
On Context in Authorization Policy

Patrick McDaniel�

AT&T Labs – Research
pdmcdan@research.att.com

Abstract

Authorization policy infrastructures are evolving with the
complex environments that they support. One key, but not
yet well understood, aspect of policy is the need and sup-
port of context. Often implemented as condition functions
or predefined attributes, context is used to more precisely
control when and how policy is enforced. This paper con-
siders context requirements and services in authorization
policy. We classify the use, properties, and security require-
ments of context evaluation. A key observation gleaned
from this classification is the degree to which context func-
tions share common properties. The Antigone Condition
Framework (ACF) exploits these commonalities to provide
a general purpose service and associated API used to de-
fined and implemented context. We present and illustrate
the prototype ACF design, and conclude by considering di-
rections for future work.

1 Introduction

Authorization policy describes how access to protected
resources is governed. Historically, these policies have
mapped identities to collections of rights over sets of ob-
jects according to some system model [23]. Policies give
the supported systems a road-map to operation, and allow
administrators to develop coherent strategy for protecting
the environment.

Policy technologies have evolved in lock-step with the
networks and environments they support. For exam-
ple, novel access control models deal with the complex-
ity of managing the large and fluid environments (e.g.,
RBAC [22]) or address the requirements of specific infor-
mation models (e.g., lattice [1, 21]). Similarly, evolving

�This work is supported in part by the Defense Advanced Research
Projects Agency (DARPA) and Air Force Research Laboratory, Air Force
Materiel Command, USAF, under agreement number F30602-00-2-0508.
The U.S. Government is authorized to reproduce and distribute reprints
for Governmental purposes notwithstanding any copyright annotation
thereon. The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily representing the offi-
cial policies or endorsements, either expressed or implied, of the Defense
Advanced Research Projects Agency (DARPA), the Air Force Research
Laboratory, or the U.S. Government.

policy infrastructures address widely distributed systems
(e.g., KeyNote [4]) or arbitrate the policies of multiple end-
points [14, 12]. These and many other works have served to
increase the flexibility and ease with which access to pro-
tected resources is managed.

Contextis increasingly used by policy infrastructures to
allow environmental factors to influence when and how pol-
icy is enforced. When specified in an authorization policy,
context defines the conditions that must (or must not) hold
for the policy to be applied. For example, the following
context definition (from [20]),

Token Type: printer load
Defining Authority : local manager
Value: < 20%

defines context associated with a print queue. This con-
text evaluates the status of a print queue by asking thelo-
cal manager if the print queue is less than 20% of its
maximum capacity. Note that how this context is evalu-
ated may be complex: an authority must be contacted (pre-
sumably using some secure means), and the result must be
transformed (check whether queue size less than 20%). A
policy using this context might regulate print job submis-
sion based on this context. Hence, authorization policy
(and indirectly context) is used to regulate the print queue
length.

Context is modeled throughout as parameterized func-
tions calledconditions. Traditional conditions used in au-
thorization policy simply poll local state variables (e.g., test
values recorded in the KeyNote action environment [6]).
Recently, policy systems have begun to embrace more se-
mantically rich conditions [16]. Such conditions can test
the state of the environment, presence of qualified or autho-
rized entities, or perform complex algorithms (e.g., query
and interpret print queue length). However, existing im-
plementations of these conditions are largelyad hoc: each
new condition is typically hard coded in policy evaluating
software.

This paper considers context requirements and services
in authorization policy. We begin by classifying the use,
properties, and security requirements of context evaluation.
While context is represented and obtained by contemporary
policy infrastructures in vastly different ways, these classi-

1

fications show that they all are defined along common di-
mensions. It is the identification of these dimensions that
led to the design of the Antigone Condition Framework
(ACF). Built within the existing Antigone/Ismene policy
framework [15, 13], ACF provides a general purpose ser-
vice and associated API used to integrate context into ar-
bitrary policy infrastructures. We present and illustrate the
ACF design, and conclude by considering directions for fu-
ture work.

This work extends the traditional notion of policy condi-
tions. Throughout, conditions are not seen as singular ex-
pressions over a fixed set of attributes, but viewed as pro-
grams. One key aspect of this extended view is the need
for additional security infrastructure. Because the policy
is driven by external forces, it is necessary to ensure that
the means by which these forces are measured is consis-
tent with local requirements (i.e., data is faithfully obtained
from trusted sources). Condition security largely been out-
side the scope of contemporary works in authorization pol-
icy, and is a central topic of this paper.

2 Related Work

Many policy infrastructures do not explicitly support condi-
tions. For example, the KeyNote system is general purpose
framework used to govern authorization policy. Signed
policies, called credentials, define the conditions under
which an authority grants access to a particular resources.
KeyNote provides a flexible algebra for specifying logical
condition expressions over string and numericattributes.
Each attribute value is known prior to the evaluation of pol-
icy. Hence, because the value is fixed beforeany policy
is considered, there is no opportunity for policy to defer
to external evaluation.1 The Akenti system [24] also as-
sumes attribute values are known prior to policy evaluation
(Akenti’s author indicate that run-time evaluated conditions
are also on the horizon). Conditions are encoded in Akenti
throughUse Certificates. These certificates are similar in
form and function to condition expressions of KeyNote, but
are restricted to the vocabulary of the domain in which they
exist.

Some approaches simplify evaluation by fixing the set
of conditions available to policy. Both the MSME [19]
and the Security Policy System (SPS) [28] limit conditions
to only those needed by each target domain. In the case
of SPS (which governs IPsec communication), ports and
end-points largely dictate where access is granted. Because
SPS is built on the more the general IETF Policy Frame-
work [17], SPS can be extended to include run-time con-
ditions. MSME similarly can support externally evaluated

1The authors of the KeyNote system have considered extending this
model to includeactive attributes[10]. These attributes would call exter-
nal function (code) at the time a condition expression is evaluated.

conditions through the extension of the evaluation infras-
tructure. Note that because these systems assume policy
conforms to a predefined schema, all conditions must be
known a priori. Run-time conditions are supported by
fixing the kinds of conditions that policy may use, rather
than fixing values before evaluation (as seen in the systems
above). Because support for each condition can be built di-
rectly into the enforcement infrastructure, no general con-
dition framework is necessary.

In more general settings, anticipating all possible condi-
tions that a policy may use is not feasible. For example, the
Generic Authorization and Access-control API [20] (GAA-
API) defines interfaces for a general purpose policy infras-
tructure. Conditions are arbitrary functions that are defined
by the type, name, and governing authority. Conversely,
in Ismene, very little is assumed by the policy infrastruc-
ture [14]. Unlike GAA API, Ismene policies do not iden-
tify which authority, if any, should govern the evaluation
process. Both of the systems leave the vast majority of con-
dition evaluation to the supporting implementation. Each
system provides anupcall interface, but by an large, neither
mandates how how the requirements for secure evaluation
are identified or addressed.

It is interesting to note that possibly the most flexible
policy language, PolicyMaker, does not explicitly support
externally evaluated conditions. PolicyMaker views policy,
called filters, as having “the full complexity and expressive-
ness of general programs” [5]. Blaze continues by stating
that, “There is no need [for the PolicyMaker policy infras-
tructure] to open files or interact with the network.” This
paper seeks to extend the PolicyMaker model model not
by allowing programatic policy, but by deferring complex
run-time operations to externally evaluated conditions. The
remainder of this paper considers the properties, require-
ments, implementation of such conditions.

3 Policy and Context

Policy infrastructuresevaluate and enforce policy. Note
that in practice the policy infrastructure may span services
and applications. For example, Blaze et. al. describe an
infrastructure used to implement IPsec Policy [7]. The ap-
proach integrates KeyNote [4] (policy evaluation platform)
with an OpenBSD implementation if IPsec (enforcement
platform). We refer to the combination of a policy decision
point (PDP) and policy enforcement point (PEP) as the pol-
icy infrastructure. Note that this does not mandate that both
services coexist within the same host.

A generic condition environment is depicted in Figure 1.
In response to some attempted action, the policy infrastruc-
ture evaluates policy. A condition used by the policy is
evaluated by the infrastructure by extracting state (possibly
through a parameterized function) from a local or remote

2

Policy
Infrastructure

Policy
Decision Point

(PDP)

Condition
Source

c(a1,a2,...) True

Aversary
X

X

X

Policy
Enforcement

Point

Figure 1: Condition Evaluation- policy infrastructure ex-
tracts information from (internal or external) condition
sources via parameterized function. This information is
used to determine how policy is enforced by the Policy En-
forcement Point (PEP). An adversary may attempt to in-
fluence policy by manipulating the PEP, the PDP, or the
condition source.

condition source. This state may be interpreted or trans-
formed by the policy infrastructure to arrive a condition re-
sult. An adversaryattempts to alter condition results by
manipulating the environment (e.g., by altering messages
passed between the source and PDP).

Conditions are simply functions that are used to mea-
sure context. Every condition is a function of zero or more
arguments (a1; a2; : : : ; an). Each parameter is a static or
variable value (i.e., identified by the policy infrastructure
at run-time). Throughout, it is assumed that all conditions
are Boolean (i.e., results if restricted totrueor false). Non-
Boolean conditions (i.e., functions with continuous or dis-
crete output) can lead to complex policy evaluation (in both
the intuitive and complexity-theoretic sense). However, it
is expected that the evaluation of conditions defined over
these non-binary conditions would not be qualitatively dif-
ferent than the procedures defined throughout.

Note that policy may require the evaluation result be fur-
ther qualified. For example, where the result of evaluation
is positive, the result can provide additional information
(e.g., a cryptographic algorithm that must be used to en-
crypt session traffic). Where the result is negative, further
detail information could be similarly provided (e.g., condi-
tion failed because missing credential). The PolicyMaker
system supports the inclusion of additional context by sup-
porting annotations [5].2 Support for such features would
represent simple extensions to the framework described in
this paper. However, for ease of exposition, exploration of
annotations is deferred to future work.

2These annotations are not strictly supported by the condition evalua-
tion, but rather are added when a condition equation evaluates totrue.

Conditions are mostly frequently used to construct pol-
icy rules. Each such rule represents a logical expression of
conditions and Boolean operators. Subject to rule process-
ing discipline (e.g., rule ordering), the policy rule is applied
where the condition expression evaluates to true. For exam-
ple, a traditional firewall rule:

SRC=192.168.7.8:22,DST=192.168.7.27:* ! accept

follows this model. The rule states that all traffic that
satisfies the condition expression (i.e., where source ad-
dress/port, and destination address are equal to the iden-
tified values) should be allowed (i.e., defines an accept pol-
icy). Other policies languages generally work analogously,
where the form of policy, the semantics of the expressions,
and the range of supported conditions may differ. Other
works have focused on the preceding issues of form and
semantics, but have largely ignored supporting conditions.
This paper is devoted to this last aspect of policy:what
kinds of conditions are needed, how are they implemented,
and how do we make them secure.

3.1 Condition Properties

Conditions are defined by their evaluation algorithm. Each
such algorithm is classified by the kinds of information it
acquires and how, where, and when it is acquired, the how
the received information is used. Gleaned from the col-
lection of conditions used by the Ismene test-bed applica-
tions [12], the following properties characterize these algo-
rithms:

� local/remote- As seen in traditional policy systems,
local conditions are evaluated without any external in-
put. For example, an conditionhostname(bob) tests
whether the local hostname is “bob”. Clearly, this
does not need external information, and can be eval-
uated through locally configured values.

� data/computation- Data driven conditions simply test
the existence or value of some known state vari-
able. Conversely, computation-driven conditions im-
plement (sometimes complex) algorithms for com-
puting condition results. For example, aval-

ueEquals(a,b) condition tests whether the values
are equal. Conversely, the conditionsumValue-

GreaterThanZero(a,b) performs some computation
on the state prior and tests some aspect of the result.
This distinction becomes interesting when the com-
putation becomes complex, e.g., where multiple data
sources must participate in the computation.

� stateful - Stateful conditions modify (rather than
just acquire) state during evaluation. That is, the
act of evaluation modifies some local or distributed
state. This is useful where the access isconsump-
tive. For example, some digital rights systems use

3

an access counter to restrict the number of times
a particular object is used. A stateful condition
accessCounter(counter-id,threshold) would test
to see if the counter has remaining accesses, and if
so increments the associated counter. Hence, this con-
dition could be used as a means of restricting access
to the resource (see Section 5).

A related property isidempotence. Idempotence en-
sures that the same evaluation returns the same value
no matter how many times it is called. One can think
of data driven conditions as being idempotent: the act
of obtaining the value has no effect on the value it-
self. Note that external factors may alter the under-
lying value (e.g., changing network conditions). Be-
cause the act of evaluating the condition does not af-
fect the value, it is idempotent.

� synchronous/asynchronous- synchronous conditions
are evaluated at the point at which the policy infras-
tructure requests it. Conversely, asynchronous condi-
tions cannot be evaluated immediately. These proper-
ties are very similar to non-blocking socket behavior:
the policy infrastructure is free to proceed with other
tasks while the evaluation completes. However, this
requires that the application using the condition have
ability to be non-blocking.

Like many aspects of policy, the semantics of a asyn-
chronous evaluation are subject to interpretation. One
could be optimistic and allow access on the assump-
tion that the evaluation would be positive (and revoke
access later if it proves not to be so), or pessimistic
and delay or prevent access until the condition evalu-
ation process is completed. The selection a particular
meta-policy for asynchronous evaluation is left to the
policy infrastructure.

An example asynchronous condition isisDNSAuthor-

ity(dom,srv) . This condition tests whether the server
srv is authoritative for the DNS domaindomas culled
from the whois service. In most applications, be-
cause it would be highly undesirable to block all op-
erations until thewhois lookup is completed, it is
advantageous to allow the condition to complete asyn-
chronously.

Clearly, these categories are not mutually exclusive nor
exhaustive. For example, a condition may use the result of
stateful acquisition of remote values that are used as input
to computation. Section 4 considers the degree to which the
condition definition (as classified along these dimensions)
dictates the ways the condition, and ultimately the policy,
can be evaluated.

The semantics of a condition are often subtle. For ex-
ample, consider a conditiontimebetween(9am,5pm) . How

a particular policy infrastructure views time is largely de-
fined by its security requirements. Where the policy only
needs a local (and potentially insecure) timing source, the
condition could be evaluated locally. If, however, the tim-
ing needed to be synchronized across multiple enforcement
points (and secure), it would have to be acquired by an ex-
ternal timing source. Note that because the desired seman-
tics may differ from environment to environment, support
for both conditions may be required (e.g., bothlocaltime

andnetworktime would made available).

3.2 Condition Security

One critical aspect of a condition definition not encom-
passed in the preceding discussion are the condition secu-
rity requirements. Security is really a matter of environ-
mental interpretation: each environment will place a unique
set of requirements on the source and methods of condition
evaluation. This is best illustrated by example. Consider
thetimebetween() condition as used in two application en-
vironments, a multiplayer game and an online trading ap-
plication.

For this example, it is assumed that users in the mul-
tiplayer game are restricted to particular times defined by
policy. Hence, in addition to testing the appropriate cre-
dentials, the authorization policy would test to see that user
is allowed to participate at the current time. Conversely,
timebetween is used in the trading application to ensure
that every transaction occurs during normal trading hours
(e.g., 9am-5pm).

Now consider the security requirements of each of these
environments. In the online game, it is likely that the only
requirement is for authenticity (i.e., to prevent the player
from forging timing information and gaining access dur-
ing restricted times). The same condition will have much
stronger security requirements in the trading application.
To protect all participants, the trading application will re-
quire some after-the-fact evidence that the transaction oc-
curred at a normal time (non-repudability). Other factors
may contribute to the security requirements. For example,
existence of a transaction (and not necessarily its contents)
may be valuable information. Hence, the evaluator may re-
quire anonymity and/or confidentiality.

Note that many sources of condition information (the
timing source in the previous example) will have their own
authorization policy. Hence, where complex conditions are
employed, it is important to consider how these policies are
defined, and at the end-points, used. Such organization can
lead to recursive policy evaluation. We see the evaluation of
the interaction between condition evaluation infrastructure
and the supported policy systems as a key area of future
investigation.

A key question is whether an condition can be designed
in such a way that it will be able to address a large number

4

of security requirements. One of the key design goals of the
the Antigone condition API is to support just this model.
However, as seen in Section 5, one cannot anticipate all
possible security requirements.

The condition schema defined in Section 4.1 is designed
to specify the following security requirements/properties.
These properties came about from a study of the conditions
used by the AMirD multiparty file-system mirroring and
other example applications [12]. While we acknowledge
that many other properties and definitions exist, we argue
that these are suitably representative to develop an under-
standing of condition security. However, the schema may
be extended as need to encompass additional properties.

� confidentiality- An adversary must not be able to as-
certain (with some fairly high probability) the condi-
tion or parameters being evaluated. Generally, this re-
quires that the content of communication be made in-
accessible (e.g., via encryption).

� integrity - The adversary must not be able to alter the
results of an evaluation. For this property to be pre-
served for a remote condition, the parameters must be
faithfully communicated to the remote entity, and the
result must be returned without modification.

� authenticity- The evaluator must be able to ascertain
the origin of the evaluation result. If the source of
condition evaluation is not authentic, the policy infras-
tructure is subject to manipulation. For example, ei-
ther as a man or in middle or by masquerading as the
source, an adversary could intercept and alter results
to allow itself or cohorts access. Where such an at-
tack is mounted to attempt a denial of service, it could
prevent any legitimate activity could be prevented by
blocking all access to the protected resources.

� non-repudability- A condition source must not be able
to claim that it did not assert a returned result. This is
important where access to highly valued resources are
being governed by authorization policy. For example,
the trading example above will accept or reject trans-
actions based on the evaluation result received from
the timing source. Because this acceptance or rejec-
tion may have serious legal or financial ramifications,
some evidence of the correct evaluation is necessary.
Should a dispute arise, the trading service (applica-
tion) would want demonstrate that if correctly evalu-
ated policy. Assuming non-repudability is provided,
if the timing source incorrectly evaluated the condi-
tion, then it could not later deny this fact (and would
be culpable).3

3To ease exposition, the above description simplifies secure transac-
tion timing. In practice, the transaction itself must be tied to the timing
information (in some cryptographically strong way).

� anonymity- The identity of the evaluator should not be
known by the condition source. Moreover, an adver-
sary on the network should not be able to reasonably
ascertain the existence of the evaluation or identity of
the evaluator.

Note that in some instances, achieving anonymity is
difficult (more than simply encrypting communica-
tion). For example, again consider thetimebetween()

condition. If a well known timing source is used,
the existence of communication between the evalua-
tor and the timing source may expose the evaluation,
i.e., condition evaluation is the only reason that the
evaluator would communicate with the timing source.

While these properties primarily address security require-
ments of remote evaluation, they also may be important in
local environments. For example, any system may wish to
prevent an adversary from manipulating locally stored sys-
tem state.

3.3 Evaluation

Conditions are often characterized simply as functions.
Each condition maps a set simple inputs onto a set of sim-
ple outputs. However, such characterizations make a num-
ber of assumptions about the behavior of its evaluation.
The condition is assumed to have valid input that is always
available (one can think of persistent state as input). The
abstraction of function fails to capture the fact that condi-
tions are not always mathematical operations, but must be
sensitive to the constantly evolving environment in which
they exist.

Possibly a more useful characterization of a condition is
that each represents aprogram. This extended view em-
braces the dynamicity of the environment: conditions can
fail because of insufficient or unavailable resources, have
invalid input, or simply take too long to evaluate. This
view of condition places additional requirements on the au-
thorization policy infrastructure. That is, the infrastructure
must accept and carefully consider how authorization pol-
icy is evaluated in the presence of such failures. Note that
blanket policies such as “treat every failure as a negative
response” may provide a means by which an adversary can
manipulate policy evaluation. Note that the these meta-
policies are often a function of the semantics of the pol-
icy language, and are not necessarily defined by the policy
infrastructure.

Note that a perfectly implemented application can be co-
opted by a poorly implemented condition. For example,
consider the trading example in the preceding section. As-
sume that every transaction is governed by a policy that
uses thetimebetween() condition. Any adversary that
wishes to prevent transactions from occurring can DOS the
timing source. Note that this vulnerability is not a function

5

of the trading application, but is a function of the policy
that governs it.4 Such dependencies can be overlooked (or
be unknown) at the time applications are built. Hence, it
is incumbent upon the developers of the condition imple-
mentations to anticipate and address the needs of the target
applications.

Policy infrastructures are increasingly allowing applica-
tions to provide the conditions upon which policy decisions
are made. Systems like Antigone [15] and the Generic Au-
thorization and Access-control API (GAA-API) [20] pro-
vide genericupcall interfaces to which condition imple-
mentations are built. Applications register at compile or
run-time the set of conditions to be supported by the appli-
cation. The policy infrastructure passes the relevantstate
through the upcalls. The condition specific code is exe-
cuted and results returned to the policy infrastructure. Be-
cause these upcalls are essentially programs, they are free
to implement a wide range of functions.

The following considers broad classes of condition im-
plementations. These design pattern represents type of con-
ditions observed in existing policies, or those as designed
to support the Antigone project.

Condition function- conditions of this type are simply com-
putable functions. Often using state that is internal to the
application, these conditions simply test some property of
the environment. For example, consider the ubiquitous
condition username(name) . This condition tests whether
the local identity name is equal to the parameter string.
Such conditions are encoded, for example in KeyNote, as
equations, e.g.

(username == "bob")

The key aspect of these conditions is that they can be im-
plemented directly in the application or the policy infras-
tructure. This pattern is representative of the vast majority
of conditions seen in policy systems.

Local evaluation- locally enforced conditions perform
some evaluation function by extracting and manipulating
state on the local host, but external to the process address
space. The distinction between local evaluation and con-
dition function is useful because process external infor-
mation is subject to external forces. Unseen adversaries
can manipulate local resources and state (i.e., modify the
/etc/password file on a UNIX system). Hence, the
threat models appropriate for the condition classes are fun-
damentally different. Moreover, depending on the nature
of the condition, the ways in which conditions are imple-
mented are likely to be very different.

4Note that additional systems engineering (e.g., redundancy) of the
condition evaluation infrastructure, rather than the application or service
is the only means by which these issues can be dealt with. In this case,
alternate timing sources can be used to mitigate this attack.

Kernel
User Space

Process

Evaluator Host

Pred.
Source

Data

Figure 2:Local Evaluation- The condition is implemented
by a call to some local host service. This information can be
accessed using local services (e.g., via IPC) or by extracting
information directly from the kernel (e.g., via system call).

LABEL
Kernel
User Space

Process

Evaluator Host

Stub

Kernel
User Space

Predicate Source Host

Pred.
Source

Figure 3:remote method invocation- The condition is im-
plemented as a call to remote function. Existing mecha-
nisms (e.g., RPC, CORBA) provide functional semantics,
and can readily be used to implement policy conditions.

Depicted in Figure 2, each conditions extracts state from
the local environment. In the case where state is held or
computed by a local service (e.g., monitor process), some
IPC mechanism is necessary. The means and format of
such communication is dependent on the service and se-
mantics of the condition. Other mechanisms allow state to
be retrieved from the operating system itself (e.g., via sys-
tem call).

A canonical local evaluation condition issystem-

load(component,thresh) . This condition tests whether
a threshold load on some aspect of the system has been
reached. As such, it can be used as a form of admis-
sion control in authorization policy: access is granted only
where the system has sufficient resources to support it. This
would implemented by polling a monitoring process or di-
rectly extracting it from the kernel via system call.

Remote method invocation- these conditions simply poll
external services. One can view these condition implemen-
tations as traditional remote procedure calls [3]. Figure 3 il-

6

Kernel
User Space

Process

Evaluator Host

Data Src Host

Data Src Host

Data Src Host

Data Src Host

Stubs

Figure 4: complex condition evaluation- Each condition
is implemented by some distributed algorithm or protocol.
These conditions are frequently designed to support spe-
cific authorization policy needed to govern the target appli-
cation or domains.

lustrates the common RMI condition design. The condition
marshals and transmits input parameters to a remote ser-
vice through astubfunction, and receives and unmarshals
the results. Frameworks supporting this design common
in contemporary distributed systems (e.g., CORBA [25],
SOAP [8], Java RMI [9]). A key advantage of using these
frameworks is that they are often implement their own se-
curity infrastructure. Note that the security requirements
of RMI methods are very different from previous designs
(i.e.,, remote vs. local threats).

It is worth acknowledging that while the preceding dis-
cussions have implied the remote entities that “perform”
the condition evaluation operation, but this is not necessar-
ily the case. In practice, conditions may make use of poll
externally available interfaces to acquire the information
needed to perform evaluation. This information is manipu-
lated in some way to implemented the condition semantics.
The distinction here is that the remote service being polled
need not necessarily be aware it is part of an evaluation
process. This is best illustrated by example.

Consider yet again thetimebetween(start,end) condi-
tion. In practice the condition is most likely implemented
by polling a remote timing source. The timing source sim-
ply returns the current time. The receiving stub will trans-
late the current time into a result: in this case, determining
if the current time is betweenstart andend. Because time
is returned, the same service can be used to implement any
number of conditions (e.g.,isWeekday()).

complex condition- conditions often require implementa-
tions that are hybrids of local, remote, and functional condi-

tions. Such implementations can represent more extensive
programs which may involve interactive protocols involv-
ing many end-points. Depicted in Figure 4, the conditions
can be presented to the policy infrastructure as a single stub
function. However, beneath this simple veneer lies com-
plex logic which coordinates the data and protocols needed
to evaluate the condition. Note that it may be possible to
for an implementation to be (at least partially) constructed
from more basic conditions. This is similar in philosophy
to the component systems and protocol stacks [2], and is
illustrated in the following example.

A lock algorithm is a good example of a complex condi-
tion. Consider a conditionhasLock(lock-id) , wherelock-
id is some lock passed between a number of peers. The
condition returnstrue the local host currently has or is able
to obtain the locklock-id. An implementation of the condi-
tion initially tests the local environment to see if it already
has the lock (e.g,. through, for example, a local or condition
functionhasLockLocal(lock-id)). If not, it will attempt to
acquire the lock by performing a distributed computation
(and possibly talking to every other peer in the system). If
the lock protocol is successful (in the sense that the local
entity obtains the lock), then the condition returns true.

4 Condition Framework

A key observation gleaned from the classification presented
in the preceding section is the degree to which conditions
share common properties. We exploit these commonalities
in designing a general purpose condition service and as-
sociated API. The Antigone Condition Framework (ACF)
specifies and directs the use of conditions through common
artifacts and processes. The remainder of this section con-
siders in detail the design and use of this framework and
concludes with a discussion of the advantages, limitations,
and opportunities afforded by its architecture.

ACF supports the creation and evaluation of policy con-
ditions. Depicted in figure 5, the life-cycle of a condition in
ACF is defined by three central processes: conditionspeci-
fication, instantiation, andevaluation. Initially, infrastruc-
ture developers will define the sets of conditions that are
made available to the policy issuers. This includes the cre-
ation of an implementation as well asspecifyinga defining
Antigone Condition Document (ACD). This document is
used to detect incorrect usage when the policy is issued (in-
stantiation). The condition isevaluatedimplementations
made available to the ACF when policy is used.

Note that while this framework is targeted to the
Antigone/Ismene system, it is policy agnostic: that is, any
policy language is free to use conditions built within this
framework. However, the policy infrastructures often must
modify the evaluation process to embrace run-time condi-
tion evaluation.

7

Impl.

ACD Repository

ACD
ACD
ACD
ACD
ACD

Impl. Repository

Impl.
Impl.
Impl.
Impl.
Impl.

Policy
Editor

Issuer

Developer

ACD

Policy

Policy
Infra.

ACD

Impl.

ACD

Policy

Specification
Instantiation

Evaluation

Figure 5: Condition Life-cycle - conditions are specified in
Antigone Condition Documents (ACD) and implemented
during conditionspecification. The ACD is subsequently
used to validate issued policy (duringinstantiation), and
ultimately to direct the use of the condition (during policy
evaluation).

An initial version of ACF is under construction. As is
true of any large framework, any number of issues will
emerge as the implementation matures. For this reason, this
section centrally focuses on the means and use of ACF in-
terfaces. We plan to complete the construction and report
on performance and usability issues in the near future.

4.1 Specification

The specification process defines the semantics of a condi-
tion through through an implementation. The ACD defines
how a policy must communicate with this implementation.
The ACD is simply a XML document conforming to the
ACD document type definition (DTD). Presented in Fig-
ure 6, this DTD is comprised of three main sections, a gen-
eral section, a security policy, and the parameters section.

The general section specifies the high level attributes of
the condition. This includes a definition of the name and
version information, as well its mode of operation. The
mode determines whether the condition is synchronous or
asynchronous (see Section 3.1), the implref identifies the

<!DOCTYPE condition [

<!-- General Section -->
<!ELEMENT condition (name, version,

secpolicy?, parameter*)>
<!ATTLIST mode (synch|asynch) "synch">

<!ELEMENT name (#PCDATA)>
<!ELEMENT version (#PCDATA)>
<!ELEMENT implref (#PCDATA)>

<!-- Security Policy Section -->
<!ELEMENT secpolicy (service,authority*)>

<!ATTLIST secpolicy confidentiality (T|F) "T">
<!ATTLIST secpolicy integrity (T|F) "T">
<!ATTLIST secpolicy authenticty (T|F) "T">
<!ATTLIST secpolicy nonrepudation (T|F) "F">
<!ATTLIST secpolicy anonymity (T|F) "F">

<!ELEMENT service (#PCDATA)>
<!ELEMENT authority (name?,encoding,credential)>
<!ELEMENT encoding (#PCDATA)>

<!-- Parameters Section -->
<!ELEMENT parameter (order, const,

value, encoding?)>
<!ATTLIST parameter (string | boolean |

float | integer |
encoded) #REQUIRED>

<!ATTLIST const type (T|F) #REQUIRED>
<!ELEMENT order (integer)>
<!ELEMENT value (#PCDATA)>
<!ELEMENT encoding (#PCDATA)>

<!-- Base Types -->
<!ELEMENT integer (#PCDATA)>

]>

Figure 6: Antigone Condition Document DTD - the ACD
DTD defines the basic condition type, a security policy, and
a set of expected parameters. This information is used at
policy issuance and evaluation to ensure correct condition
usages, as well as a roadmap for execution.

implementation (see Implementing Conditions 4.4 below).

The security policy identifies the security requirements
that are relevant to thecondition. The requirements are
represented through a set of flags indicating what specific
properties are of interest. The service element is an opaque
string used to identify which security infrastructure should
be used to implement security (e.g., IPsec). Finally, the set
of authorities used to perform evaluation, if any, are en-
coded as indicated by the element definition. Note that be-
cause local evaluation conditions do not consult external
sources, security policy is optional.

Finally, the parameter section defines the expected in-
put. This includes the obligatory ordering and type enu-
meration, as well as constant and encoding definitions. The
constelement indicate whether the input value is fixed by
policy definition or asserted at run-time (e.g., like KeyNote
attributes). Where the type is not atomic, encoded forms
are supported (e.g., PKCS#12 encoded certificates).

An ACD is created by partially instantiating the objects
defined in the DTD. For example, Figure 7 presents an
ACD for a hasToken condition. This condition takes three

8

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE note SYSTEM "acd.dtd">

<condition mode="asynch">

<!-- Security Policy -->
<name>hasToken</name>
<version>1.0</version>
<implref>libhtok.1.0.so</implref>

<!-- Security Policy -->
<secpolicy confidentiality="T"

integrity="T"
authenticty="T"
nonrepudiation="F"
anonymity="F">

<!-- Note that run-time policy evaluation
will insert authorites -->

</secpolicy>

<!-- Parameter List -->

<!-- Token ID -->
<parameter type="string" const="T">

<order>1</order>
<value>tokenid</value>

</parameter>

<!-- Token Authority Certificate -->
<parameter type="encoded" const="F">

<order>2</order>
<value></value>
<encoding>PKCS#12</encoding>

</parameter>

<!-- Wait Time -->
<parameter type="integer" const="T">

<order>3</order>
<value>60</value>

</parameter>

</condition>

Figure 7: Example ACD - thehasToken condition attempts
to acquire a named token from the authority identified in
the parameter list.

arguments, a token identifier, a certificate, and a wait timer.
The corresponding implementation attempts to acquire to-
ken associated with the token identifier from a service de-
fined in the certificate. If a signed response is received prior
within the wait time (seconds),true is returned if the token
is acquired, andfalseotherwise. The condition fails if no
response is received in the allotted time.

4.2 Instantiation

A policy editor is an application used to issue policy [26].
Such editors are responsible for validating that the policy
is consistent with the policy representation, and is self con-
sistent (e.g., is enforceable [13]). For example, consider
the following call to thehasToken() included as part of a
larger Ismene policy:

hasToken(tigertoken, $cert)

A policy editor making use of the ACF would begin by
looking up the ACD forhasToken() (defined in Figure 7).

The ACD indicates the three parameters are used. The first
parameter is a string constant defined by the policy. The
tigertokenstring fulfills that definition and the parameter
is accepted as valid. The second parameter is marked as
a run-time attribute (i.e., const=”F”). Because the second
parameter is marked as a run-time (’$’-symbols indicate at-
tribute replacement in Ismene), the second parameter is ac-
cepted. One might assume that because definition is miss-
ing the last argument that the condition would be rejected.
However, because the ACD defines a default value for the
last parameter (i.e., in the value element), it is automati-
cally inserted. Because all parameters are consistent with
the definition, the condition is deemed correct.

In practice, policy editors will use libraries of ACDs to
interpret and verify issued policy. It is incumbent upon the
administrators to provide ACDs for all of relevant condi-
tions. For example, an LDAP directory [27] of ACDs XML
documents could be maintained by the policy issuers. The
design and maintenance of these repositories is outside the
scope of the current work.

4.3 Evaluation

The policy infrastructure calls theACF evaluate func-
tion to execute the evaluation process. This call (and the
ACF-specific return enumerate type) are defined:

typedef enum { ACF_false = 0,
ACF_true = 1,
ACF_fail = 2,
ACF_asynch = 3

} ACF_result;

ACF_result
ACF_evaluate(char *func, int argv,

char *argc, void *context);

Note that all parameters are passed as null terminated
strings (as in standard C programmingargc/argv style.
Parameters such as credentials must be encoded prior be-
ing passed to the ADF framework (e.g., PKCS#12 en-
coding of certificates). This has the advantage that the
policy infrastructure need not be share domain specific
structures (e.g., internal representations of Kerberos certifi-
cates). Where necessary, the ACD specifies the expected
encoding scheme in theencoding element in the param-
eter section.

The evaluate function returns one four return values.
ACF true or ACF false are returned where the con-
dition successfully evaluates totrue or false, respectively.
ACF fail is returned when the condition cannot be suc-
cessfully evaluated. The policy infrastructure must de-
cide how to handle these errors.ACF asynch is returned
whenever the called condition is asynchronous.

Asynchronous conditions are handled by threads created
during the initial evaluation call. The policy infrastructure

9

registers an opaquecontext object with the ACF through
in the evaluation call. When the evaluation is completed,
the framework signals the completion of the evaluation via
callback to the policy infrastructure. The callback supplies
a return value (i.e., true, false, fail) and the originally reg-
istered context object. The policy infrastructure maps the
context object back onto the suspended operation.

The evaluate function initially acquires the ACD associ-
ated with thefunc parameter from a ACD repository. The
parameters are validated as in the instantiation (with the ex-
ception that all non-const values are now instantiated). A
new ACD with the new parameters values and authorities
is created. The registered implementation is called with a
single argument, the ACD.

4.4 Implementing Conditions

Conditions are implemented as threads. Each such thread
accepts the singular ACD object, and interprets the param-
eters accordingly. A number of utility functions are being
created to ease the process of condition creation (e.g., pa-
rameter extraction, credential decoding). What the condi-
tion does, how it does it, and the resources it uses is entirely
up to the developer.

The ACF does not provide a specific security infrastruc-
ture: all details of how the security policy is enforced is left
to the condition implementation. The reasoning for this de-
cision is simple, we cannot possibly anticipate all the pos-
sible infrastructures and approaches to providing security.5

Hence, we defer issues to the implementation. It is impor-
tant note that does not mean that condition security is fixed
service. Inasmuch is possible, each implementation should
be able to deal with the the security policies communicated
by ACDs. This adds additional flexibility, where the partic-
ular environment can dictate the security needs by modify-
ing the ACD, rather than the implementation.

Note that in practice, many conditions are implemented
as external programs (i.e., shell scripts [5]). ACF supports
these implementation by creating a thread that, after ex-
tracting the parameter values, simply forks the appropriate
process and sleeps until that process terminates.

One of the central issues associated with implementa-
tions is the means by which they are loaded. Requiring that
ACF be linked against every possible condition implemen-
tation is problematic. Firstly, this would require that every
condition be knowna priori, which is exactly the kind of
assumption ACF is designed to avoid. Secondly, even if
one knew (and could acquire) beforehand the implementa-
tions of every condition, the resulting executable would be
huge. Finally, this requires that the ACF be rebuilt every
time a new condition is introduced.

5We expect to explore standard security services as more experience
with the framework is garnered.

For all of these reasons, we determined that it is imper-
ative that condition implementation bedynamically load-
able. To accomplish this, ACF is being built with a con-
dition loader facility. This uses the UNIX dynamic load
functions [18] (e.g.,dlopen , dlsym) to open and read
local libraries. Each condition implementation is provided
in a shared library whose name is specified in the implref
element of the ACD. The library exports a single symbol,
a function with the condition name that receives a single
character pointer (the ACD).

We intend to investigate more flexible distribution meth-
ods for condition implementations in the future. For exam-
ple, the ACF could download implementation from a cen-
tral (and presumably authenticated) repository when an im-
plementation is not locally available. However, such meth-
ods must be carefully designed to avoid introducing new
vulnerabilities (e.g., possibility of DoS).

5 Discussion

The ability to integrate complex and distributed condition
evaluation within authorization policy opens the door to
new uses of policy. For example, consider thehasTo-

ken condition in the previous section. Applications which
are regulated with this condition automatically implement
token-based operation. Hence, through condition evalua-
tion, authorization policy can define application behavior.
Thispolicy-oriented programmingenables application fea-
tures to be transparently added through the use of context.

Aspect-oriented programming[11] seeks to implement
high-level features through object technologies (e.g., in-
heritance). Policy-oriented programming differs not only
in approach, but by whom and when application behavior
is delegated. Policy approaches allow domain administra-
tors (issuers), rather than developers to decide which fea-
tures an application will implement. Moreover, based on
the semantics of the policy representation and evaluation,
judicious use of condition allows the developer to clearly
specify how, when, and by whom these features are used.
Moreover, policy base programming occurs at a finer-grain:
features are applied to individual actions, rather than on the
application as a whole.

State maintenance in condition evaluation can compli-
cate policy. For example, consider an authorization policy
rule representing the conjunction of two stateful conditions
hasToken(a) andhasToken(b) . Now assume in a partic-
ular evaluation, an evaluator obtains thea lock, but notb.
The operation would be rejected. The evaluator would hold
the locka but not perform the association action (which
we assume releases the lock). Moreover, if another evalua-
tor obtained the lockb, but could not obtaina, a deadlock
would occur.

10

Ryutov and Neuman [20] address the state maintenance
problem by introducingpre-, mid-, and mid-conditions.
These conditions essentially identify the operations that
must occur at different phases of the action. Hence, the
underlying code can manipulate state as is necessary for
the application. We are currently looking at a condition-
centric version of this approach. The modified approach
informs condition implementations that the action/rule to
which they are attached was rejected, failed, or completed
successfully. Each implementation is expected to perform
the appropriate processing based on the result information.

While this work has discussed the security needs of con-
dition evaluation, the infrastructure described in the pre-
ceding section does not indicate how these needs are ad-
dressed. The reason for this is two-fold. Firstly, building
a security infrastructure that meets the needs of all possi-
ble environments is impossible. Hence, specifying specific
technologies (e.g., PKI, AES) is inherently limiting. For
this work, we have chosen to focus on the interfaces and
definition of conditions, rather than their implementation.

Secondly, security requirements often can only be met
through integration with existing security services. One il-
lustrative application is a shopping application. An autho-
rization policy governing the purchase action would indi-
cate that the credit card purchase must be accepted by the
Secure Electronic Transactions (SET) protocol. Because it
is unlikely that any general purpose infrastructure will im-
plement SET, it must be implemented within the condition
(or application). Because many such dependencies exist in
real applications, attempting to construct a single frame-
work that addresses all conditions is not realistic.

6 Conclusions

In this paper, we have considered traditional and extended
views of policy conditions. In its extended form, we view
conditions as programs, rather than as expressions defined
over a fixed set of attributes (as one would see in contempo-
rary policy systems). However, we must acknowledge the
additional security and infrastructure requirements that this
view introduces. Our taxonomies of condition type, eval-
uation method, and security requirements show that con-
ditions are largely defined along similar axises. Because
conditions share similar properties, we can contemplate
general-purpose facilities.

We have designed the novel Antigone Condition Frame-
work (ACF). This framework implements a general-
purpose condition specification, implementation, and eval-
uation service. In ACF, conditions are defined by XML
documents called Antigone Condition Documents (ACD)
and implemented by dynamically loaded libraries. At run-
time, ACDs are used to validate and initiate condition eval-
uation, and to reference (and potentially acquire) condition

implementing libraries. ACF is a general purpose frame-
work. Subject to semantic restrictions, any policy infras-
tructure can be augmented with ACF conditions. Hence,
the ACF can be used to expand existing policy with more
flexible context.

The extended view of conditions affords new ways of
leveraging policy.Policy based programmingallows pol-
icy issuers to augment existing applications with new fea-
tures through the specification of authorization policy (e.g.,
implement distributed locking through condition evalua-
tion). Hence, issuers are able to uselate-bindingto add
environment-specific application behavior. Moreover, the
applications need not be aware of the added functionality.

The current ACF implementation is a very rough proto-
type. In the near future, we intend to complete the code
and experiment with many different kinds of conditions.
As part of this process, we will refine the schema and con-
sider the design of directory services used to store ACDs
and implementations. Other works will investigate how
policy-based programming is used to support flexible envi-
ronments. It is through these works that we hope to expose
the semantic depth, and hence the value, of policy context.

References

[1] D. Bell and L. LaPadula. Secure Computer Systems:
Mathematical Foundations and Model. Technical Re-
port M74-244, MITRE Corperation, Bedford, MA,
1973.

[2] Nina T. Bhatti, Matti A. Hiltunen, Richard D.
Schlichting, and Wanda Chiu. Coyote: A System
for Constructing Fine-Grain Configurable Communi-
cation Services.ACM Transactions on Computer Sys-
tems, 16(4):321–366, November 1998.

[3] A. D. Birrell and B. J. Nelson. Implementing Remote
Procedure Calls. InProceedings of the ACM Sympo-
sium on Operating System Principles, page 3. Asso-
ciation for Computing Machinery, 1983.

[4] M. Blaze, J. Feigenbaum, John Ioannidis, and
A. Keromytis. The Role of Trust Management in Dis-
tributed Systems Security. InSecure Internet Pro-
gramming: Issues in Distributed and Mobile Ob-
ject Systems, volume 1603, pages 185–210. Springer-
Verlag Lecture Notes in Computer Science State-of-
the-Art series, 1999. New York, NY.

[5] M. Blaze, J. Feigenbaum, and Jack Lacy. Decentral-
ized Trust Management. InProceedings of the 1996
IEEE Symposium on Security and Privacy, pages
164–173, November 1996. Los Alamitos.

11

[6] M. Blaze, J. Feignbaum, J. Ioannidis, and
A. Keromytis. The KeyNote Trust Management
System - Version 2.Internet Engineering Task Force,
September 1999. RFC 2704.

[7] Matt Blaze, John Ioannidis, and Angelos D.
Keromytis. Trust management for IPsec.Information
and System Security, 5(2):95–118, 2002.

[8] D. Box, D. Ehnebuske, G. Kakivaya, A. Lay-
man, N. Mendelsohn, H. Frystyk Nielsen,
S. Thatte, and D. Winer. Simple Object
Access Protocol (SOAP) 1.2, June 2002.
http://www.w3.org/TR/soap12-part1/ .

[9] Fabian Breg, Shridhar Diwan, Juan Villacis,
Jayashree Balasubramanian, Esra Akman, and
Dennis Gannon. Java RMI performance and object
model interoperability: Experiments with Java/
HPC++. Concurrency: Practice and Experience,
10(11–13):941–955, 1998.

[10] John Ioannidis.Personal communication, December
2002.

[11] Gregor Kiczales, John Lamping, Anurag Menhd-
hekar, Chris Maeda, Cristina Lopes, Jean-Marc Lo-
ingtier, and John Irwin. Aspect-oriented program-
ming. In Proceedings European Conference on
Object-Oriented Programming, volume 1241, pages
220–242. Springer-Verlag, Berlin, Heidelberg, and
New York, 1997.

[12] P. McDaniel. Policy Management in Secure Group
Communication. PhD thesis, Univeristy of Michigan,
Ann Arbor, MI, August 2001.

[13] P. McDaniel and A. Prakash. Antigone Secure Group
Communication System.NASA Tech Briefs, 2001. (to
appear).

[14] P. McDaniel and A. Prakash. Methods and Limita-
tions of Security Policy Reconciliation. In2002 IEEE
Symposium on Security and Privacy, pages 73–87.
IEEE, MAY 2002. Oakland, California.

[15] P. McDaniel, A. Prakash, and P. Honeyman.
Antigone: A Flexible Framework for Secure Group
Communication. InProceedings of the 8th USENIX
Security Symposium, pages 99–114, August 1999.

[16] P. McDaniel, A. Prakash, J. Irrer, S. Mittal, and
T. Thuang. Flexibly Constructing Secure Groups in
Antigone 2.0. InProceedings of DARPA Information
Survivability Conference and Exposition II, pages 55–
67. IEEE, June 2001.

[17] B. Moore, E. Ellesson, J. Strassner, and A. West-
erinen. Policy Core Information Model – Version
1 Specification. Internet Engineering Task Force,
February 2001. RFC 3060.

[18] Unix Man Page.dlopen man page. Linux Program-
mers Manual, Section 3.

[19] G. Patz, M. Condell, R. Krishnan, and L. Sanchez.
Multidimensional Security Policy Management for
Dynamic Coalitions. InProceedings of Network and
Distributed Systems Security 2001. Internet Society,
February 2001. San Diego, CA, (to appear).

[20] T. Ryutov and C. Neuman. Representation and Evalu-
ation of Security Policies for Distributed System Ser-
vices. In Proceedings of DARPA Information Sur-
vivability Conference and Exposition, pages 172–183,
Hilton Head, South Carolina, January 2000. DARPA.

[21] Ravi S. Sandhu. Lattice-based access control models.
IEEE Computer, 26(11):9–19, 1993.

[22] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein,
and Charles E. Youman. Role-Based Access Control
Models. IEEE Computer, 29(2):38–47, 1996.

[23] Ravi S. Sandhu and Pierrangela Samarati. Access
Control: Principles and Practice.IEEE Communica-
tions Magazine, 32(9):40–48, 1994.

[24] Mary Thompson, William Johnston, Srilekha
Mudumbai, Gary Hoo, Keith Jackson, and Abdelilah
Essiari. Certificate-based Access Control for Widely
Distributed Resources. InProceedings of the 8th
USENIX Security Symposium, pages 215–228,
August 1999.

[25] Steve Vinoski. CORBA: Integrating Diverse Ap-
plications Within Distributed Heterogeneous Envi-
ronments. IEEE Communications Magazine, 14(2),
February 1994.

[26] A. Westerinen, J. Schnizlein, J. Strassner, Mark
Scherling, Bob Quinn, Jay Perry, Shai Herzog, An-
Ni Huynh, Mark Carlson, and Steve Waldbusser. Pol-
icy Terminology (Draft). Internet Engineering Task
Force, march 2001.

[27] W. Yeong, T. Howes, and S. Kille. Lightweight Di-
rectory Access Protocol.Internet Engineering Task
Force, March 1995. RFC 1777.

[28] J. Zao, L. Sanchez, M. Condell, C. Lynn, M. Fre-
dette, P. Helinek, P. Krishnan, A. Jackson, D. Mank-
ins, M. Shepard, and S. Kent. Domain Based In-
ternet Security Policy Management. InProceedings
of DARPA Information Survuvability Conference and

12

Exposition, pages 41–53, Hilton Head, South Car-
olina, January 2000. DARPA.

13

