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Abstract

Distributed applications are increasingly being used fammunication, sharing data, and distributing data by
users. However, incorporating security in them remaingyaificant challenge for both developers and users for
several reasons. First, the security features requirediimséance of an application may depend on the environment in
which the application is operating, the type of data exckdngnd the capability of the end-points of communication.
Second, the security mechanisms deployed could apply todmshmunication and application layers in the system,
making it difficult to understand and manage overall systeausty. This paper presents a policy-based approach to
meeting these needs. A security policy language framevi&mene, is extended to allow security policy specification
to be used by both the communication and the applicatiorrdayk® illustrate the use of the framework, we specify
security policy for a prototype distributed file mirroringication that operates in environments with different
security requirements. We report on our experiences irgusjpolicy-driven approach for securing such applications.
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1 INTRODUCTION

Distributed applications are increasingly being used tonmunication, sharing data, and distributing data by users
Examples include conferencing applications, messagipticgtions, peer-to-peer file sharing systems, and data dis
tribution applications. Many of these applications araently used without any security, partly because incortioga

the “right” level of security in them is difficult for both delopers as well end-users of the system. remains significant
challenge for both developers and users. Some problemsangarating security include:

e Heterogeneity in Security Requirements: There may not be a right level of security that is appropriateall
instances of an application. For example, in a file distidruapplication, the level of security required is likely
to depend on the nature of the file (e.g., public or confid®ntize operating environment (e.g., private network
or public network), the capabilities and policies of therss@.qg., cryptographic algorithms available to each
user and authentication method), etc. Configuring the ggéncorrectly does have a potential cost: the system
may become unavailable to some users, it may become morutlith use or access, or it may perform poorly.



e Incorporating Security Requirements. Even after the right level of security can be determined foajpplication
instance, incorporating it into an application can be ninal for developers.

e Layering Problem: It is usually not sufficient to apply security at one layerlie system. For example, using
a protocol such as TLS or IPSec communication layer alonelmaynly one component of overall security.
An application-layer security policy will also need to déeiwhether an authenticated user is permitted to send
some application data over the available communicationméla and the policy governing who is allowed to
subscribe to the communication channels. Thus, the sgenethanisms deployed will often apply to multiple
layers in the system, making it difficult to understand andhawge overall system security.

One possible solution to address the above problems is ®lajedifferent systems for each likely security en-
vironment. Development of TLS?] and WTLS [?], two related, but different, secure communication protedor
wired and wireless domains can be considered to be an exarhpleh an approach. If the environments are well
known, few, and with wide applicability, such an approaclyra feasible and can give the advantage of optimizing
the solution for each environment. In most other cases |deivey custom systems for each potential environmentwith
different security requirements is likely to be too expeastake too long, and of questionable value if the operating
environment changes by the time the solution is developed.

A more promising approach to meeting the above requirenigmdsdesign policy-based applications where the
policy can be configured to meet the different security resmaents with minimal or no changes to the application.
Policy has been used in different contexts as a vehicle foresenting individual aspects of a system, such as au-
thorization and access control [1, 2, 3, 4, 5], peer sesgourgy [6], quality of service guarantees [7], and network
configuration [8, 9]. However, distributed applicationspa significant challenge for policy-based security system
because of the following issues

e Provisioning and Reconciliation Problem: Each member (computer or user) of the distributed apptinatiay
have different cryptographic algorithms and multiple &miication methods availabl&econciliation among
these choices may be required to achieve a common, agresosapof security parameters for a session among
the members.

e Authorization Problem: Domain-specific checks may be needed before operationgarétfed.

e Need for Flexibility: It is difficult to anticipate the rules that different apg@ltons will need. The policy frame-
work needs to be extensible to support different applicatio

e Layering Problem: Distributed applications frequently have a layered agthitre. Policy may need to be
coordinated across layers.

Different policy languages address a subset of the abovders, but we are not aware of any integrated and
general approaches to addressing all the above issues.

For example, several systems have examined ways of spegifithorization and access control [1, 3, 4, 5]
but do not address the provisioning problem. These appesagbvern access by mapping identities, credentials,
and conditions onto a set of allowable actions. Dependinthersystem, the policy language can be specific to a
particular application (e.g., a database system) or be broaly applicable. The PolicyMaker [2] and KeyNote [10]
trust management systems, for example, provide a very gegselution to the authorization problem that is not
domain-specific, including allowing the establishment b&ios of conditional delegation defined in authenticated
policy assertions, and allows application-specific custation of policy rules. However, they do not address the



session provisioning problem and rely on the availabilityagublic-key infrastructure to authenticate policies and
authenticate principals.

Some recent systems have examined the problem of provigjeeicurity mechanisms in a multi-party application,
given that different members may have different preferenegarding how to provision a group. In the two-party case,
the emerging Security Policy System (SPS) [6] defines a fwaoriefor the specification and reconciliation of security
policies for the IPSec protocol suite [11]. Reconciliatistargely limited to the intersection of data structurestbe
multi-party case, the DCCM system [12] provides a negatragirotocol for provisioning. DCCM defines the session
policy from the intersection of policy proposals preserig@ach potential member of a secure group.

None of the approaches above meet all the above requirerfeeritandling security in distributed applications.
In some applications, provisioning aspects and authdoizatspects may be related. The authorization rules may
be depend on the provisioned security mechanisms (e.gw alluser to receive the group key provided a strong
cryptographic algorithm is being used for authenticatind aommunication). In other applications, the application
may wish to add a policy for logging and auditing importargms at the communication layer. Considerable flexibility
is required in the policy infrastructure to handle theseagions.

This paper presents a policy-based approach to meeting tieesis. A security policy language, Ismene [13, 14],
is used to specify both provisioning and authorization nemments of distributed applications. We show that the
policy framework needs to be extensible in applicationefffreways to allow security policy specification at both the
communication and the application layers.

To validate the approach, we present a detailed case stuesewle used Ismene to specify security policy for a
prototype distributed file system mirroring applicatiorMI#D, that operates in environments with different segurit
requirements. Policies appropriate for the AMirD mirrgriservice in four diverse environments are specified, ana-
lyzed, and benchmarked. These environments capture tkesiivin threat and trust models encountered by many
information services. In this investigation, we endeawaranly to demonstrate the power of a policy-based behavior,
but also illuminate the construction and use of diversecpesiin a candidate distributed application.

Ismene allows a group policy to be reconciled with multiped! policies of the members to achieve a session
policy in an efficient way. We do not discuss the theoretioahfdations of Ismene and the reconciliation algorithms
in this paper. For interested readers, they can be foundini4].

The remainder of this paper is organized as follows. The¥dhg section presents a brief overview of the Ismene
policy language and algorithms. Section 4 describes thiged AMirD. Section 5 considers the construction of
policies appropriate for AMirD in a number of operating @oviments. Section 6 presents a performance analysis of
AMIrD under these policies. We conclude in section 7.

2 |ISMENE POLICY LANGUAGE

Ismene is a session-oriented security policy language anmdraly targeted for secure group communication applica-
tions. Evaluation of Ismene policy results in seasion policy that defines the security-relevant properties, parameters
and facilities used to support a session. Thus, a policgsthie identifies and abilities of session participants, (i.e
authorization), and the mechanisms used to achieve security objectieegfovisioning). This broad definition ex-
tends much of existing policy; dependencies between aiztitan, access control, data protection, key management,
and other facets of a communication can be representedweathnifying policy. Moreover, requirements frequently
differ from session to session, depending on the natureeo$éission and the environment in which it is conducted.
Hence, the conditional requirements of all parties are ddflyy policy.

Figure 1 presents a scenario in which a distributed sessiestablished between two or more entities in an instance



I—Client En!erprise—| RN I—Server Enterprise—|
App. Policy Domain App. Policy
Enterprise Policy Policies Enterprise Policy
C Session Policy D
v y v
‘ Reconciliation ‘

@ Policy Instance D)

Figure 1: Policy construction - A session-specific policstamce for two or more participants is created by an initiato
Each participant submits a set of domain policies identifythe requirements relevant to the session. The initiator
constructs the policy instance compliant with each domaththe session policy through reconciliation.

of a distributed application. Each participant in the sassiubmits a set of relevant domain policies toithigator.
The initiator may be a participant or external entity (epplicy decision point [15]). A special entity that normally
creates the sessiqulicy issuer, states aession policy that describes the required set of security mechanismsaird t
configuration (provisioning) and the set of rules used toegowactions in the system (authorizatiodpmain policies
state conditional requirements and restrictions placethesession by each of the interested parties.

The initiator uses eeconciliation algorithm to create policy instance compliant with the session and each domain
policy. A policy is compliant if all stated requirements argsbtrictions are realized in the resulting instance. If an
instance is found, it is used to govern the provisioning amth@ization of the subsequent session. If an instance
cannot be found, then the participants must revise the dopwlicies or abort the session or some domain policies
excluded from reconciliation. The reconciliation algbnit in Ismene allows domain policies to be prioritized so
that a restrictions placed by a lower-priority policy does end up excluding higher-priority policies [14]. A policy
instance concretely defines session provisioning (e gpiagraphic algorithms, key lengths, security guaransee
as confidentiality, integrity, source authentication, & a&s any rekeying policies). The policy instance alsoudels
rules for authentication of members and authorizing asttphmembers.

A session policy in Ismene is authoritative; any policy am&te must be compliant with the session policy. The
session policy may give choices so that reconciliation eaadhieved when members have different sets of capabil-
ities. During reconciliation, domain policies are conedlbnly where flexibility is expressly granted by the issuer.
Hence, the session policy acts as a template for operatioind@amain policies are used to further refine the template
toward a concrete instance. Conversely, domain policigesent the set of requirements that are deemed mandatory
and relevant by a potential member. The member will not gigdte in an active session if the policy instance used is
not compliant with its domain policy.

If no session policy is specified, a default session poli@t filaces no constraints on session security is used.
In that case, participant domain policies are reconciledetdve the instance. If a session policy is specified, but no
domain policies are specified,the policy instance is ddrivem the session policy.

2.1 Policy Specification and Determination

Ismene session and domain policies are defined throughytotdered sets oflauses.
A given clause specifies either provisioning requirementsuthorization requirements and consists of a tuple:

[tag] : [conditionals] :: [consequences];



% Provi si oning Policy % Provi si oning Policy

provision: :: config(kerberos()), trans; provision: :: config(kerberos()),

trans: inLan() :: config(ssh()); pi ck( config(ssl()), config(ssh()) );
trans: :: config(ssl());

% Aut hori zation Policy % Aut hori zation Policy

login: credential (&ick,tgt=$tgt) :: accept; login: :: accept;

Figure 2: Session Policy - the session policy providesFagure 3: Domain Policy - a domain policy specifies a set
template for session configuration. The policy is recomf requirements and constraints to be placed on the ses-
ciled with the relevant domain policies to arrive at a policgion. Each session participant may supply zero or more
instance enforced at run-time. domain policies for reconciliation.

The basic idea in evaluating a clause for a given tag is toreafthe consequences if the conditionals are true.
Empty conditionals imply a value dfr ue. A tag simply denotes a provisioning requirement, or aroadibr which
an authorization decision needs to be made.

Each clause defines a rule for either the the session praingj@r the authorization policy (but not both). Provi-
sioning clauses are evaluated when reconciling a sesslmy pod given domain policies. The result of an evaluation
is a set of mechanisms and their parameters to configure tblieamisms for implementing the services in a distributed
session.

Mechanisms are simply software modules that implement some sessiemamg service. For example, a Ker-
beros [16] mechanism could be specified in the provisioniolicy and configured to contact a local KDC when
authenticating users.

The use of clauses for determining both provisioning anti@ization aspects in a session is best illustrated via a
simple example shown in Figure 2. We discuss the variouscéspépolicy evaluation below.

2.2 Evaluation of provisioning clauses

Consider the clauses in Figure 2. The first three clausesfgke provisioning policy. pr ovi si on is a distin-
guished tag in the language that indicates the starting pdiprovisioning policy evaluation. The evaluation of the
provisioning policy occurs as follows:

1. First evaluate the clauses with the tagovi si on;

2. To evaluate the clauses with a given tag, determine thekrsse with the given tag for which the conditional is
true. Assert (i.e., apply) the consequences for that clandégnore other clauses for the tag. The consequences
can contain provisioning directives or subsequent tagsé€narsion is allowed). Provisioning directives must
be enforced in the session. Any tags is then evaluated usinggime algorithm and its consequences enforced.

If for the clauses corresponding to a tag being evaluatedonditional is true, then the policy evaluation fails and
the session’s security policy cannot be determined. A palimould thus normally contain a default rule for each tag.

In the first clause in Figure 2, because giveovi si on clause does not contain conditionals, the consequences
are always applied. The configuration consequeaoc@fi g( ker ber os() ) ) states that the Kerberos mechanism
must be used for authentication.

Thet r ans tag in the first provisioning clause indicates that the tpanisprotocol sub-policy specified in the
two t r ans clauses must also be evaluated. The firsans clause specifies context; theLan() predicate tests
whether the session is between two hosts within the same ltAddanment. If the predicate evaluategitoe (within
a given environment), then ttses h protocol is used and configured .fl se, then evaluation drops to the nextans
clause, and thesl protocol is selected.



2.3 Evaluation of authorization clauses

An authorization policy states the conditions under whictess to protected actions is given. Actions are defined by
the tags of the authorization clauses (e.g.ltbgi n action in the Figures). The set of actions appropriate faverg
session are dictated by the application domain an the esfeent architecture. Applications are expected to govern
all actions, and hence the session, by consulting this siattmn policy at run-time.

Theaccept consequence is the only legal consequence in an authorizzatiuse. Ismene represents a closed
world in which denial is assumed. Therefore, an action maad only where explicitly granted by successful evalu-
ation of an associated authorization clause. Ifaheept consequence is not reached when evaluating clauses for a
specified action because all the conditionals are falseadtien is not permitted.

Thel ogi n clause defined in the example session policy states that asegiven access only if they acquire and
present the proper Kerberos ticket (which proves theirenttbity). Thecr edent i al conditional is implemented
by the Ismene infrastructure and tests whether the entagymgiting to perform a protected action has provided the ap-
propriate rights or identity proving credential. SimilarKeynote credential evaluation [10], this conditional ofnets
credential fields against values specified in policy. $hgt symbol indicates attribute replacement. Attributes are
Ismene specific variables assigned by the application, emdeplaced during clause evaluation. In this case, the
$t gt attribute is replaced with the identity of the local Kerbeserver (identified by the application), and access
given where the ticket was issued from that server.

2.4 Domain Policies and Policy Reconciliation

Figure 3 shows one domain policy for the same applicatiofis @bmain policy is for an entity that wishes to partici-
pate in this distributed application (in this case, remotgr). The domain policy provisions the Kerberos mechanism
as previously described. The entity, however, does not whether ssl or ssh is configured for the login session.
In Ismene, this choice is specified vigpack statement. The semantics pif ck state that exactly one of the con-
figurations must be selected to implement the session. Hancesuer uses pick statements to identify choices for
acceptable behavior. Much of the power of Ismene stems fngrfe¢ature.

The domain policy also includes a clause for authorizatidhe | ogi n clause defined in the domain policy
does not specify any conditional; it thus simply defers gonaace of thd ogi n action to the session policy. The
reconciliation algorithm constructs logical conjunctiohall policies to form the authorization policy in the palic
instance. Hence, in this example, the authorization palitlyjust contain the conditions identified in the session
policy and be enforced as described earlier.

The result of evaluation of a policy is a set of configuratiod @ick statements. Reconciliation attempts to find
some instance that is consistent with all the policies. Inalhove example, the reconciled policy would include
keber os() and eithessl () orssh(), depending on whethémLan() evaluated to true or not. For brevity we
omit further details of the reconciliation algorithm.

2.5 Mechanism Parameters

Parameter(s) can be optionally passed in to a mechanismth@ficonfigure it. For example, consider the following

clause. ,
% Provi sioning Policy
provision: :: config(kerberos(KDC="kerberos. engin.unich.edu")),

pi ck( config(ssl()), config(ssh()) );
The above clause passes a parameter to the Kerberos mectianisitializing it. The value of a parameter is
dictated by the the session policy (unless the sessionypgilies an explicit choice by usingm ck statement). For a



domain policy to be reconciled, it must either omit the pagtars or provide values that are consistent with the session
policy. For safety reasons, if the session policy does neti§pa parameter value, a default value is assumed.

3 USE OF THE POLICY LANGUAGE AND ITS EXTENSIBILITY

The only keywords in an Ismene specification preovi si on, pi ck, andconfi g. Everything else is opaque
to the language and the semantics are interpreted and edfbyceither our group communication libraries or the
application. In a distributed application, Ismene librand APIs are provided to help decide the set of mechanisms to
be configured and for making authorization decisions.

The current set of applications that use Ismene also userttigohe secure group communication toolkit [17, 18].
Antigone consists of several types of security mechaniarsapset of which is given below:

e Authentication mechanisms. Several authentication mechanisms are provided in thegAné toolkit, including
SSL, Kerberos, and a null authentication scheme for testing

e Group key distribution mechanisms: Keys can be distributed in a group using either a centralstddtme, a
key-encrypting key scheme, or a scalable scheme based ioallkgy hierarchies.

e Data handling mechanism: The data handling mechanism can be configured to providedsorifality, sender
authenticity, and data integrity. Each of these can be éurlarameterized to specify the crypto to be used,
including key lengths.

In order to support application-specific security requieats, an application may need to go beyond the mecha-
nisms provided by the Antigone group communicatoin lay&rs.application may need to do the following in order
to implement application-level security policies:

e Defining application-specific mechanisms and paramters
e Defining application-specific predicates
e Defining application-specific actions and related attelut

Below, we discuss each of these aspects. Consider an applitzat needs to include a new mechanisymech
with a parameter called myconfig. This mechanism may be usagblicy clause as:

Mypol : :: config(nynech(paranr20));

The Ismene system provides an API to applications to regise mechanisms, along with any configuration
parameters. The Ismene library also provid®slacy Enginethat is used to evaluate input policies and to check if an
action should be authorized.

To define a new mechanism, the programmer simply inheritsgtiemechanism from an existing cladgechani snt
A C procedure is also defined to initialize the mechanisms phocedure is registered with the Ismene Policy Engine
via a call:

regi ster Mechani sm(* ‘ nynech’’, void *createMyMechMechani sm ;

The policy engine invokes the specified procedure if thecgafistance dictates theynech mechanism needs to
be configured.
The initialization procedure for a mechanism is implemdrate follows:

1The initial letterA in AMechani smand other names in the system denotes Antigone, since Iswaseeveloped as part of the Antigone
project though, in principle, it can also be used indepetigl@fi Antigone.



voi d *creat eMyMechMechani sm(voi d *dat a)

{
return (new AMyMech(*( AMechEngi ne *) data));

Thedat a pbject contains a reference to an Ismene object that caddiattribute-value pairs that were configured
in the policy instance, includingar amand its value of 20. The mechanism can then configure itseéngthe
configuration parameters.

New predicates can also be added by an application. TheyHatigine provides an interface for registering new
predicates. We omit the details here since the APIs areaiitailthose used for registering mechanisms.

Note that a Policy Engine exists at each communication exidtn a distributed application. The underlying
Antigone protocols provide protocols for distribution afligy instance after members are authenticated as pareof th
protocol to join the group. The join protocol and the poliéggtdbution protocol needs to be implemented carefully to
avoid security flaws. We omit the details of those protocel®lsince it is beyond the scope of this paper.

Ismene’s policy engine uses an event-based architectwent&include timer expirations, message sends and
receives, as well as events generated by the mechanismé nighanism receives all the events (software bus
architecture). Upon seeing an event, it can choose to ighotle some processing on it (such as logging), and/or
generate another event. With careful definition of evemgspiing events can be done very efficiently since events
have an integer type ID and a mechanism uses a bit-mask todiilteevents to be ignored.

When a new eventis generated, the data in the new event maybeten of the data in the event being processed
(e.g., a cryptographic operation applied on the buffer ciased with the processed event or adding a header to an
earlier event). A library is provided for efficient copyin§lwuffers and sharing of data between buffers.

Note that the event bus delivers an event to every mechanitima node in the distributed application (events are
always local). Events received on the bus are processeaandance with each module’s purpose and configuration.
Event delivery is modeled as being simultaneous. The ewengbarantees thaj events are delivered in FIFO order
and,b) an event will be delivered to all mechanisms and the appdicanterface before any other event is broadcast.
The event bus provides no guarantees on the ordering of mischgto which the event is delivered. We considered
an alternative option of providing APIs for associating gewith only a subset of mechanisms, defining ordering
within mechanisms, etc., but the complexity did not appedra worthwhile as long as the number of mechanisms
instantiated in any given system is small, as we have expegtein practice. Furthermore, where ordering semantics
are desired, we can achieve that be defining new event typegxBmple, suppose that an event of type A is desired
to be processed by a mechanism X, followed by Y. We can achietesemantics in our model by the following setup:

1. Event of type A is only processed by X and ignored by Y.

2. Mechanism X processes event of type A and generates ahaigpe A (possibly reusing some of the data
from event A).

3. Mechanism Y processes event of type A.. Event of type Agisdred by X.

The number of event types can go up in our model where ordéiimyportant, but we have not found this to be
a significant issue. One major advantage is that it is easgiddagging and auditing services in the infrastructure by
simply defining a new mechanism that logs specified events.

Finally, an application can invoke the Policy Engine at ametto determine if an action should be permitted. The
action is simply identified by its string name in the Ismenecsfication. The application is responsible for setting the
values of any attributes that are required to evaluate theipates to determine if the action should be permitted..
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4 EXAMPLE SYSTEM: AMirD DISTRIBUTED FILE MIRRORING

This section details the design and operation of the AMir@sfistem mirroring service. Built upon the group services
available in the Antigone secure communication framewdaik [L8], an AMirD exporter periodically distributes the
contents of an AMirD file-system to an arbitrary collectidnimporter agents. In our implementation, IP multicast
communication is used to amortize the costs of reliableitigion and support scalable replication.

While multicast-based replication affords efficiency,dnplicates security. One possible solution to security at
the communication level would be to encrypt the broadcdts @stablishing a common key among all the importers.
That may be adequate in some mirroring services, but wedont®an additional application-specific requirement that
a subset of files must only be mirrored to the specified set dicizants. How such policies are crafted in Ismene
and mapped to management of multicast groupst at the coneatiom layer is considered in depth in the following
sections.

AMiIrD operates as follows. The exporter agent replicatepdets) a local directory tree (AMirD filesystem) to a
set of importer agents. In general, an AMirD agent in our ienpéntation can simultaneously import and export any
number of filesystems. For ease of exposition, in this papemestrict ourselves to the environment in which there
is only one exporter agent and multiple importer agents,cntylone AMirD filesystem (identified by the path to the
top directory) is being exported.

A control group is created by the exporter and used to comeaimifilesystem state and content requests (see
Figure 4). The exporter creates a policy instance for tha@robgroup by reconciling the session policy and the
domain policies of the exporter and the importers. The tegubolicy instance is used to initialize the AMirD
software services and to establish the group via enforceafigmovisioning and authorization policy.

Exporters describe the contents of filesystems througlogiexport announcementsin the control group. Export
announcements contain path information, modificationsiraed permissions of each directory entry. File entries are
augmented with a collision resistant hash of the file confeigt, MD5 [19]). Importers compare the announcements
against the local filesystem state. Directories entriesatainconsistent with an announcement are updated (or cre-



ated) with the identified permissions and modification daféles and directories not identified in the announcement
are removed. Stale file contents are detected via contehebaFiles whose content is consistent (as determined by
the content hash) are updated with the permissions and ratibft dates as needed.

Resulting from the detection of missing or stale files, imtery indicate the need for update by broadcasting
download requests on the control group. Note that in a hgipecachjmplosion can result from many simultaneous
requests; each importer is likely to detect and requesttegdaan out of date or missing file at roughly the same time.
The sudden burst of requests following an announcementaawbelm the exporter, cause congestion, and ultimately
delay update. Similar to techniques found in SRM [20], weigaie implosion by randomly delaying requests (for
100-1000 milliseconds). Duplicate requests received poithe expiration of the delay timer are suppressed.

Non-redundant download requests are queued for procelsgitite exporter. The exporter initiates a download
group for each requested file (in the order that the assacraiguests are queued) by reconciling the appropriate
session and domain policies. Hence, the policy used to ¢irbike distribution can be derived from the file itself, the
expected importers, or any other measurable aspect of thement. The exporter broadcasts a download group
announcement at the time at which the group is initializeltis Bnnouncement contains file and network addressing
information for the spawned download group. The numbermofitianeous download groups supported by an exporter
is explicitly stated in the exporter agent configuration.

Depicted in Figure 5, the download group reliably distrémithe file to the admitted importers. The current
download protocol ensures content reliability through aidMspecific one-to-many selective acknowledgment pro-
tocol [21]. The use of other reliability techniques [22, 2B, 24] with different performance characteristics and
delivery semantics may be integrated into AMirD as futuredsedictate. The use of probabilistic reliability protacol
(e.g., FEC [25] and SRM [20]) is currently under investigat{18]. Once the transfer is completed, the group is
disbanded.

5 SECURITY POLICY DESIGN FOR AMirD SYSTEM

This section considers how policy-based software can betteseddress complex and dynamic security requirements.
We capture the diversity in threat and trust models encoedtby general-purpose information services through
example environments. The construction and enforcemegualafies appropriate for these environments are studied.
In investigating policy specification and enforcement, wdeavor not only to demonstrate the power of policy-based
behavior, but also illustrate the flexibility of Ismene.

The Antigone group services define mechanisms for authaittic membership, key management, data handling,
and failure detection and recovery [17, 26]. These mechan&ddress particular aspects of group security. The
selection of implementations, protocols, and configuretithrough mechanism provisioning defines the underlying
communication service, and indirectly the threat modelaunehich the application will operate. Similarly, authariz
tion policy articulates a particular trust model for the bqagion.

We begin an investigation of policy in AMirD in the next sextiby introducing policies for a range of diverse
environments. Section 5.2 further explores the use of pdlased management in Ismene by considering in depth the
construction and enforcement of these policies.

5.1 Deployment Environments

The following text introduces four hypothetical envirommein which AMirD is deployed. Requirements and poli-
cies appropriate for these environments are describea tNat the policies represent singular views of environadent
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requirements. Policy construction is a subjective enisepDepending on the nature and constraints of a given envi-
ronment, any number of other policies will be appropriatectsis the promise of policy defined behavior; alternate
interpretations leading to other application requirerae@in be addressed through policy. The policies described in
this section are presented in their entirety in Appendix A.

Local LAN

The Local LANs characterized by this environment exist iaith single administrative domain. Depicted in Figure 6,
an enterprise internal network supports users and services within a small geographic arsmgle building). The
network itself is protected with standard security infrasture (i.e., firewalls, intrusion detection, etc.). Trsers
within this community largely trust the local services amdle other. However, as determined by the local filesystem
access control, access to file content should be predicatdtedJNIX read permission (i.e., by UID).

Note that, for this environment, the existence and chariatitss of exported files may not be a concern. Hence,
the control group can implement a low cost policy; contemtamcements need not be protected. Similarly, requiring
users to be authorized before being allowed to participathe control group is not necessary, and all control group
messages are broadcast in cleartext.

The distribution of files within the LAN should be protectéxit users participating in the distribution are trusted
to not interfere with the distribution protocol. Thus, th@ahload group can avoid the costs associated with integrity
and authenticity guarantees. Because the network isvelatisolated, weak (and thus efficient) data security is
acceptable. However, the level of secrecy should be conumateswith the sensitivity and value of the exported
files. Users must be authenticated by the download group MiXWID (and allowed access where the UID has read
permission).

Mobile Users

Mbile users place a number of unique security and performegguirements on AMirD. These members are assumed
to exist in untrusted environments with often sporadic amitéd connectivity to theihome enterprise. Depicted in
Figure 7, the AMirD service is implemented by a (hardened@gay machine at the border of the home enterprise.
Participants are expected to connect to the home entefprisbort periods during which filesystem synchronization
occurs.

The security of the control group is driven by the need forege and authenticity. Where characteristics of
the filesystem are sensitive (such as the existence and nafnteshnical documents), the control group must be
confidential. However, if the existence of file content exgwobttle (such as email cache), confidentiality is not a
concern. In all cases, the authenticity and integrity oftaargroup communication must be preserved. The typically
limited computational power of mobile devices combinedwinreliability of the transport networks requires low
cost mechanisms be employed.

Similar to the control group, the requirements of downloaolugs are primarily driven by data sensitivity and
resource constraints. Thus, content secrecy should bécpted on the sensitivity of the data transmitted. Due to
resource limitations, low cost and robust protocols shdaddused for distribution. For example, it is likely that
many download groups in this environment may contain only participants (mobile users are likely to perform
synchronization at their own schedule). Thus, the distiglouprotocol can be tuned for smaller groups.

Mobile users are trusted members of the home enterprisegaadch may be trusted with control group content.
However, download groups must only allow access to membitide@cal read permission. Note that exporters must
of often map the credentials used for group authenticatan (certificates) to local filesystem access identities (e
UNIX id). Entities who's credential maps to a UID with readrpession to the file are accepted into the download

group.
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Mobile User LAN

@ Exporter @ Exporter
@ Importer @ Importer
@ Gateway Mobile User @ Gateway

Figure 6: Local Lan - members and services in this enviFigure 7: Mobile users - this environment use AMirD
ronment are mutually trusted. Access to filesystem corie synchronize mobile devices with filesystems in their
tent is predicated on local filesystem access rights. home environment.

Enterprise C ‘ Enterprise A

@ Exporter
Importer/
Website
@ Gateway

Figure 8: Coalition - The enterprises comprising thd-igure 9: Website - web contentis synchronizedto a large
coalition have conditional and fluid trust. The policy un-body of largely untrusted mirror sites. The authenticity of
der which the control and download content is distributethe content is of paramount importance.

is a reflection of this trust.

@ Exporter
@ Importer

Enterprise B @ Gateway

Coalition Networks

A coalition network allows independent enterprises to shiaformation in a secure and controlled manner [27]. De-
picted in Figure 8, the example coalition contains separat@orks communicating over the Internet. Each enterprise
shares information with the other enterprises via a singlérB® gateway host. The gateway host imports the filesys-
tems of the other enterprises in the coalition group, andegm local filesystem. Each enterprise maintains an
enterprise internal session within which the externalmmise filesystems are exported to local hosts.

The coalition session communicates over a potentiallyileasttwork. Moreover, there is limited and fluid trust
between the coalition partners. For these reasons, th@ gnost be able to make progress in environments in which
external adversaries or partners attempt to disrupt thepgrelence, the coalition session should employ secrecy, in-
tegrity, and authenticity guarantees. Strong cryptodaglorithms should be used to protect the potentially isieas
announcements and content. The coalition must be able dbrajsbehaving members, which is often implemented
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through an appropriate group key maintenance policy.

The coalition session should allow only negotiated caalitiehavior. For example, it may be necessary to restrict
access to filesystems to only those coalition partners techwttie files are important and necessary. Moreover, it is
unlikely that all enterprises will use the same mechanisewviduate access. Thus, a “lingua franca” must be agreed
at the point at which the coalition group is initiated. Thearciliation algorithm determines, based on the entespris
local policies, which (authentication and provisioninggechanisms are appropriate for the session.

Enterprise local groups operate entirely within the locape. As such, the policies may be constructed in a
manner similar to that identified in Local LAN. However, iilsely that allowing uniform access to (external) imported
filesystems is insufficient. Thus, it may be necessary tt&rntestrict access by partitioning imported filesystents in
smaller filesystems exported to the local enterprise.

Site Mirroring

Website replication is increasingly being used to reduintlatency and network load [28]. Described in Figure 9,
an AMirD authoritative web server distributes web content to a numbermuifror sites over the Internet. Updates are
announced at a configured schedule. Hence, replicationfierpeed automatically during periods of low usage (e.g.,
maintenance windows). However, emergency updates ai@@utwithout prior announcement as needed.

Because the content announcements of a mirrored websiteékely to be sensitive, secrecy of control group
communication is unlikely to be a chief concern. Howeveg, @luthenticity, integrity, and freshness are necessary to
ensure the correct and timely updates. Similarly, downigadips associated with public web-sites simply require
authenticity and integrity. Private or restricted welesi{such as those provided by password or certificate pestect
content) may have very strict requirements for secrechemiicity, and integrity.

While the remote mirrors are not likely to be under the adstiative control of the home website enterprise, it is
likely that they can require a uniform set of services be sugal by all mirrors. Thus, the provisioning of a session
can be statically defined in a session policy provided by thradéwebsite, and accepted as mandate by the mirror
sites.

Itis important that web content be authentic. Thus, thesgcentrol policy should state that only the authoritative
web server is allowed to export, and that the some guaraméthie content originated from the web server be provided
(i.e., source authentication). Similarly, where desigabhe must ensure authorized mirror sites are allowed torimp
the web filesystems.

5.2 lllustrating Policy

The following text considers the flexibility with which thequirements defined in the preceding section are met
through Ismene Policy. We briefly review the contents of tbkcy. The policy summarized in Table 1 and presented
in Appendix A is used to define policy for each environmentrotighout this section, line numbers (#) refer to the
policy presented in Appendix A.

As is true of any Ismene specification, evaluation of thegyddegins with ther ovi si on tag. This clause states
that theant i gone andappl i cat i on sub-policies must be evaluated (5).

provision: :: antigone, nonitor, application;
antigone : grouptype(locallan) ;1 lanprov;
antigone : grouptype(nobileuser) :: nobileprov;
antigone : grouptype(coalition) :: coalprov;
antigone : grouptype(website) :: webprov;

% Error on non-matched grouptype predicate

The applicationimplements the predicgteoupt y pe and registers it with the Ismene’s Policy Engine. Gh@upt ype
predicate is used to check the environment in which AMirDusently running, and guides evaluation toward an envi-
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Control Group

Download Group

Policy mechanism | configuration mechanism | configuration
Local LAN
Authentication | nullauth nullauth
Membership Antigone no membership Antigone no membership
Key Management| KEK static key KEK static key
Data Handling | Antigone cleartext Antigone confidentiality
Failure Detection| none none
Mobile Users
Authentication | OpenSSL OpenSSL
Membership Antigone no membership Antigone no membership
Key Management| AGKM AES or Blowfish AGKM AES or Blowfish
Data Handling | Antigone integ/(conf) Antigone integ/(conf)
Failure Detection| none none
Coalition Networks
Authentication | OpenSSL OpenSSL
Membership Antigone membership Antigone no membership
Key Management| LKH leave/eject/fail sens KEK or AGKM AES or Blowfish
Data Handling | Antigone sauth/integ/conf Antigone sauth/integ/conf
Failure Detection| Chained FP none
Site Mirroring
Authentication | OpenSSL OpenSSL
Membership Antigone no membership Antigone no membership
Key Management| AGKM Blowfish AGKM Blowfish
Data Handling | Antigone sauth/integ Antigone sauth/integ
Failure Detection| none none

Table 1: Provisioning Policy Summary - policies appropi@tr the four AMirD environments.

ronment specific sub-policy (lines 6-10). The last line ((@ginning with a '%’ symbd)) denotes a comment stating
that reconciliation will fail if no previous grouptype priedte evaluates to true. Further evaluation of sub-pdlicie
(see below) is directed by thes Cont r ol G- oup andi sDownl oadGr oup predicates identifying the type of group
being initiated.

Triggered by thé anpr ov consequence, AMirD enforces a basic policy implementingraise similar to those
found in contemporary group communication frameworkse@ii3-19). The evaluation of LAN policy results in
the control group being largely unprotected; members ateanthenticated (and thus trusted to provide their real
identity), and all group text is sent in the clear. Theseurst are implemented through the simple mechanisms for
null authentication, key management (KEK [29]), data hangdland membership management. No authorization
policy is enforced over the control group; anyone on the lloedwork is free to join. This egalitarian policy is
represented through clauses of the form (lines 21-32):

join : grouptype(locallan), isControl Goup() :: accept;

These clauses state that a member is permitted to perforradiion within the group (including join). Note that an
exporter is free to further restrict access as needed throragpnciliation with domain policies containing additabn
authorization conditionals (requirements).

ThehasReadAccess conditional regulates access to the download group (line22mantically, the predicate
determines whether the requesting entity has permissiacdess the download file. The user identity ($id) download
($file), and filesystem ($fsys) aapplication attributes asserted by AMirD at run-time. The predicate implementatio
maps the user identities to UNIX UID and GID. The predicatamgs true if either the UID or GID has read access to
the file or filesystem. ThienJoi nPhase predicate implemented by AMirD represents a further refieetdownload

2All Ismene comments begin with the percent symbol and ardidgitip terminated with an end-of-line character.
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group access. Members joining a download group in whichrestea is in progress cannot successfully complete the
download protocol. For this reason, no members are peudhittfin the group after the transfer is begun.

Mobile users require strong security (lines 35-59). Agears initially authenticated via certificate over an
OpenSSL [30] channel. Sensitive files and content (as &ked 4y the application through thesSensi ti veFi | e
andhasSensi ti veFi | esyst emconditionals) are kept confidential. How this confidentyals maintained is
driven by domain policy; thei ck statement in the clause (line 38)

nkey : :: config(agknkey(kychl en=64, r ekeyperi 0d=60, hash=shal)),
pi ck(confi g(agknkey(crypt=aes)), confi g(agknkey(crypt=blowfish)));

states that all application traffic should be encrypted wither AES or Blowfish. Domain policies will inform the
reconciliation algorithms on which of these options to ierpknt to select. Where no guidance is provided, the
algorithm arbitrarily selects the first value.

Access to the control and download groups is partially mageid on the assertion of X.509 certificates [31]. The
credenti al testin the clause (line 48-50),

nenber _auth : grouptype(nobileuser), inlist($id, $ssl_acl),
credential (&ca, i ssuer _CN=Anti gone_SSL_CA),
credential (&ert, subj ect _CN=$i d, i ssuer _CN=$ca. subj ect _CN) :: accept;

states that the agent must provide a certificate issued bgnthen issueAnt i gone_SSL_CA. Note that the enforce-
ment infrastructure must perform validation internallgeatificate is should deemed valid only if a certificationicha
rooted by the identified CA can be fouAd.he statically defined ACL attribute (line 47),

ssl _acl := <menber 1: menber 2: menber 3: menber 4>; % ACL of Acceptabl e Menbers

further regulates group access. The ACL attribute (as ugdtedsmeneé nl i st conditional) enumerates the entities
that have permission to access the group. Hence, one carth@egvedential test as enforcing authentication policy
(establishing identity), and the ACL enforcing access mnt

Access to other actions is predicated on the assertion afrthtographic keys. The policy assumes two types of
keys are established and maintained by the provisionedanéhs. Established during authenticatipaiykeys are
ephemeral shared secret keys known only to the initiatogothing agentSession keys are negotiated between the
agents by the key management mechanism and replaced agdibgcpolicy. Knowledge of these keys is used as a
form of authorization. For example, the clauses (lines 51%4)

join : grouptype(nobileuser), credential (&y, name=$id) :: accept;
send : grouptype(nobileuser), credential (&y, nane=$gid) :: accept;

describe the keys required to join and send data to the gibuprun-time asserted attribu$e d is used to identify
the user. The pairkey specifi@ane attribute identifies the user or initiator. Hence, the creidé condition is used to
whether the pairkey associated with the joining member veasl tio request the join. Similarly, ti$gi d attribute
identifies the current session key, and the credential tdstihines whether the session key was used to generate the
message sent to the group. Hence, only entities in possesfsibe pair or session can join or send to the group.

The coalition environment consists of a collection of inglegeent enterprises. Note that the services available to
each enterprise may be very different. Hence, AMirD mustvaljroups to converge on an acceptable and interoper-
able policy. This is achieved for one aspect of the policyhim¢lause (line 72),

ckey : :: pick(config(agknkey(crypt=aes)), config(kekkey(crypt=aes)));

3Revocation, and certificate management in general, prasemhber of difficult challenges [32]. For simplicity, we deeertificate acquisition,
validation, and revocation to be outside the scope of thikwo
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which states that either AGKM [13] or a KEK mechanism may bedi®r key management. The decision of mech-
anism will be determined by the domain policies suppliedhmy ¢oalition partners. Moreover, access to the group
will be predicated on this determination; members whosealomolicies are satisfied by the resulting decision will
be free to participate. However, any member who requireschardsm that is not selected will not participate.
Agents must assert a certificate credential issued by amatytindicating the right to participate in the control
group. The clause (line 80),
nenber_auth : grouptype(coalition), inlist($id, $ssl_acl),
credential (&ca, i ssuer _CN=Anti gone_SSL_CA),
credential (&ert, subj ect _CN=%i d, i ssuer _CN=$ca. subj ect _CN) :: accept;
illustrates the use afredential binding. The first credential conditional binds all matching auityocertificates to
the nameca. The second clause states that the member should be all@weslseonly if the supplied certificate was
issued by one of these authorities (bound in the second&)atience, through binding, we can delegate access for
the control group; any entity issued a certificate by Antig&@SL_CA is permitted to join.
The policy appropriate for a particular situation are natagls simple. For example, the clauses (lines 86-91),
eject : grouptype(coalition), config(amenber(ejecttype=pairkey)),
IsServer($id) :: accept;
eject : grouptype(coalition), config(anenber(ejecttype=pairkey)),
Credenti al (&y, name=$id), inlist($id, $eject_acl) :: accept;
eject : grouptype(coalition), config(amenber(ejecttype=cert)),
credenti al (&ca, i ssuer _CN=Anti gone_Ej ecti on_CA),
credential (&ert, subj ect _CN=$i d, i ssuer _CN=$ca. subject _CN) :: accept;
demonstrate how several access control methods can berusedjiinction. The first clause indicates that the server
(initiator) should always be allowed to eject, and the &t state that any member listed in the ejection ACL or who
can produce a ejection authority certificate should be atbte perform ejection. Theonf i g conditional states that

all access to eject should be predicated on the ejectiocedreing enabled in the membership mechanism.

The website environment implements a canonical distidoupiolicy. Members are allowed into the group if they
can provide an rights-proving certificate, and access tagfanctions is entirely predicated on this initial authen-
tication. Hence, members are free to receive all contenbaenBecause the authorized agents are not trusted, the
authenticity of the content is of paramount importance. d¢ethe clause (lines 127-128),

content_auth : grouptype(website), credential (&ca,issuer_CN=$aut horid),
credential (&ert, subj ect _CN=$i d, i ssuer _CN=$ca. subj ect _CN) :: accept;

states that the content must be received from the authtadisaurce. As directed by provisioning, the authenticity o
the data is inferred from the stream signatwat(y pe configuration parameter). However, it is not realistic teuase
that any entity will ultimately be the authenticating bodyA) for all web sites. Ismene cannatpriori identify the
content authority; the application must identify an autfeating body based on the content. An application signifies
this judgment by identifying an authority througtaut hori d attribute. Hence, a member will only be able to
validate web site content after obtaining the appropriatbarity’s certificate. Similarly, the clause (line 105),

wath : ::config(sslauth(interval =10, retries=2,crypt=bl owfish, cafile=$author));

indicates that the application will assert the desirabltifa@te filename at run-time. Application attributes age r
placed in provisioning statements prior to reconciliatibmthis case, the CA filename will be asserted by the applica-
tion. Hence, they are subject to the same evaluation presessother policy defined configuration statements.

Application policies are relevant to (and enforced by) aiVieonments. The reserved mechanism designator
appl i c is interpreted by Ismene as application policy. All paraanetdefined in the instance for tlagpl i c
mechanism are stored in the attribute set. Applicationainkthe relevant policy by querying the attribute set at
run-time. To illustrate, the group policy defines the claugi@es 133-136),
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Figure 10: Reliable Broadcast Transfer - file transfer titnghe example AMirD deployment environments.

Policy
Member | Local | Mobile o .
LAN User Coalition | Website
Member1| 68 151 155 149
Member 2| 68 136 155 148
Member 3| 68 152 156 164
Member 4| 69 151 155 152

Table 2: AMIirD Performance - time (seconds) to mirror twodfjlstems in the example AMirD deployment environ-
ments.

application : :: config(applic(followsyminks=true)), apsauth;
apsauth : grouptype(locallan) ::

confi g(applic(maxexportsubgroups=10, nexi nportsubgroups=10));
apsauth : :: config(applic(maxexportsubgroups=5, maxinportsubgroups=5));

which indicate that symbolically linked files and direcewishould be exported. The latter two clauses place a max-
imum on the number export or import groups in which a agent siayltaneous participate. We consider how this
policy affects performance in the following section.

6 PERFORMANCE CONSIDERATIONS AND DISCUSSION

To get experience with the framework, we implemented AMirial @ll the policies given in the previous sections.
Some of the research questions that we wanted to answer are:

1. Can applications reliably use Ismene to implement apptio-specific policies by defining their own actions,
predicates, and mechanisms?

2. Is Ismene adequate to support security requirementsttiipte environments?
3. Are there significant performance tradeoffs in configgigacurity policies?

The answer to the first two questions were positive. In AMirdle, we were able to define new predicates,
actions, mechanisms without changing the underlying gomumpmunication services. One action that was added was
cont ent _aut h for authenticating the source of file. Examples of predg#tat were added includg oupt ype,
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i sDownl oadGr oup, hasReadAccess andhasSensi ti veFi | eSyst em One application-level mechanism
was added, calledppl i ¢ (lines 126-127) that started the exporter and the impogents.

We now briefly address the last question. We profile the perdmice of AMirD under the environmental policies
in two series of experiments, all carried out on a clustteP@fitium 111 Netfinity machines on a 100 Mbps network.
We chose to conduct the experiments in the same networkoemagnt for all four policy scenarios, so that we could
isolate the impact of choosing a security policy.

The first set of experiments estimate the cost of broadcasthiition and are summarized in Figure 10. These
experiments measure the average time of 10 file transfergitifldyte, 100 kilobyte, and 1 megabyte files. The block
size for all experiments is set to 1 kilobyte.

For all file sizes, the local LAN and mobile user policies dstad significantly shorter transfer times than the other,
relatively costly policies. The confidentiality guarantdorced by the LAN requires data encryption. However, the
cost of encryption only marginally delays transmissionadidition to confidentiality, the mobile user policy spedfie
integrity, which leads to slightly slower transfers.

In the test implementation, AMirD used a windowed acknowleént distribution protocol (similar to TCP [33]),
with a 1k block size and 100 packet window size. Thus, thestrassion of small (1k) and medium (100Kk) files is
completed through a single send/acknowledge exchangeeeiienall policies, the transmission of such files is com-
pleted in less than 500 milliseconds. The difference betvesfer rates between the LAN and mobile environments
and the coalition and website is due to overheads assoaiatiedource authentication (as implemented by stream
signatures). The coalition policy implemented a 250 nallisnd data forwarding timer (used to amortize the cost of
stream signatures) that delayed the packet transmissluotlathe exporter (data) and importers (acknowledgments).
This timer lead to the longer transfers observed by the tiofigpartners. The shorter 50 millisecond data forwarding
timer used by mobile users yielded faster transfers.

Our second series of experiments attempts to charactegdeng term effects of policy on AMirD performance.
Table 2 describes the total time required by an AMirD agergytachronize two filesystems to four receiver hosts.
The first filesystem contains ten 1 megabyte files, and thensemantains one hundred 1 kilobyte files. Note that each
transfer is delayed by a 3 second join and 3 second shutdovtogml. The setup protocol is required to must allow
ample time for members to join. The shutdown protocol is ineglto gracefully disband the group.

Synchronization times are partially a reflection of the filnsfer rates and application policies. Simple, efficient
policies (LAN and Mobile users) allow the file transfers topeed rapidly. As defined by the application policy, the
Local LAN supports more simultaneous download groups (h@htthe other policies (5). The limited amount of
processing required by the simple policy leads to greatppdpnities to transmit data. As shown in Figure 2, the
number of simultaneous transmissions dominates filesysy@chronization performance.

In practice, such experiments can be used to do tradeofysindletween security policy and performance. Note
that not all changes to a policy specification need to be ggespecific. For example, number of simultaneous
download groups impacts performance but not security.

7/ CONCLUSIONS

Application behavior should reflect the often complex andaiyic requirements of the run-time environment. Se-
curity, in particular, is subject to changing requiremerslicy one way to address these requirements. However, a
prerequisite to the proper use of policy is an understandifribeir design and enforcement. In this paper, we have
considered the construction, semantics and performaneersfrivial Ismene security policies. Ismene is a language
and associated infrastructure for flexible security potleyermination. We have explored how general-purpose secu-
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rity languages such as Ismene can be used to specify andnraptesecurity policies for distributed applicationsin
vastly different environments.

One advantage of a policy-based framework is that perfocamahan application can be more easily analyzed for
different policies to determine tradeoffs between perfamoe and security. To demonstrate the tradeoffs, we eegluat
the performance of AMirD system using different securityigies.
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Appendix A - AMirD Environment Policy

A complete description of the Ismene language, mechanisardigurations can be found at the Antigone/lsmene
project website att t p: / / ant i gone. eecs. uni ch. edu/ .

1 %Description: This is a AMrD group policy for the Chapter 6 scenarion.
2 % policy processing al gorithms.

3

4 % Antigone G oup-based Policy Derivation

5 provision: :: antigone, application;

6 antigone : grouptype(locallan) ;1 lanprov;

7 antigone : grouptype(nobileuser) :: nobileprov;

8 antigone : grouptype(coalition) :: coalprov;

9 antigone : grouptype(website) :: webprov;

10 % Error on non-matched grouptype predicate
11
12 % Scenario 1 - Local Lan

13 lanprov : :: lath, lkey, Inem Idat;

14 lath : isDownl oadG oup() :: config(nullauth(interval =10, retries=2,crypt=des));
15 lath : :: config(nullauth(interval =10,retries=2));

16 |key : :: config(kekkey(rekeyperi 0d=65536, hash=nd5, crypt=des));

17 lmem: :: config(anmenber(mendi st=none, retries=3,interval =2));

18 ldat : isDownl oadG oup() :: config(adathndlr(conf=true));

19 ldat : :: config(adathndlr(none=true));

20

21 join : grouptype(locallan), isControl Goup() :: accept;

22 join : isDownl oadG oup(), inJoinPhase(), hasReadAccess($id, $file) :: accept;
23 nmenber_auth : grouptype(locallan) :: accept;

24 leave : grouptype(locallan) :: accept;

25 shutdown : grouptype(locallan) :: accept;

26 eject : grouptype(locallan) :: accept;

27 key_dist : grouptype(locallan) :: accept;

28 rekey : grouptype(locallan) :: accept;

29 send : grouptype(locallan) :: accept;

30 group_non : grouptype(locallan) :: accept;

31 menber_non : grouptype(locallan) :: accept;

32
33 % Scenario 2 - Mobile User

34 nobileprov : :: math, nkey, mmem ndat;

35 math : :: config(sslauth(interval =10,retries=2,crypt=aes, cafil e=ssl_ca));
36 mmem: :: config(anmenber(nmendi st=none, retries=5,interval =5));

37 nkey : :: config(agknkey(kychl en=64, rekeyperi 0od=60, hash=shal)),

38 pi ck(confi g(agknkey(crypt=aes)), confi g(agknkey(crypt=bl owfish)));
39 ndat : isControl Goup(), hasSensitiveFilesysten() ::

40 confi g(adathndl r (i nteg=true, conf=true)), halg;

41 mdat : i sDownl oadG oup(), isSensitiveFile($file)

42 config(adathndl r(integ=true, conf=true)), halg;

43 ndat : :: config(adathndlr(integ=true, conf=false)), halg;

4 halg : :: pick(config(adathndlr(hash=nd5)), config(adathndlr(hash=shal)));
45

46 ssl_acl := <nenber1l: nenber 2: menber 3: nenber 4>; % ACL of Acceptabl e Menbers
47 menber _auth : grouptype(nobileuser), inlist($id, $ssl_acl),

48 credential (&ca, i ssuer _CN=Anti gone_SSL_CA),

49 credential (&ert, subj ect _CN=$i d, i ssuer _CN=$ca. subj ect _CN) :: accept;
50 join : grouptype(nobileuser), credential (&y, name=$id) :: accept;

51 | eave : grouptype(nobileuser), credential (&y, nane=$id) :: accept;

52 shutdown : grouptype(nobileuser), credential (&y, name=$gi d) :: accept;

53 key_dist : grouptype(nobileuser), credential (&y, name=$id) :: accept;

54 rekey : grouptype(nobileuser),credential (&y, nane=$gi d) :: accept;

55 send : grouptype(nobileuser), credential (&y, name=$gi d) :: accept;

56 content_auth : credential (&ca,issuer_CN=Antigone_Content_CA),

57 credential (&ert, subj ect _CN=%i d, i ssuer _CN=$ca. subj ect _CN) :: accept;
58

59 % Scenario 3 - Coalition

60 coal prov : isControl Goup() :: cath, cnem ckey, cdat, cfdr;

61 coalprov : :: cath, cnmem ckey, cdat;

62 cath : :: config(sslauth(interval =10,retries=2,crypt=aes, cafile=ssl_ca));
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63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

cmem: :: config(amenber(retries=5,interval =5)), config(anmenber(ejectenabl ed=true)), mend;
mend : isControl Goup() :: config(anenber(nendi st=conf, intlen=60)),
confi g(anmenber (ej ecttype=pairkey, j oi nsens=true, | eavesens=true,
ej ectsens=true, fail sens=true));

mend : :: config(anmenber (nmendi st =none, ej ecttype=cert));
ckey : isControl Goup() :: config(agknkey(kychl en=64, rekeyperi od=60, hash=shal));
ckey : :: pick(config(agknkey(crypt=aes)), config(kekkey(crypt=aes)));
cdat : isControl Goup() :: config(adathndlr(integ=true,conf=true)),
confi g(adat hndl r (saut h=t rue, sat ype=si gnpkt));
cdat : isDownl oadGoup() :: config(adathndlr(integ=true,conf=true)),
config(adat hndl r (saut h=true, satype=online, frnsi ze=32, dat f wWd=250) ) ;
cfdr: :: config(afpchai n(hash=shal, maxdr ophb=5, hbperi od=5, chai nl en=20));
ej ect _acl := <menber 1, menber4>; % Acceptabl e Pair Ej ection Menbers

nenber _auth : grouptype(coalition), inlist($id, $ssl_acl),
credential (&ca, i ssuer _CN=Anti gone_SSL_CA),
credential (&cert, subj ect _CN=$i d, i ssuer _CN=$ca. subj ect _CN) :: accept;

join : grouptype(coalition), credential (&y, name=$id) :: accept;
| eave : grouptype(coalition), credential (&y, name=3$id) :: accept;
eject : grouptype(coalition), IsServer($id) :: accept;

ej ect : grouptype(coalition), config(amenber(ejecttype=pairkey)),

Credenti al (&y, name=$id), inlist($id, $eject_acl) :: accept;
eject : grouptype(coalition), config(anmenber(ejecttype=cert)),

credential (&ca, i ssuer _CN=Anti gone_Ej ecti on_CA),

credential (&ert, subj ect _CN=%i d, i ssuer _CN=$ca. subj ect _CN) :: accept;
shut down : grouptype(coalition), credential (&y, nane=$gid) :: accept;
key_di st : grouptype(coalition), config(kekkey()), credential (&y, nane=kek) :: accept;
key_di st : grouptype(coalition), credential (&y, name=$id) :: accept;
rekey : grouptype(coalition), config(kekkey()), credential (&y, name=kek) :: accept;
rekey : grouptype(coalition),credential (&y, name=$gi d) :: accept;
send : grouptype(coalition), credential (&y, name=$gid) :: accept;
content_auth : credential (&a, i ssuer _CN=Anti gone_Content _CA),

credential (&ert, subj ect _CN=%$i d, i ssuer _CN=$ca. subj ect _CN) :: accept;

% Scenario 4 - Website Mrroring

webprov : :: wath, wrem wkey, wdat;

wath : :: config(sslauth(interval =10, retries=2, crypt=blowfish, cafile=$author));
wrem : :: config(anmenber (mendi st =none, ej ect enabl ed=fal se));

wkey : isControl Goup() :: config(agknkey(kychl en=64, rekeyperi 0od=60, hash=shal));
wkey : :: config(agknkey(crypt=bl owfish, hash=shal));

wdat : isControl Goup()
confi g(adat hndl r (i nt eg=t rue, saut h=t rue, conf =f al se, sat ype=si gnpkt, hash=shal));
wdat : isSensitiveSite($author)
config(adathndl r (i nteg=true, sauth=true, conf=true, hash=shal)), sapl;
wdat : :: config(adathndlr(integ=true, sauth=true, conf=fal se, hash=shal)), sapl;
sapl : :: config(adathndlr(satype=online,frnsize=15, datfwd=50));

menber _auth : grouptype(website), credential (&ca,issuer_CN=$aut hori d),
credential (&ert, subj ect _CN=$i d, i ssuer _CN=$ca. subj ect _CN) :: accept;

join : grouptype(website), credential (&y, nane=$id) :: accept;
| eave : grouptype(website), credential (&y, nane=$id) :: accept;
shutdown : grouptype(website), credential (&y, nane=$gid) :: accept;

key_di st : grouptype(website), config(kekkey()), credential (&y, name=kek) :: accept;
key_di st : grouptype(website), credential (&y, name=$id) :: accept;
rekey : grouptype(website), config(kekkey()), credential (&y, nane=kek) :: accept;
rekey : grouptype(website), credential (&y, nane=%$gi d) :: accept;
send : grouptype(website), credential (&y, name=$gi d) :: accept;
content _auth : grouptype(website), credential (&ca,issuer_CN=$aut horid),

credential (&ert, subj ect _CN=%i d, i ssuer _CN=$ca. subj ect _CN) :: accept;

% AM r D Application Policies
application : :: config(applic(followsym inks=true)), apsauth;
apsauth : grouptype(locall an)
confi g(appl i c(maxexportsubgroups=10, maxi nportsubgroups=10));
apsauth : :: config(applic(maxexportsubgroups=5, nexinportsubgroups=5));
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