions in MOAS multihoming) is precisely
driven by adiscretesecond-hop failure/recovery every two
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Fig. 21. CCDF of AS hold times resulting from simulated Pareto-
distributed AS transitions.

hoursscheduledaccording to the setup shown in [16]. Thus
this pre�x's second-hop transition is a natural compari-
son point with the origin transition in MOAS multihom-
ing. The dataset is from June 2003 (when it �rst became
available) to April 2004.

A. Basic Observation
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Fig. 22. Second-hop AS Holding time for beacon 192.83.230.0/24

For the beacon data, Fig. 22 shows that the second-hop
AS holding times are indeed quite discrete at the view-
points. Not only do they show distinct jumps in time but
they also are not heavy-tailed. We also found that in al-
most all the cases a viewpoint has only one second-hop
transition around the scheduled time, and in only very few
cases, a viewpoint can see two or more second-hop transi-
tions around the scheduled time. In other words, we see lit-
tle ampli�cation of individual failure/recovery. Therefore,
it seems clear that the discrete disturbance at the second-
hop that beacon creates on a regular basis cannot cause
heavy-tailed AS transitions/second hop transitions at the
viewpoint. We thus conclude that the BGP beacon data ver-
ify our simulations that discrete and singular origin events
do not give rise to heavy-tailed oscillations at the view-
point.
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Fig. 23. An illustration of the de�nitions for update disturbance.

B. Comparison using Update disturbances

For a direct comparison of the beacon data and the
MOAS dataset, we should break up the beacon data into
AS disturbances (as de�ned in Section III); however, the
beacon data at any large scale (two hours or more) are dis-
crete and the range of time scales in the beacon data is sim-
ply not large enough to afford such a disturbance de�ni-
tion(e.g., with� = 25 ; 000). That is, the behavior in the
beacon data and that in the MOAS data are incomparable
in the AS disturbance level.

There is a more complex analysis we can perform, how-
ever, if we adjust our de�nition of disturbance accordingly.
For this analysis we break origin (or second-hop) oscilla-
tions up according to anupdate disturbance, a different
de�nition of disturbance than the AS disturbance we use
earlier. The updates received by multiple viewpoints are
triggered by the same failure/recovery at the second-hop
in beacon. Previous measurements in [17] [3] show that
the majority of Internet route convergence takes less than
180 seconds. Thus it should be a clear indication that the
network has converged to the new sets of the stable path
after the triggering failure/recovery if there are no updates
from any viewpoints for a threshold of time (e.g. 120 sec-
onds). We thus de�ne theupdate disturbancefor a �xed
set of viewpointsZ at RouteViews and a �xed pre�xp, as
follows. The de�nitions are illustrated in Fig. 23.
� Update disturbanceis a period of time in which view-
point setZ receives consecutive updates for pre�xp that
are separated by no more than� u seconds.
� Update quiescenceis a period of time of at least� u

seconds during which viewpoint setZ receives no updates
from any viewpoint for pre�xp.
� For a �xed viewpoint setZ , thetime to quiescenceis the
time between the �rst and the last updates this disturbance
observed at the viewpointZ for pre�x p.

For the results in the rest of the paper, we choose
a threshold of� u = 120 seconds. We observe that
our results are robust to changes of� u as they did
not change signi�cantly with different values of� u =
45; 60; 90; 120; 150; 180.

Measuring beacon's second-hop AS holding time within
each update disturbance generates no data points (thus
not shown), con�rming our early �nding that there is at
most one second-hop transition at one viewpoint per fail-
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ure/recovery. Similarly, for the MOAS pre�x there are too
few data points for the AS holding time within the update
disturbances to show a clear trend in Fig. 24. This is be-
cause most of the AS holding times in our data are signif-
icantly longer than the time required for updates to come
to quiescence after a single AS transition at the origin. It
is clear from this that using the time scale at which up-
dates come to quiescence misses the larger scale of the AS
origin oscillations and their associated long range depen-
dence. The above observation, plus the difference between
Fig. 22 and Fig. 6, indicate that the update disturbances in
the beacon data are distinctly different from the AS distur-
bances in the MOAS data with respect to holding times.
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Fig. 24. Not enough data points for AS holding time within update dis-
turbances for MOAS pre�x.

On the other hand, we observe that the time to quies-
cence of update disturbances for both the beacon data and
the MOAS data are similar. Both CCDFs show an expo-
nential tail with most disturbances dying out within two to
three hundred seconds.5 MOAS pre�x's time to update qui-
escence is slightly longer in the tail, and can be caused by
two or more consecutive transitions at the origin, which is
consistent with Fig. 24 which has some (although very few)
data points for holding time within update disturbances.

We conclude that, from one perspective, the BGP beacon
data verify our simulations that discrete and singular origin
events do not give rise to heavy-tailed oscillations at the
viewpoint. From another perspective, these discrete events
are on such small time scales that they are incomparable
with the long time scales we observe in the MOAS oscilla-
tions. If we do, however, adjust our time scales and de�ne
an update disturbance (that is naturally, a small time event),
the behavior we observe in the update stream of the MOAS
data is consistent with that we see in the beacon data. We
point out that this smaller time scale misses the larger scale
of the AS origin oscillations and their associated long range
dependence.

5Our de�nition of time to update quiescence does not re�ect the false
damping effect [18] as our� u is much shorter than the minimal damping
time(20 minutes).
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Fig. 25. A comparison of the time to quiescence for update disturbances
in the beacon and MOAS datasets.

VI. A NALOGOUS BEHAVIOR IN REGULAR

MULTIHOMING

In the previous sections, we describe several important
phenomena of MOAS multihoming and provide solid ex-
perimental and empirical evidence of models for this be-
havior. MOAS multihoming is, however, a special type
of multihoming while regular multihoming is much more
prevalent in the Internet. As a �rst step to determine how
universal our observations on MOAS multihoming are and
how applicable they are to the much wider practice of reg-
ular multihoming, we take a small (random) set of 30 pre-
�xes whose origin ASes are multihomed to both AS 701
and AS 1239, two tier-1 ASes in the Internet. In the �gures
below, we give results only for the pre�x 129.121.0.0/16;
however, the results are similar for the other 29 pre�xes.
We use the de�nitions of AS disturbance from Section III
and use the notion of second-hop AS transition as in the
previous section, and� = 10 ; 000seconds.

We see in Fig. 26 that the second-hop AS holding times
have a similar distribution as that in Fig. 6; the CCDF ap-
pears to be the admixture of a heavy-tailed distribution and
and an exponential distribution. Fig. 27 shows that, simi-
lar to Fig. 8, the interdisturbance time has approximately an
exponential distribution. The second-hop AS holding times
within disturbances shown in Fig. 28 has approximately a
heavy-tailed distribution(similar to Fig. 9), and the timeto
second-hop AS quiescence in Fig. 29 has approximately an
exponential distribution(similar to Fig. 13).

Given above similarities between regular multihom-
ing and MOAS multihoming, and that the behavior of
MOAS multihoming at the viewpoints is driven by the
heavy-tailed disturbances at the origin, it's likely that
for regular multihoming the structure is also driven by
the link failures/recoveries between the origin AS and its
providers. We leave a detailed study of second-hop transi-
tions in regular multihoming our future work. In sum, our
�ndings suggest that AS(or second-hop AS) oscillations
driven by heavy-tailed oscillations between different multi-
homed providers are a widespread and important BGP phe-
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nomenon with complex but recognizable signatures such as
heavy-tailed holding times and long-range dependence.
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Fig. 26. Second-hop AS holding time of regular multihoming pre�x
129.121.0.0/16 in the entire study period.
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Fig. 27. Interdisturbance time of regular multihoming of 129.121.0.0/16.
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Fig. 28. Second-hop AS holding time within disturbances of regular mul-
tihoming pre�x 129.121.0.0/16.

VII. R ELATED WORK

In this section, we brie�y review related work. Zhao,
et al. measure the MOAS con�icts using BGP table snap-
shots and provide possible causes of the MOAS con�icts
in [1]. Previous work on the stability of origins of pre-
�xes includes [19] and [8]. Kent,et al. [19] claim ori-
gins are very stable as measured by the number of new
announcements they encountered. Aiello,et al. [8] also
study the stability of origins using BGP table snapshots,
and found 70-90% stability over a �ve month period and
monthly churn of around 5% (of 143,215 pre�xes).
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Fig. 29. Second-hop AS time to quiescence of regular multihoming pre�x
129.121.0.0/16.

The AS transition dynamics are closely related to the
BGP update dynamics as they are both triggered by un-
derlying topology changes (or policy changes). Thus, we
brie�y review recent efforts on BGP update dynamics mea-
surement and modeling. Labovitz, et al. [20] measure the
update interarrival time of the tuple (viewpoint, pre�x).
Labovitz,et al.[21] also show that Internet backbone paths
exhibit a mean time to fail-over (due to either physical
failure or policy changes) of roughly two days and only
roughly 20% of paths unchanged in �ve days. Rexford,et
al. [9] show that a large portion of the interarrival time is
around 30 seconds (the default BGP update rate limiting
timer value). This observation is con�rmed by the mea-
surement of the controlled failures of beacon data by Mao,
et al. [3]. Based on the interarrival time distribution, Rex-
ford, et al. [9] use a time window to divide sequence of
updates into sequence of “events”. The authors measure
interarrival time of events and observe that most events are
short-lived. They also show that a small percent of the pre-
�xes contribute to majority of the events and conjecture
that one possible explanation is �apping devices.

Mao, et al. [3] provides interarrival modeling of the
beacon pre�xes (pre�xes with controlled failure/recovery).
They model the observed interarrival CCDFs using a com-
bination of mass distribution, geometric distribution, and
exponential distribution. They conjecture that the exponen-
tial tail is caused by BGP false damping (as demonstrated
by [18]); a legitimate sequence of updates can trigger the
BGP damping mechanism to stop announcing a pre�x and
re-announce this pre�x up to one hour later.

Labovitz,et al. [17] discover in BGP it can take as long
as 15 minutes for the network to converge to the new set
of paths after a topology change but majority of time-to-
quiescence is below 180 seconds.

VIII. C ONCLUSION

The central contribution of this paper is a detailed analy-
sis of the MOAS multihoming oscillations at different time
scales. We empirically derive a model of AS disturbance
periods during which the AS oscillates with heavy tailed
holding times. We demonstrate that these disturbances ar-
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rive according to a Poisson process. We also show that
the update stream within these disturbances exhibits long
range dependence. Using simulations and physical-based
modeling to drive these simulations, we demonstrate that
heavy-tailed oscillation at the origin is a possible explana-
tion for our observations (while the complex interplay of
the BGP protocol and network topology is not such an ex-
planation). That is, “unusual” or heavy-tailed “operational
events” at the origin might be the root cause of our obser-
vations rather than the intricacies of BGP. Research to “�x”
this behavior of BGP might be misguided.

Our work suggests that the tail parameters of AS hold-
ing times may be a useful signature of legitimate MOAS
for pre�xes. We also identify interesting scaling behavior
in BGP update streams–scaling behavior that might other-
wise be missed with datasets such as the Beacon data. A
thorough investigation of this scaling behavior is just one
possible direction for future work.
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APPENDIX A - SINGLE EVENT ORIGIN OSCILLATION

Two factors can collude to amplify a single origin tran-
sition into origin oscillation at an observer: delay and BGP
policy. Delays, whether caused by slow links, overloaded
routers, or topology, slow the propagation of pre�x an-
nouncements. Because propagation time of an announce-
ment or withdrawal can vary greatly, the same information
about origin can arrive at an viewpoint through different
paths over time. Policy contributes directly to oscillation
by adding local autonomy to the decision process. For
example, a LOCAL PREF attribute can be used to prefer
one path over another. Where such preferences are used,
The path selection algorithm can �uctuate between paths
quickly where many new announcements with preferences
arrive.

To illustrate, consider the following network of ASes:

�

�

�

� � � � �

Initially, assume that a multihomed pre�xp is originated
by AS 1, and that the network has reached quiescence for
p. All ASes have a path top. Arbitrarily, AS 4 chooses the
path[2 � 1] for the path top, which is then propagated to
ASes 5, 6, and 7. We denote AS 5 as our observer. AS 5's
path top is [4 � 2 � 1].
1. The origin of pre�xp switches from AS 1 to AS 8. In
response, AS 1 sends a withdrawal to AS 2 and 3.
2. AS 8 propagates its path to AS 7, and then AS 5 receives
the path[6 � 7 � 8] from 6 and selects it over its previous
route (([4 � 2 � 1]) because of local policy.
3. AS 4 receives a withdrawal from AS 2 for[2 � 1], and
selects[2 � 1]. Note that the withdrawal of AS 1 as origin
may be delayed between AS 1 and AS 3 or AS 3 and AS 4.
However, AS 4 does not know yet that[3 � 1] route is not
valid and hence selects it.
4. AS 5 receives[4 � 3 � 1] from AS 4 as a backup route
and selects it over[6 � 7 � 8] due to policy.
5. The withdrawal of[3 � 1] �nally arrives at AS 4, which
in turn sends a withdraw of[4 � 3 � 1] to AS 5.
6. AS 5 selects[6 � 7 � 8] because it is the only route
available.

Even in the absence of origin �apping or multiple origin
pre�xes, this simple network saw oscillations for four dis-
tinct origin changes. More complex topologies can amplify
the effects of origin oscillation.
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