On Context in Authorization Policy

Patrick McDaniel
AT&T Labs — Research
pdmcdan@research.att.com

Abstract policy infrastructures address widely distributed systems
(e.g., KeyNote [4]) or arbitrate the policies of multiple end-
Authorization policy infrastructures are evolving with theoints [14, 12]. These and many other works have served to
complex environments that they support. One key, but nairease the flexibility and ease with which access to pro-
yet well understood, aspect of policy is the need and supeted resources is managed.
port of context. Often implemented as condition functions Contextis increasingly used by policy infrastructures to
or predefined attributes, context is used to more preciselffow environmental factors to influence when and how pol-
control when and how policy is enforced. This paper coiey is enforced. When specified in an authorization policy,
siders context requirements and services in authorizatigdntext defines the conditions that must (or must not) hold
policy. We classify the use, properties, and security requifier the policy to be applied. For example, the following
ments of context evaluation. A key observation gleanggntext definition (from [20]),
from this classification is the degree to which context func-

tions share common properties. The Antigone Condition Token Type: printetload
Framework (ACF) exploits these commonalities to provide \[;elf'”'”g 2%$°"ty: local manager
alue: 0

a general purpose service and associated API used to de-

fined and implemented context. We present and illustrgfgfines context associated with a print queue. This con-
the prototype ACF design, and conclude by considering disy; eajuates the status of a print queue by askingpthe
rections for future work. cal _manager if the print queue is less than 20% of its
maximum capacity. Note that how this context is evalu-
ated may be complex: an authority must be contacted (pre-
sumably using some secure means), and the result must be

o . . tréa\nsformed (check whether queue size less than 20%). A
Authorization policy describes how access to protected,. . . . oo ;
licy using this context might regulate print job submis-

) Co o 0
resources 1S gpverned. H|§tor|cally, these policies hae%n based on this context. Hence, authorization policy
mapped identities to collections of rights over sets of 05

1 Introduction

.(and indirectly context) is used to regulate the print queue

jects according to some system model [23]. Policies gi gngth

the supported systems a road-map to operation, and allo
administrators to develop coherent strategy for protectlrt}%ns calledconditions Traditional conditions used in au-

the environment. thorization policy simply poll local state variables (e.g., test
Policy technologies have evolved in lock-step with the policy SImply p -9

networks and environments they support. For exa values recorded in the KeyNote action environment [6]).

ple, novel access control models deal with the complé%—ecemly’ policy systems have begun to embrace more se-

ity of managing the large and fluid environments (e. mantically rich conditions [16]. Such conditions can test

RBAC [22]) or address the requirements of specific infgpje state of the environment, presence of qualified or autho-

. . - . rized entities, or perform complex algorithms (e.g., query
mation models (e.g., lattice [1, 21]). Similarly, evolvmgdnd interpret print queue length). However, existing im-

*This work is supported in part by the Defense Advanced Reseapiementations of these conditions are largaliyhoc each

Projects Agency (DARPA) and Air Force Research Laboratory, Air Forﬁ w condition is typically hard coded in policy evaluatin
Materiel Command, USAF, under agreement number F30602-00-2-050% yp y P y 9

The U.S. Government is authorized to reproduce and distribute reprﬁﬁ’étw_are'))]
for Governmental purposes notwithstanding any copyright annotationl hiS paper considers context requirements and services
thereon. The views and conclusions contained herein are those ofith@uthorization policy. We begin by classifying the use,

authors and should not be interpreted as necessarily representing th faberties and security requirements of context evaluation
cial policies or endorsements, either expressed or implied, of the Defense’ ’)

Advanced Research Projects Agency (DARPA), the Air Force Reseal Ilﬂ_'le ?OmeXt is repre;ented anq obtained by contempora_ry
Laboratory, or the U.S. Government. policy infrastructures in vastly different ways, these classi-

V\(:ontext is modeled throughout as parameterized func-

fications show that they all are defined along common dienditions through the extension of the evaluation infras-
mensions. It is the identification of these dimensions thimticture. Note that because these systems assume policy
led to the design of the Antigone Condition Frameworkonforms to a predefined schema, all conditions must be
(ACF). Built within the existing Antigone/lsmene policyknown a priori. Run-time conditions are supported by
framework [15, 13], ACF provides a general purpose sdixing the kinds of conditions that policy may use, rather
vice and associated API used to integrate context into #ran fixing values before evaluation (as seen in the systems
bitrary policy infrastructures. We present and illustrate thebove). Because support for each condition can be built di-
ACF design, and conclude by considering directions for fuectly into the enforcement infrastructure, no general con-
ture work. dition framework is necessary.

This work extends the traditional notion of policy condi- In more general settings, anticipating all possible condi-
tions. Throughout, conditions are not seen as singular gions that a policy may use is not feasible. For example, the
pressions over a fixed set of attributes, but viewed as p@eneric Authorization and Access-control API [20] (GAA-
grams. One key aspect of this extended view is the ne&Bl) defines interfaces for a general purpose policy infras-
for additional security infrastructure. Because the polidyucture. Conditions are arbitrary functions that are defined
is driven by external forces, it is necessary to ensure thmt the type, name, and governing authority. Conversely,
the means by which these forces are measured is consigsmene, very little is assumed by the policy infrastruc-
tent with local requirements (i.e., data is faithfully obtainetlire [14]. Unlike GAA API, Ismene policies do not iden-
from trusted sources). Condition security largely been ouify which authority, if any, should govern the evaluation
side the scope of contemporary works in authorization pgirocess. Both of the systems leave the vast majority of con-
icy, and is a central topic of this paper. dition evaluation to the supporting implementation. Each

system provides ampcallinterface, but by an large, neither

mandates how how the requirements for secure evaluation
2 Related Work are identified or addressed.

It is interesting to note that possibly the most flexible

Many policy infrastructures do not explicitly support condipolicy language, PolicyMaker, does not explicitly support
tions. For example, the KeyNote system is general purpasg@ernally evaluated conditions. PolicyMaker views policy,
framework used to govern authorization policy. Signeghlled filters, as having “the full complexity and expressive-
policies, called credentials, define the conditions undggss of general programs” [5]. Blaze continues by stating
which an authority grants access to a particular resourcggat, “There is no need [for the PolicyMaker policy infras-
KeyNote provides a flexible algebra for specifying logicatucture] to open files or interact with the network.” This
condition expressions over string and numeitributes paper seeks to extend the PolicyMaker model model not
Each attribute value is known prior to the evaluation of poby allowing programatic policy, but by deferring complex
icy. Hence, because the value is fixed befany policy run-time operations to externally evaluated conditions. The
is considered, there is no opportunity for policy to defeemainder of this paper considers the properties, require-
to external evaluatioh. The Akenti system [24] also as-ments, implementation of such conditions.
sumes attribute values are known prior to policy evaluation
(Akenti’'s author indicate that run-time evaluated conditions
are also on the horizon). Conditions are encoded in Ake@i Policy and Context
throughUse Certificats. These certificates are similar in
form and function to condition expressions of KeyNote, biRolicy infrastructuresevaluate and enforce policy. Note
are restricted to the vocabulary of the domain in which thelyat in practice the policy infrastructure may span services
exist. and applications. For example, Blaze et. al. describe an

Some approaches simplify evaluation by fixing the setfrastructure used to implement IPsec Policy [7]. The ap-
of conditions available to policy. Both the MSME [19]proach integrates KeyNote [4] (policy evaluation platform)
and the Security Policy System (SPS) [28] limit conditionsith an OpenBSD implementation if IPsec (enforcement
to only those needed by each target domain. In the cadatform). We refer to the combination of a policy decision
of SPS (which governs IPsec communication), ports apdint (PDP) and policy enforcement point (PEP) as the pol-
end-points largely dictate where access is granted. Becaigyanfrastructure. Note that this does not mandate that both
SPS is built on the more the general IETF Policy Frameervices coexist within the same host.
work [17], SPS can be extended to include run-time con- A generic condition environment is depicted in Figure 1.
ditions. MSME similarly can support externally evaluateth response to some attempted action, the policy infrastruc-

1The authors of the KeyNote system have considered extending Hﬁllge evaluates policy. A condition used by the policy is

model to includeactive attributeg10]. These attributes would call exter€Valuated by the infra}StrUCture py extracting state (possibly
nal function (code) at the time a condition expression is evaluated. ~ through a parameterized function) from a local or remote

Policy it
Infrastrueture . Conditions are mostly frequently used 'Fo construct.pol—
Poiicy icy rules. Each such rule represents a logical expression of
Enforcement conditions and Boolean operators. Subject to rule process-
Point_ ing discipline (e_.g., rule orde_ring), the policy rule is applied
¥ Policy | where the condition expression evaluates to true. For exam-
Dec'(S'F'f’D”P';O'”‘ ple, a traditional firewall rule:
Aversary SRC=192.168.7.8:22,DST=192.168.7.27:* — accept

follows this model. The rule states that all traffic that
satisfies the condition expression (i.e., where source ad-
dress/port, and destination address are equal to the iden-
tified values) should be allowed (i.e., defines an accept pol-
icy). Other policies languages generally work analogously,
where the form of policy, the semantics of the expressions,
and the range of supported conditions may differ. Other
Figure 1: Condition Evaluation policy infrastructure ex- \yorks have focused on the preceding issues of form and
tracts information from (internal or external) Cond't'or!;emantics, but have largely ignored supporting conditions.
sources via parameterized function. This information if,;g paper is dvoted to this last aspect of policyvhat

used to determine how policy is enforced by the Policy ERings of conditions are needed, how are they implemented,
forcement Point (PEP). An adversary may attempt to i34 how do we make them secure.

fluence policy by manipulating the PEP, the PDP, or the
condition source.

A
al,a2,.) 1Tue

“~X—
=
Condition

Source

o

3.1 Condition Properties

Conditions are defined by their evaluation algorithm. Each
condition source This state may be interpreted or transg,ch algorithm is classified by the kinds of information it
formed by the policy infrastructure to arrive a condition réacquires and how, where, and when it is acquired, the how
sult. An adversaryattempts to alter condition results byhe received information is used. Gleaned from the col-
manipulating the environment (e.g., by altering messag@gtion of conditions used by the Ismene test-bed applica-

passed between the source and PDP). tions [12], the following properties characterize these algo-
Conditions are simply functions that are used to megthms:

sure context. Every condition is a function of zero or more
argumentsdy, as, ..., a,). Each parameter is a static or e local/remote- As seen in traditional policy systems,

variable value (i.e., identified by the policy infrastructure
at run-time). Throughout, it is assumed that all conditions
are Boolean (i.e., results if restrictedttae or falsg. Non-
Boolean conditions (i.e., functions with continuous or dis-
crete output) can lead to complex policy evaluation (in both
the intuitive and complexity-theoretic sense). However, it
is expected that the evaluation of conditions defined over®
these non-binary conditions would not be qualitatively dif-
ferent than the procedures defined throughout.

Note that policy may require the evaluation result be fur-
ther qualified. For example, where the result of evaluation
is positive, the result can provide additional information
(e.g., a cryptographic algorithm that must be used to en-
crypt session traffic). Where the result is negative, further
detail information could be similarly provided (e.g., condi-
tion failed because missing credential). The PolicyMaker
system supports the inclusion of additional context by sup-
porting annotations [5]. Support for such features would
represent simple extensions to the framework described in,
this paper. However, for ease of exposition, exploration of
annotations is deferred to future work.

2These annotations are not strictly supported by the condition evalua-
tion, but rather are added when a condition equation evaluatassto

local conditions are evaluated without any external in-
put. For example, an conditiatvstname(bob) tests
whether the local hostname is “bob”. Clearly, this
does not need external information, and can be eval-
uated through locally configured values.

data/computation Data driven conditions simply test
the existence or value of some known state vari-
able. Conversely, computation-driven conditions im-
plement (sometimes complex) algorithms for com-
puting condition results. For example, \al-
ueEquals(a,b) condition tests whether the values
are equal. Conversely, the conditiaamvalue-
GreaterThanZero(a,b) performs some computation
on the state prior and tests some aspect of the result.
This distinction becomes interesting when the com-
putation becomes complex, e.g., where multiple data
sources must participate in the computation.

stateful - Stateful conditions modify (rather than
just acquire) state during evaluation. That is, the
act of evaluation modifies some local or distributed
state. This is useful where the access@msump-
tive. For example, some digital rights systems use

an access counter to restrict the number of timasparticular policy infrastructure views time is largely de-
a particular object is used. A stateful conditioffined by its security requirements. Where the policy only
accessCounter(counter-id,threshold) would test needs a local (and potentially insecure) timing source, the
to see if the counter has remaining accesses, anddhdition could be evaluated locally. If, however, the tim-
so increments the associated counter. Hence, this comg needed to be synchronized across multiple enforcement
dition could be used as a means of restricting accgssints (and secure), it would have to be acquired by an ex-
to the resource (see Section 5). ternal timing source. Note that because the desired seman-

A related property isdempotence Idempotence en- tics may differ from environment to environment, support

sures that the same evaluation returns the same veIRfebOth cor1d|t|ons may be requw_ed (e.g., basaltime
no matter how many times it is called. One can thin@dnetworktime - would made available).

of data driven conditions as being idempotent: the act

of obtaining the value has no effect on the value i8.2 Condition Security

self. Note that external factors may alter the unde{)-
lying value (e.g., changing network conditions). Be-
cause the act of evaluating the condition does not
fect the value, it is idempotent.

ne critical aspect of a condition definition not encom-
assed in the preceding discussion are the condition secu-
rity requirements. Security is really a matter of environ-
mental interpretation: each environment will place a unique
e synchronous/asynchronoussynchronous conditions Set of requirements on the source and methods of condition
are evaluated at the point at which the policy infragvaluation. This is best illustrated by example. Consider
tructure requests it. Conversely, asynchronous confi€timebetween() condition as used in two application en-
tions cannot be evaluated immediately. These prop&fonments, a multiplayer game and an online trading ap-
ties are very similar to non-blocking socket behavioplication.
the policy infrastructure is free to proceed with other For this example, it is assumed that users in the mul-
tasks while the evaluation completes. However, thiplayer game are restricted to particular times defined by

requires that the application using the condition haRolicy. Hence, in addition to testing the appropriate cre-
ability to be non-blocking. dentials, the authorization policy would test to see that user

i f bolicy. th . ¢ is allowed to participate at the current time. Conversely,
Like many aspects of policy, the semantics of @ asyfi:pween is used in the trading application to ensure

chronous evglu_au_on are subject to interpretation. Oﬂ‘?at every transaction occurs during normal trading hours
could be optimistic and allow access on the assu ., 9am-5pm)

tion that the e_vgluatmn would be positive (and r?"?", Now consider the security requirements of each of these
access later if it proves not to b_e so), or p?ss'm'Sté(hvironments. In the online game, it is likely that the only
aqd delay or p.revent access until the cpndmon e_val 2quirement is for authenticity (i.e., to prevent the player
ation Process IS completed. The selec_:t|or_1 a particuias, forging timing information and gaining access dur-
me_ta—pohcy for asynchronous evaluation is left to thﬁlg restricted times). The same condition will have much
policy infrastructure. stronger security requirements in the trading application.
An example asynchronous conditiorndsNSAuthor- To protect all participants, the trading application will re-
ity(dom,srv) . This condition tests whether the servequire some after-the-fact evidence that the transaction oc-
srvis authoritative for the DNS domaitomas culled curred at a normal time (non-repudability). Other factors
from the whois service. In most applications, besmay contribute to the security requirements. For example,
cause it would be highly undesirable to block all opexistence of a transaction (and not necessarily its contents)
erations until thewhois lookup is completed, it is may be valuable information. Hence, the evaluator may re-
advantageous to allow the condition to complete asyguire anonymity and/or confidentiality.
chronously. Note that many sources of condition information (the
timing source in the previous example) will have their own
Clearly, these categories are not mutually exclusive nanthorization policy Hence, where complex conditions are
exhaustive. For example, a condition may use the resulterfiployed, it is important to consider how these policies are
stateful acquisition of remote values that are used as inplaffined, and at the end-points, used. Such organization can
to computation. Section 4 considers the degree to which tlead to recursive policy evaluation. We see the evaluation of
condition definition (as classified along these dimension)e interaction between condition evaluation infrastructure
dictates the ways the condition, and ultimately the policsind the supported policy systems as a key area of future
can be evaluated. investigation.
The semantics of a condition are often subtle. For ex-A key question is whether an condition can be designed
ample, consider a conditialmebetween(9am,5pm) . How in such a way that it will be able to address a large number

of security requirements. One of the key design goals of thee anonymity The identity of the evaluator should not be
the Antigone condition API is to support just this model. known by the condition source. Moreover, an adver-
However, as seen in Section 5, one cannot anticipate all sary on the network should not be able to reasonably
possible security requirements. ascertain the existence of the evaluation or identity of
The condition schema defined in Section 4.1 is designed the evaluator.

to specify the following security requirements/properties. Note that in some instances, achieving anonymity is
These properties came about from a study of the conditions y;fficult (more than simply encrypting communica-
used by the AMirD multiparty file-system mirroring and tion). For example, again consider theebetween()

other example applications [12]. While we acknowledge .gndition. If a well known timing source is used,
that many other properties and definitions exist, we argue ihe existence of communication between the evalua-
that these are suitably representative to develop an under- i, 5nd the timing source may expose the evaluation,
standing of condition security. However, the schema may ¢ condition evaluation is the only reason that the
be extended as need to encompass additional properties. oy ajuator would communicate with the timing source.

» confidentiality- An adversary must not be able to aswhile these properties primarily address security require-
certain (with some fairly high probability) the condi-ments of remote evaluation, they also may be important in
tion or parameters being evaluated. Generally, this figcal environments. For example, any system may wish to

quires that the content of communication be made iRrevent an adversary from manipulating locally stored sys-
accessible (e.qg., via encryption). tem state.

e integrity - The adversary must not be able to alter the .
results of an evaluation. For this property to be pré.3 Evaluation

served for a remote condition, the parameters must B& . jisions are often characterized simply as functions.

falthfI;JIIy c?rl;]murglcateéd to rt]he remg?fe. entity, and the ., condition maps a set simple inputs onto a set of sim-
result must be returned without modification. ple outputs. However, such characterizations make a num-

« authenticity- The evaluator must be able to ascertaifer of assumptions about the behavior of its evaluation.
the origin of the evaluation result. If the source of he condition is assumed to have valid input that is always

condition evaluation is not authentic, the policy infra2vailable (one can think of persistent state as input). The
tructure is subject to manipulation. For example eftbstraction of function fails to capture the fact that condi-

ther as a man or in middle or by masquerading as itigns are not always mathematical operations, but must be

source, an adversary could intercept and alter resuighsitive to the constantly evolving environment in which

to allow itself or cohorts access. Where such an 4f1€Y exist. L L
tack is mounted to attempt a denial of service, it could Possibly a more useful characterization of a condition is

prevent any legitimate activity could be prevented bij'at €ach representspgogram This extended view em-

blocking all access to the protected resources. races the dynamicity of the environment: conditions can
fail because of insufficient or unavailable resources, have
¢ non-repudability A condition source must not be ablenvalid input, or simply take too long to evaluate. This
to claim that it did not assert a returned result. This igew of condition places additional requirements on the au-
important where access to highly valued resources dh@rization policy infrastructure. That is, the infrastructure
being governed by authorization policy. For examplanust accept and carefully consider how authorization pol-
the trading example above will accept or reject trangsy is evaluated in the presence of such failures. Note that
actions based on the evaluation result received frdsanket policies such as “treat every failure as a negative
the timing source. Because this acceptance or rejeéesponse” may provide a means by which an adversary can
tion may have serious legal or financial ramificationspnanipulate policy evaluation. Note that the these meta-
some evidence of the correct evaluation is necessgpglicies are often a function of the semantics of the pol-
Should a dispute arise, the trading service (applic&y language, and are not necessarily defined by the policy
tion) would want demonstrate that if correctly evaluinfrastructure.
ated policy. Assuming non-repudability is provided, Note that a perfectly implemented application can be co-
if the timing source incorrectly evaluated the condiepted by a poorly implemented condition. For example,
tion, then it could not later deny this fact (and would@onsider the trading example in the preceding section. As-
be culpable} sume that every transaction is governed by a policy that
3To ease exposition, the above description simplifies secure tranga%?s thetimebetween(cqndmon. Any aQVersary that
tion timing. In practice, the transaction itself must be tied to the imiN}Shes to prevent transactions from occurring can DOS the
information (in some cryptographically strong way). timing source. Note that this vulnerability is not a function

of the trading application, but is a function of the policy Evaluator Host

that governs it. Such dependencies can be overlooked (or
be unknown) at the time applications are built. Hence, it Process Pred.
is incumbent upon the developers of the condition imple- Source
mentations to anticipate and address the needs of the target >
applications.

Policy infrastructures are increasingly allowing applica- N
tions to provide the conditions upon which policy decisions AN
are made. Systems like Antigone [15] and the Generic Au- User Space\\\\(
thorization and Access-control APl (GAA-API) [20] pro- L2222 <N ---
vide genericupcall interfaces to which condition imple- Kernel pata

mentations are built. Applications register at compile or
run-time the set of conditions to be supported by the appli-
cation. The policy infrastructure passes thevahtstate Figure 2:Local Evaluation The condition is implemented
through the upcalls. The condition specific code is exby a call to some local host service. This information can be
cuted and results returned to the policy infrastructure. Bgecessed using local services (e.g., via IPC) or by extracting
cause these upcalls are essentially programs, they are fréermation directly from the kernel (e.g., via system call).
to implement a wide range of functions.

The following considers broad classes of condition im
plementations. These design pattern represents type of cc

Evaluator Host Predicate Source Host

ditions observed in existing policies, or those as designe | | Process = sirfr?;é
to support the Antigone project. > >

Condition function conditions of this type are simply com-
putable functions. Often using state that is internal to th

application, these conditions simply test some property ¢ f-22P2%¢__. LABEL - | UserSpace .
the environment. For example, consider the ubiquitou
conditionusername(name) . This condition tests whether

the local identity name is equal to the parameter stringiq re 3:remote method invocatioriThe condition is im-

Such conditions are encoded, for example in KeyNote, g&mented as a call to remote function. Existing mecha-

equations, e.g. nisms (e.g., RPC, CORBA) provide functional semantics,
and can readily be used to implement policy conditions.

(username == "bob")

The key aspect of these conditions is that they can be im-_ din Fi 5 h conditi f
plemented directly in the application or the policy infras- bepicted in Figure 2, each conditions extracts state from

tructure. This pattern is representative of the vast majorfpye local environment. In_ the case wh_ere state is held or
of conditions seen in policy systems. computed by a local service (e.g., monitor process), some

IPC mechanism is necessary. The means and format of
Local evaluation- locally enforced conditions performsuch communication is dependent on the service and se-
some evaluation function by extracting and manipulatingantics of the condition. Other mechanisms allow state to
state on the local host, but external to the process addreesetrieved from the operating system itself (e.g., via sys-
space. The distinction between local evaluation and caem call).
dition function is useful because process external infor- o canonical local evaluation condition isystem-
mation is subject to external forces. Unseen adversariggcomponent,thresh) . This condition tests whether
can manipulate local resources and state (i.e., modify th&nreshold load on some aspect of the system has been
letc/password file on a UNIX system). Hence, thereached. As such, it can be used as a form of admis-
threat models appropriate for the condition classes are fibon control in authorization policy: access is granted only
damentally different. Moreover, depending on the natuighere the system has sufficient resources to support it. This
of the Condition, the ways in which conditions are |mp|QNou|d imp'emented by po|||ng a monitoring process or di-
mented are likely to be very different. rectly extracting it from the kernel via system call.

“Note that additional systems engineering (e.g., redundancy) of ﬁ\gmote method invocationthese conditions simply poll
condition evaluation infrastructure, rather than the application or servicé

is the only means by which these issues can be dealt with. In this cgggprnal SerVi(fe_S- One can view these condition implem?n'
alternate timing sources can be used to mitigate this attack. tations as traditional remote procedure calls [3]. Figure 3il-

Data Src Host

tions. Such implementations can represent more extensive

:| programs which may involve interactive protocols involv-
Stubs uf ing many end-points. Depicted in Figure 4, the conditions
Evaluator Host / / ________ Data Src Host can be presented to the policy infrastructure as a single stub
Process function. However, beneath this simple veneer lies com-
- //B plex logic which coordinates the data and protocols needed
«—d [T to evaluate the condition. Note that it may be possible to
- Data Src Host for an implementation to be (at least partially) constructed
ha \ from more basic conditions. This is similar in philosophy
User Space ﬂ to the component systems and protocol stacks [2], and is
[Kemel T INL e illustrated in the following example.
\Data Src Host A lock algorithm is a good example of a complex condi-

ﬂ tion. Consider a conditionasLock(lock-id) , wherelock-

id is some lock passed between a number of peers. The
""""" condition returngrue the local host currently has or is able
to obtain the lockock-id. An implementation of the condi-
tion initially tests the local environment to see if it already

E'?#]rﬁeﬁgggglgx gg&détggtﬁgﬁl:?gﬂEﬂﬂ;}cgrnd:g?;c has the lock (e.qg,. through, for example, a local or condition
P red by 19 b UnctionhasLockLocal(lock-id)). If not, it will attempt to
T'h.ese conqnpns are frequently designed to support Spe(‘:'quire the lock by performing a distributed computation
C'f'.c authorlzatl_on policy needed to govern the target app and possibly talking to every other peer in the system). If
cation or domains. the lock protocol is successful (in the sense that the local

entity obtains the lock), then the condition returns true.

lustrates the common RMI condition design. The condition
marshals and transmits input parameters to a remote s&r-
vice through astubfunction, and receives and unmarshals
the results. Frameworks supporting this design comm
in contemporary distributed systems (e.g., CORBA [2

Condition Framework

r]<ey observation gleaned from the classification presented

SOAP [8], Java RMI [9]). A key advantage of using thesehthe preceding sectlo_n is the degrge to which condmpps
: . . share common properties. We exploit these commonalities
frameworks is that they are often implement their own se-

o . . n ignin neral pur ndition servi n -
curity infrastructure. Note that the security reqmremenlt designing a general purpose condition service and as

S . . o
of RMI methods are very different from previous de3|gn‘°éoc'a}t.ed API. The Antigone Condﬂpp Framework (ACF)
. Specifies and directs the use of conditions through common
(i.e.,, remote vs. local threats). : .) .
It is worth acknowledaing that while the precedin disartlfacts and processes. The remainder of this section con-
; Knowledging e p) 9 siders in detail the design and use of this framework and
cussions have implied the remote entities that “perform

- . . o concludes with a discussion of the advantages, limitations,
the condition evaluation operation, but this is not necessat-

ily the case. In practice, conditions may make use of poE}Pd opportunities afforded by its architecture.

. . ; . .~ ACF supports the creation and evaluation of policy con-
externally available interfaces to acquire the information : o . 7
. . ditions. Depicted in figure 5, the life-cycle of a condition in

lated in some way to implemented the condition semanti%é(.:':. IS d.Emed.bY three central Processes. c_ondﬁmm-
ication instantiation andevaluation Initially, infrastruc-

The distinction here_ by re!’“‘_’te service being po".?uare developers will define the sets of conditions that are
need not necessarily be aware it is part of an evaluation : S S

g . made available to the policy issuers. This includes the cre-
process. This is best illustrated by example.

Consider yet again thenebetween(start.end) condi- ation of an implementation as well apecifyinga defining

.) N . . Antigone Condition Document (ACD). This document is

tion. In practice the condition is most likely implemented . L

. T e .~ Used to detect incorrect usage when the policy is issned (

by polling a remote timing source. The timing source sim-_~ . . R . .

. - . stantiation). The condition isevaluatedmplementations

ply returns the current time. The receiving stub will trans- ' o
late the current time into a result: in this case determinirrlnade available to the ACF when policy is used.

' gNote that while this framework is targeted to the

if the current time is betweestart andend Because time : o . >~)
. . . Antigone/lsmene system, it is policy agnostic: that is, any
is returned, the same service can be used to implement an . » o
o policy language is free to use conditions built within this
number of conditions (e.gsweekday()). -
framework. However, the policy infrastructures often must
complex conditior conditions often require implementa-modify the evaluation process to embrace run-time condi-

tions that are hybrids of local, remote, and functional condien evaluation.

<IDOCTYPE condition [

------------------------- Impl.

Developer <!-- General Section -->

\ <IELEMENT condition (name, version,
secpolicy?, parameter*)>
/ <IATTLIST mode (synchlasynch) "synch">

<IELEMENT name (#PCDATA)>
________________________ ACD <IELEMENT version (#PCDATA)>
- X h

ACD Repository Specification <IELEMENT implref (#PCDATA)>

Tt <!I-- Security Policy Section -->
Instantiation <IELEMENT secpolicy (service,authority*)>

Issuer <IATTLIST secpolicy confidentiality (T|F) "T">

- <IATTLIST secpolicy integrity (T|F) "T">
<IATTLIST secpolicy authenticty (T|F) "T">
<IATTLIST secpolicy nonrepudation (T|F) "F">

ACD |t--{ACD |-» FI;initf){ <IATTLIST secpolicy anonymity (T|F) "F">

<I[ELEMENT service (#PCDATA)>
<IELEMENT authority (name?,encoding,credential)>
<IELEMENT encoding (#PCDATA)>

Poli <l-- Parameters Section -->
olicy <IELEMENT parameter (order, const,

value, encoding?)>

Impl. Repository

fmmm e e e e e e e e e mmm e m o ———————

- P Evaluation i <IATTLIST parameter (string | boolean |
A float | integer |
|mp| POIICy encoded) #REQUIRED>
: v <IATTLIST const type (T|F) #REQUIRED>
ACD 4 <IELEMENT order (integer)>
T -- -p <IELEMENT value (#PCDATA)>
. Policy <IELEMENT encoding (#PCDATA)>
H Infra.
L, _»| <!-- Base Types -->
Impl. <IELEMENT integer (#PCDATA)>

>

Figure 5: Condition Life-cycle - conditions are specified ifrigure 6: Antigone Condition Document DTD - the ACD
Antigone Condition Documents (ACD) and implemente®TD defines the basic condition type, a security policy, and
during conditionspecification The ACD is subsequently a set of expected parameters. This information is used at
used to validate issued policy (durimgstantiatior), and policy issuance and evaluation to ensure correct condition
ultimately to direct the use of the condition (during policyisages, as well as a roadmap for execution.

evaluation).

implementation (see Implementing Conditions 4.4 below).

An initial version of ACF is under construction. As is . . " . .
true of any large framework, any number of issues wil The security policy identifies the security requirements
h%t are ratvant to thecondition. The requirements are

emerge as the implementation matures. For this reason,{ Lo i
section centrally focuses on the means and use of ACF gﬁpresented through a set of flags indicating what specific
perties are of interest. The service element is an opaque

terfaces. We plan to complete the construction and rethFf_) 4 to identify which ity infrastruct hould
on performance and usability issues in the near future. string used to iden ify whic secunty infrastructure snou
be used to implement security (e.g., IPsec). Finally, the set

o . of authorities used to perform evaluation, if any, are en-
4.1 Specification coded as indicated by the element definition. Note that be-

The specification process defines the semantics of a corf@uSe local evaluation conditions do not consult external
tion through through an implementation. The ACD defing¥PUrces, security policy is optional.
how a policy must communicate with this implementation. Finally, the parameter section defines the expected in-
The ACD is simply a XML document conforming to thePut. This includes the obligatory ordering and type enu-
ACD document type definition (DTD). Presented in Figmeration, as well as constant and encoding definitions. The
ure 6, this DTD is comprised of three main sections, a gefPnstelement indicate whether the input value is fixed by
eral section, a security policy, and the parameters sectioROlicy definition or asserted at run-time (e.g., like KeyNote
The general section specifies the high level attributesributes). Where the type is not atomic, encoded forms
the condition. This includes a definition of the name arf€ supported (e.g., PKCS#12 encoded certificates).
version information, as well its mode of operation. The An ACD is created by partially instantiating the objects
mode determines whether the condition is synchronousdaefined in the DTD. For example, Figure 7 presents an
asynchronous (see Section 3.1), the implref identifies tA€D for ahasToken condition. This condition takes three

<?xml version="1.0" encoding="ISO-8859-1"?>
<IDOCTYPE note SYSTEM “acd.dtd">

<condition mode="asynch">

<l-- Security Policy -->
<name>hasToken</name>
<version>1.0</version>
<implref>libhtok.1.0.so</implref>

<l-- Security Policy -->
integrity="T"
authenticty="T"
anonymity="F">
<I-- Note that run-time policy evaluation
will insert authorites -->
</secpolicy>

<l-- Parameter List -->

<l-- Token ID -->
<order>1</order>
<value>tokenid</value>

</parameter>

<!-- Token Authority Certificate -->
<order>2</order>
<value></value>
<encoding>PKCS#12</encoding>
</parameter>

<l-- Wait Time -->

<parameter type="integer" const="T">
<order>3</order>
<value>60</value>

</parameter>

</condition>

The ACD indicates the three parameters are used. The first
parameter is a string constant defined by the policy. The
tigertokenstring fulfills that definition and the parameter

is accepted as valid. The second parameter is marked as
a run-time attribute (i.e., const="F"). Because the second
parameter is marked as a run-time ('$’-symbols indicate at-
tribute replacement in Ismene), the second parameter is ac-
cepted. One might assume that because definition is miss-
ing the last argument that the condition would be rejected.
However, because the ACD defines a default value for the
last parameter (i.e., in the value element), it is automati-
cally inserted. Because all parameters are consistent with
the definition, the condition is deemed correct.

In practice, policy editors will use libraries of ACDs to
interpret and verify issued policy. It is incumbent upon the
administrators to provide ACDs for all of relevant condi-
tions. For example, an LDAP directory [27] of ACDs XML
documents could be maintained by the policy issuers. The
design and maintenance of these repositories is outside the
scope of the current work.

4.3 Evaluation

The policy infrastructure calls thaCF.evaluate func-
tion to execute the evaluation process. This call (and the
ACF-specific return enumerate type) are defined:

typedef enum { ACF_false = 0,

ACF_true 1,

Figure 7: Example ACD - theasToken condition attempts ACF fail = 2,

to acquire a named token from the authority identified in } :é:'f_asyﬂCh =3
- result;

the parameter list.

arguments, a token identifier, a certificate, and a wait timer.
The corresponding implementation attempts to acquire 5(\)'
ken associated with the token identifier from a service de-
fined in the certificate. If a signed response is received pr%
within the wait time (secondsirue is returned if the token .
is acquired, andalse otherwise. The condition fails if no
response is received in the allotted time.

4.2 Instantiation

A policy editor is an application used to issue policy [26
Such editors are responsible for validating that the poli
is consistent with the policy representation, and is self con-
sistent (e.g., is enforceable [13]). For example, consi
included as part of a

the following call to thehasToken()
larger Ismene policy:

hasToken(tigertoken, $cert)

ACF_result
ACF_evaluate(char *func, int argv,
char *argc, void *context);

ote that all parameters are passed as null terminated
tFings (as in standard C programmiaugc/argv style.
arameters such as credentials must be encoded prior be-
ing passed to the ADF framework (e.g., PKCS#12 en-
coding of certificates). This has the advantage that the
policy infrastructure need not be share domain specific
structures (e.g., internal representations of Kerberos certifi-
cates). Where necessary, the ACD specifies the expected

]encoding scheme in thencoding element in the param-
&;er section.

The evaluate function returns one four return values.

d@pF_true or ACFfalse are returned where the con-

dition successfully evaluates toue or false respectively.
ACFfail is returned when the condition cannot be suc-
cessfully evaluated. The policy infrastructure must de-
cide how to handle these erro&CF.asynch is returned
whenever the called condition is asynchronous.

A policy editor making use of the ACF would begin by Asynchronous conditions are handled by threads created

looking up the ACD fotmasToken()

(defined in Figure 7). during the initial evaluation call. The policy infrastructure

registers an opaqumntext object with the ACF through For all of these reasons, we determined that it is imper-
in the evaluation call. When the evaluation is completedtive that condition implementation lsynamically load-
the framework signals the completion of the evaluation vable To accomplish this, ACF is being built with a con-
callback to the policy infrastructure. The callback suppliedition loader facility. This uses the UNIX dynamic load
a return value (i.e., true, false, fail) and the originally redunctions [18] (e.g.dlopen , disym) to open and read
istered context object. The policy infrastructure maps ttecal libraries. Each condition implementation is provided
context object back onto the suspended operation. in a shared library whose name is specified in the implref
The evaluate function initially acquires the ACD assocelement of the ACD. The library exports a single symbol,
ated with thefunc parameter from a ACD repository. Thea function with the condition name that receives a single
parameters are validated as in the instantiation (with the ekaracter pointer (the ACD).
ception that all non-const values are now instantiated). AWe intend to investigate more flexible distribution meth-
new ACD with the new parameters values and authoritiegls for condition implementations in the future. For exam-
is created. The registered implementation is called withpée, the ACF could download implementation from a cen-
single argument, the ACD. tral (and presumably authenticated) repository when an im-
plementation is not locally available. However, such meth-
ods must be carefully designed to avoid introducing new

4.4 Implementing Conditions vulnerabilities (e.g., possibility of DoS).

Conditions are implemented as threads. Each such thread

accepts the singular ACD object, and interprets the param- . .

eters accordingly. A number of utility functions are bein® DISCUSSION

created to ease the process of condition creation (e.g., pa-

rameter extraction, credential decoding). What the condihe ability to integrate complex and distributed condition
tion does, how it does it, and the resources it uses is entirelyaluation within authorization policy opens the door to
up to the developer. new uses of policy. For example, consider th&To-

The ACF does not provide a specific security infrastrugen condition in the previous section. Applications which
ture: all details of how the security policy is enforced is lefare regulated with this condition automatically implement
to the condition implementation. The reasoning for this désken-based operation. Hence, through condition evalua-
cision is simple, we cannot possibly anticipate all the poien, authorization policy can define application behavior.
sible infrastructures and approaches to providing sectrityhis policy-oriented programmingnables application fea-
Hence, we defer issues to the implementation. It is impdures to be transparently added through the use of context.
tant note that does not mean that condition security is fixedAspect-oriented programmir[d 1] seeks to implement
service. Inasmuch is possible, each implementation shohigh-level features through object technologies (e.g., in-
be able to deal with the the security policies communicatééritance). Policy-oriented programming differs not only
by ACDs. This adds additional flexibility, where the particin approach, but by whom and when application behavior
ular environment can dictate the security needs by modifig-delegated. Policy approaches allow domain administra-
ing the ACD, rather than the implementation. tors (issuers), rather than developers to decide which fea-

Note that in practice, many conditions are implementedres an application will implement. Moreover, based on
as external programs (i.e., shell scripts [5]). ACF suppotfse semantics of the policy representation and evaluation,
these implementation by creating a thread that, after gueicious use of condition allows the developer to clearly
tracting the parameter values, simply forks the appropriapecify how, when, and by whom these features are used.
process and sleeps until that process terminates. Moreover, policy base programming occurs at a finer-grain:

One of the central issues associated with implementaatures are applied to individual actions, rather than on the
tions is the means by which they are loaded. Requiring tregiplication as a whole.

ACF De linked against every possible condition implemen- gia1e maintenance in condition evaluation can compli-

tation is problematic. Firstly, this would require that everlata policy. For example, consider an authorization policy

condition be knowra priori, which is exactly the kind of e representing the conjunction of two stateful conditions
assumption ACF is designed to avoid. Secondly, evenhgsToken(a) andhasToken(b) . Now assume in a partic-

one knew (and could acquire) beforehand the implemenigz - o ajuation, an evaluator obtains tnéock, but notb.

tions of every condition, the resulting executable would b, g oneration would be rejected. The evaluator would hold

huge. Finally, this requires that the ACF be rebuilt everyq 1o 5 byt not perform the association action (which
time a new condition is introduced. we assume releases the lock). Moreover, if another evalua-

SWe expect to explore standard security services as more experié%éjbtained the lock, but could not obtair, a deadlock
with the framework is garnered. would occur.

10

Ryutov and Neuman [20] address the state maintenaricglementing libraries. ACF is a general purpose frame-
problem by introducingpre-, mid-, and mid-conditions work. Subject to semantic restrictions, any policy infras-
These conditions essentially identify the operations thaticture can be augmented with ACF conditions. Hence,
must occur at different phases of the action. Hence, ttlee ACF can be used to expand existing policy with more
underlying code can manipulate state as is necessary ffexible context.
the application. We are currently looking at a condition- The extended view of conditions affords new ways of
centric version of this approach. The modified approadéveraging policy. Policy based programmingllows pol-
informs condition implementations that the action/rule tigy issuers to augment existing applications with new fea-
which they are attached was rejected, failed, or completeaes through the specification of authorization policy (e.g.,
successfully. Each implementation is expected to perfoimplement distributed locking through condition evalua-
the appropriate processing based on the result informatigion). Hence, issuers are able to Uate-bindingto add

While this work has discussed the security needs of cdilvironment-specific application behavior. Moreover, the
dition evaluation, the infrastructure described in the pr@Pplications need not be aware of the added functionality.
ceding section does not indicate how these needs are adLhe current ACF implementation is a very rough proto-
dressed. The reason for this is two-fold. Firstly, buildinfyPe. In the near future, we intend to complete the code
a security infrastructure that meets the needs of all posaid experiment with many different kinds of conditions.
ble environments is impossible. Hence, specifying specifi$ part of this process, we will refine the schema and con-
technologies (e.g., PKI, AES) is inherently limiting. Fosider the design of directory services used to store ACDs
this work, we have chosen to focus on the interfaces afld implementations. Other works will investigate how
definition of conditions, rather than their implementation.Policy-based programming is used to support flexible envi-

Secondly, security requirements often can only be mi&hments. Itis through these works that we hope to expose
through integration with existing security services. One ithe semantic depth, and hence the value, of policy context.
lustrative application is a shopping application. An autho-
rization policy governing the purchase action would indi-
cate that the credit card purchase must be accepted by References
Secure Electronic Transactions (SET) protocol. Because it
is unlikely that any general purpose infrastructure will im-[1] D. Bell and L. LaPadula. Secure Computer Systems:
plement SET, it must be implemented within the condition = Mathematical Foundations and Model. Technical Re-
(or application). Because many such dependencies exist in port M74-244, MITRE Corperation, Bedford, MA,
real applications, attempting to construct a single frame- 1973.

work that addresses all conditions is not realistic.
[2] Nina T. Bhatti, Matti A. Hiltunen, Richard D.

) Schlichting, and Wanda Chiu. Coyote: A System
6 Conclusions for Constructing Fine-Grain Configurable Communi-

cation ServicesACM Transactions on Computer Sys-
In this paper, we have considered traditional and extended tems 16(4):321-366, November 1998.

views of policy conditions. In its extended form, we view

conditions as programs, rather than as expressions defingg A. D. Birrell and B. J. Nelson. Implementing Remote
over afixed set of attributes (as one would see in contempo- Procedure Calls. |Proceedings of the ACM Sympo-
rary policy systems). However, we must acknowledge the sjum on Operating System Principjgsage 3. Asso-
additional security and infrastructure requirements that this ciation for Computing Machinery, 1983.

view introduces. Our taxonomies of condition type, eval-

uation method, and security requirements show that corj4] M. Blaze, J. Feigenbaum, John loannidis, and
ditions are largely defined along similar axises. Because A. Keromytis. The Role of Trust Management in Dis-
conditions share similar properties, we can contemplate tributed Systems Security. I8ecure Internet Pro-

general-purpose facilities. gramming: Issues in Distributed and Mobile Ob-
We have designed the novel Antigone Condition Frame- ject Systems/olume 1603, pages 185-210. Springer-
work (ACF). This framework implements a general- Verlag Lecture Notes in Computer Science State-of-

purpose condition specification, implementation, and eval- the-Art series, 1999. New York, NY.

uation service. In ACF, conditions are defined by XML

documents called Antigone Condition Documents (ACD)[5] M. Blaze, J. Feigenbaum, and Jack Lacy. Decentral-
and implemented by dynamically loaded libraries. Atrun- ized Trust Management. IRroceedings of the 1996
time, ACDs are used to validate and initiate condition eval- |IEEE Symposium on Security and Privagyages
uation, and to reference (and potentially acquire) condition 164-173, November 1996. Los Alamitos.

11

(6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

M. Blaze, J. Feignbaum, J. loannidis, anfl7]
A. Keromytis. The KeyNote Trust Management
System - Version 2lnternet Engineering Task Force
September 1999. RFC 2704.

Matt Blaze, John loannidis, and Angelos D[18]
Keromytis. Trust management for IPsécformation
and System Securjt$(2):95-118, 2002. [19]
D. Box, D. Ehnebuske, G. Kakaya, A. Lay-
man, N. Mendelsohn, H. Frystyk Nielsen,
S. Thatte, and D. Winer. Simple Object
Access Protocol (SOAP) 1.2, June 2002.
http://mww.w3.0rg/TR/soapl2-partl/ [20]

Fabian Breg, Shridhar Diwan, Juan Villacis,
Jayashree Balasubramanian, Esra Akman, and
Dennis Gannon. Java RMI performance and object
model interoperability: Experiments with Java/
HPC++. Concurrency: Practice and Experience[21]
10(11-13):941-955, 1998.

John loannidis.Personal communicatigiDecember [22]
2002.

Gregor Kiczales, John Lamping, Anurag Menhd-
hekar, Chris Maeda, Cristina Lopes, Jean-Marc L&23]
ingtier, and John Irwin. Aspect-oriented program-
ming. In Proceedings European Conference on
Object-Oriented Programmingrolume 1241, pages 4]
220-242. Springer-Verlag, Berlin, Heidelberg, an[}z
New York, 1997.

P. McDaniel. Policy Management in Secure Group
CommunicationPhD thesis, Univeristy of Michigan,
Ann Arbor, MI, August 2001.

P. McDaniel and A. Prakash. Antigone Secure GroJ%S]
Communication SystenNASA Tech Brief2001. o

appeal.

P. McDaniel and A. Prakash. Methods and Limitarze]
tions of Security Policy Reconciliation. RD02 IEEE
Symposium on Security and Privaqyages 73-87.
IEEE, MAY 2002. Oakland, California.

P. McDaniel, A. Prakash, and P. Honeyman.
Antigone: A Flexible Framework for Secure Groug27]
Communication. IrProceedings of the 8th USENIX
Security Symposiurpages 99-114, August 1999.

P. McDaniel, A. Prakash, J. Irrer, S. Mittal, and28]
T. Thuang. Flexibly Constructing Secure Groups in
Antigone 2.0. InProceedings of DARPA Information
Survivability Conference and Expositionplages 55—

67. 1IEEE, June 2001.

12

B. Moore, E. Ellesson, J. Strassner, and A. West-
erinen. Policy Core Information Model — Version
1 Specification. Internet Engineering Task Force
February 2001. RFC 3060.

Unix Man Pagedlopen man page. Linux Program-
mers Manual, Section 3.

G. Patz, M. Condell, R. Krishnan, and L. Sanchez.
Multidimensional Security Policy Management for
Dynamic Coalitions. IrProceedings of Network and
Distributed Systems Security 200fhternet Society,
February 2001. San Diego, CAp(appea}.

T. Ryutov and C. Neuman. Representation and Evalu-
ation of Security Policies for Distributed System Ser-
vices. InProceedings of DARPA Information Sur-
vivability Conference and Expositiopages 172—-183,
Hilton Head, South Carolina, January 2000. DARPA.

Ravi S. Sandhu. Lattice-based access control models.
IEEE Computer26(11):9-19, 1993.

Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein,
and Charles E. Youman. Role-Based Access Control
Models.IEEE Computer29(2):38-47, 1996.

Ravi S. Sandhu and Pierrangela Samarati. Access
Control: Principles and PracticéEEE Communica-
tions Magazing32(9):40-48, 1994.

Mary Thompson, William Johnston, Srilekha
Mudumbai, Gary Hoo, Keith Jackson, and Abdelilah
Essiari. Certificate-based Access Control for Widely
Distributed Resources. IRroceedings of the 8th
USENIX Security Symposiumpages 215-228,
August 1999.

Steve Vinoski. CORBA: Integrating Diverse Ap-
plications Within Distributed Heterogeneous Envi-
ronments. IEEE Communications Magazin&4(2),
February 1994.

A. Westerinen, J. Schnizlein, J. Strassner, Mark
Scherling, Bob Quinn, Jay Perry, Shai Herzog, An-
Ni Huynh, Mark Carlson, and Steve Waldbusser. Pol-
icy Terminology Draft). Internet Engineering Task
Force, march 2001.

W. Yeong, T. Howes, and S. Kille. Lightweight Di-
rectory Access Protocollnternet Engineering Task
Force, March 1995. RFC 1777.

J. Zao, L. Sanchez, M. Condell, C. Lynn, M. Fre-
dette, P. Helinek, P. Krishnan, A. Jackson, D. Mank-
ins, M. Shepard, and S. Kent. Domain Based In-
ternet Security Policy Management. Broceedings

of DARPA Information Survuvability Conference and

Exposition pages 41-53, Hilton Head, South Car-
olina, January 2000. DARPA.

13

