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Abstract
Vehicle to Everything (V2X) allows vehicles, pedestrians, and infrastructure to share information 
for the purpose of enhancing road safety, improving traffic conditions, and lowering transporation 
costs. Although V2X messages are authenticated, their content is not validated. Sensor errors or 
adversarial attacks can cause messages to be perturbed increasing the likelihood of traffic jams, 
compromising the decision process of other vehicles, and provoking fatal crashes. In this article, 
we introduce V2X Core Anomaly Detection System (VCADS), a system based on the theory presented 
in [1] and built for the fields provided in the periodic messages shared across vehicles (i.e., Basic 
Safety Messages, BSMs). VCADS uses physics-based models to constrain the values in each field 
and detect anomalies by finding the numerical difference between a field and and its derivation 
using orthogonal values. VCADS evaluation is performed with four real V2X field testing datasets 
and a suite of attack simulations. The results show that VCADS can constrain a variety of real-world 
network environments and is able to detect ~85% to ~95% of attacks coming from an adversary 
capable of perturbing one or more data fields.
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I.  Introduction

Vehicle to Everything (V2X) [2] is a wireless technology 
that allows vehicles, pedestrians, and infrastructure 
to share information. Specifically, V2X operates on 

messages that encompass the current state of the vehicle trans-
mitter (e.g., location, motion, and trajectory). V2X informa-
tion increases transportation awareness, coordination, effi-
ciency, and safety and improves the decision process of the 
algorithms in autonomous vehicles. V2X is critical for the 
overall development of self-driving cars and smart cities.

In the current Institute of Electrical and Electronics 
Engineers (IEEE) 1609.2 standard, the security for V2X 
messages is primarily focused on ensuring the authenticity 
and pseudonymity of vehicles in the network. Although V2X 
security assumes the network data is correct, there are several 
known attacks (explored in [3, 4, 5, 6, 7, 8]) that can affect 
other vehicles in the network. For instance, sensors can 
be fooled to measure false values, internal vehicular networks 
can be  subverted to change data measurements, and the 
onboard V2X system can be  compromised to transmit 
erroneous data.

Basic Safety Messages (BSMs) allow vehicles to periodi-
cally share their location and status. Vehicles with V2X capa-
bilities have safety applications that allow them to process 
BSMs through a variety of algorithms that alert the driver of 
possible dangers on the road. As a result of sensor errors or 
malicious data perturbations, false warnings can be triggered 
by the receiving safety applications. This outcome can 
be observed in the following scenarios:

 • A vehicle falsely reports its location to create traffic jams, 
limit road resources, or reroute other vehicles.

 • A vehicle falsely reports a collision or hazard ahead 
prompting other vehicles to change lanes, slow down, or 
come to a full stop.

 • A vehicle falsely reports its location, speed, and/or 
acceleration values to trigger side or forward collision 
warnings causing other vehicles to slow down, hard 
brake, or potentially collide with each other.

Similar scenarios are explored in [1] for Cooperative 
Awareness Messages (CAMs), the European equivalent to 
BSMs. [1] suggested thresholds for location, speed, and accel-
eration and implemented a Kalman Filter to find inconsisten-
cies in consecutive messages. In this article we use the theory 
in [1] and propose a configurable approach to constrain 
speed, acceleration, location, and five other fields (i.e., 
location accuracy, yaw rate, steering wheel angle, and vehic-
ular dimensions; see Section II-C). Our contributions 
are threefold:

 • Design and implement a misbehavior detection system 
named V2X Core Anomaly Detection System (VCADS). 
VCADS leverages physics-based models of mechanics 
and kinematics that relate and limit several vehicular 
attributes, e.g., structure, turn ratios, displacement, 

velocity, and acceleration, in order to detect anomalies 
and adversarial attacks.

 • Develop a suite of attacks that encompass the common 
V2X Safety Application scenarios and evaluate VCADS 
under adversaries with different capabilities.

 • Evaluate VCADS with four V2X datasets taken from real 
field testing data (22.5 million BSMs) and simulate our 
developed suite of attacks. The results show that VCADS 
can detect anomalies, as well as attacks, that naturally 
occur in V2X communications with a success rate 
between 85% and 95%.

The remainder of the article is organized as follows: 
Section II provides background, security, and applications of 
V2X as a system. Section III describes the attacker model, the 
suite of attacks used in this article, and how VCADS is used 
to detect the anomalies that span from these attacks. Section 
IV explains the evaluation process and shows the results and 
effectiveness of VCADS. Section V highlights related work in 
V2X anomaly detection, and Section VI conveys the key take-
aways of this research.

II.  Background

A.  V2X Infrastructure 
Overview

Sensors and electronic control units (ECUs) were developed 
to improve the overall efficiency, safety, and driving experi-
ence of vehicles. These technologies became increasingly 
sophisticated, resulting in the development of internal 
networks to connect them. The innovation process of these 
systems and the demand for information that understands 
the surrounding interactions and behavior of vehicles inspired 
the first external network specifications (i.e., car to car [9]). 
Ultimately, standardized V2X protocols emerged [2].

Figure 1 shows the components of the IEEE 1609 
network stack. The main focus of this article is the safety 
applications and BSMs [10]. BSMs are the decoded payload 
of a WSM (WAVE Short Message, where WAVE stands for 
Wireless Access in Vehicular Environments) and are detailed 
in Section II-C.

B.  V2X Security Overview and 
Limitations

V2X security provides data transport confidentiality, integrity, 
and availability through public-key cryptography [11], which 
prevents unauthorized communication and allows V2X 
messages to be encrypted or signed. V2X communications 
use long-term and short-lived certificates. Long-term certifi-
cates allow vehicles to communicate with PKI authorities, 
while short-lived certificates are used primarily for V2V 
communication [11, 12].
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While the source that transmits the signals carrying 
BSMs can be validated, the accuracy of the field values within 
the BSMs cannot [13] as sensors may fail or become subject 
to adversarial attacks [5, 14]. An adversary may also subvert 
a node (e.g., vehicle or infrastructure) by attacking its internal 
network or V2X transceiver module and perturbing the data 
that will be sent to other nodes.

The attacks considered in this article compute malicious 
message perturbations to trigger misleading warnings in 
receiving vehicles. Traffic jams, collisions, and subverted road 
resources are the adversarial goal of these attacks. Vehicles 
that are found to be compromised due to consistent misbe-
havior are reported and their certificates revoked.

C.  Safety Applications, Core 
Data Fields, and BSMs 
Overview

V2X allows vehicles to broadcast information and coordinate 
actions using WSMs [10]. The payload of these messages can 
be, but is not limited to, a BSM in the United States of America 
(USA) [15] or CAM in Europe [16]. BSMs and CAMs contain 
data field values that represent the state of a vehicle, measure-
ments of its trajectory and motion (e.g., speed and accelera-
tion), and location (latitude, longitude, elevation). The 
minimum required fields to transmit a BSM are referred to 
as Core Data Fields.

The SAE J2945/1 standard requires vehicles to transmit 10 
BSMs per second [12]. Every vehicle is equipped with a set of 

algorithms known as Safety Applications. These algorithms 
process BSMs in order to assess possible risks and collisions that 
may occur with other vehicles. Safety Applications trigger 
warnings to the driver or self-driving algorithm to prevent such 
scenarios. Vehicles that transmit BSMs are referred to as Remote 
Vehicles (RV), whereas the receiver of BSMs is known as the 
Host Vehicle (HV). All HVs also transmit BSMs and act as RVs 
for other vehicles. The HV and the RVs have their own Safety 
Applications that run locally to enhance road safety by using all 
incoming messages. [12]. From the Safety Application descrip-
tions outlined in [12] and [16], this article focuses on the following:

 • Emergency Electronic Brake Lights (EEBL): Alert 
caused by a hard brake from an RV located in front and 
in the same lane or adjacent lanes with respect to 
the HV.

 • Forward Collision Warning (FCW): Warning that is 
calculated when the HV is likely to have a collision and 
rear-end an RV.

 • Blind Spot Warning (BSW) and Lane Change Warning 
(LCW): Warning triggered due to an HV trying to 
change lanes when an RV is in the path or heading 
towards the lane change path of the HV.

 • Intersection Movement Assist (IMA) and Intersection 
Collision Warning (ICW): Warning caused when an 
HV may collide with other RVs as it enters 
an intersection.

 • Left Turn Assist (LTA): Alert created when the HV 
approaches an intersection and seeks to turn left, 
invading the path of an incoming RV.

In order to trigger warnings, the safety applications must 
process the Core Data Fields found in the BSMs. Table 1 
describes each Core Data Field. There are a total of fourteen 
required fields to create a BSM [15]. Some of these fields are 
complex and are split into sub-field values. While BSMs may 
also load additional optional information, our research 
focuses on the Core Data Fields.

III.  Approach
This section describes the threat and trust models considered 
in this article and introduces the attacks for the following 
scenarios: FCW, EEBL, LTA, and ICW. These attacks show 
how one or more adversaries are capable of perturbing certain 
data fields and trigger false warnings in a given HV. The end 
of this section outlines the Field Validation and Cross-
validation components in VCADS, which are created to 
constrain and prevent false alerts from happening.

A.  Trust and Threat Model
The trust model assumes that the security in the physical and 
transport layers of the vehicles in the V2X network have been 

 FIGURE 1  IEEE 1609 network stack. The link layer shows 
the difference between Dedicated Short Range 
Communications (DSRC) and Cellular V2X (C-V2X). This article 
focuses on a detection system for the application layer.
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properly implemented. The messages from the RVs to the HV 
are signed to preserve integrity and authentication. Replay 
attacks, Man-in-the-Middle attacks, and data alterations are 
prevented by the standardized security protocols. We also 
assume there is full accountability for message transmissions 
through certificates (non-repudiation). In short, the commu-
nication between vehicles, as well as the network stack in the 
HV, is secure. This means that the HV’s sensors are working 
properly and its Safety Applications have precise internal 
measurements and processing capabilities that yield the 
expected alerts or warnings. In terms of the incoming BSMs 
from the RVs, our trust model is straightforward: Trust, but 
verify. We trust the data that RVs transmit to the HV, as long 
as it is consistent.

 1. Adversarial Goal: The adversary’s goal is to subvert 
the Safety Application system of a given HV and 
trigger false warnings. The adversary exploits known 
vulnerabilities to compromise an RV and transmit 
perturbed messages in order to mislead one or more 
HVs. This, in turn, leads to shifted traffic flows, traffic 
jams, misuse of road and highway resources, 
unexpected defensive behavior from drivers or self-
driving vehicles, and collisions.

 2. Adversarial Capabilities: We assume that the 
adversary is able to alter one or more data field 
measurements in a compromised RV. The adversary is 

able to achieve this goal by subverting the RV’s 
sensors to yield the desired measurements [5, 17], 
attack the internal network of a vehicle [18], or 
subvert a V2X transceiver module with valid 
certificates [19].

B.  V2X Attack Scenarios
We introduce a subset of four common scenarios by updating 
the safety application figures in [12]: EEBL, FCW, ICW, and 
LTA. Other scenarios are not explored, but they are similar. 
The difference between them lies on which fields are perturbed 
and what false warnings are triggered in the HV.

In Figure 2, an RV seeks to trigger a false FCW or EEBL in 
an HV. The attacker causes FCW alerts by a given factor that 

 FIGURE 2  A vehicle in front of the HV alters motion data 
(e.g., Speed or Acceleration) triggering an FCW and causing 
the HV to slow down or hard brake.

© SAE International

TABLE 1 BSM core data fields description and representation per the protocol given in [15].

Field Description
Message Count Message index between 0 and 127

Temporary ID Pseudo anonymous vehicle ID

DSecond Message creation time from minute interval

Latitude Angular distance with respect to Earth’s south and north poles

Longitude Angular distance with respect to the Greenwich meridian

Elevation Distance with respect to Earth’s sea level

Positional Accuracy Semi-minor/Semi-major and orientation of the Global Positioning System (GPS) positioning 
ellipsoid

Semi-major axis accuracy Expected accuracy of semi-major ellipsoid

Semi-minor axis accuracy Expected accuracy of semi-minor ellipsoid

Semi-major axis orientation Semi-major orientation with respect to the true north

Transmission State Neutral/Park/Forward/Reverse

Speed Positional change of over a given period in time

Heading Trajectory direction with respect to the true north

Steering Wheel Angle The turn angle of the wheels with respect to the vehicle’s front face

AccelerationSet4Way Longitudinal/Lateral/Vertical/Yaw rate

Break System Status Brakes/Traction/ABS/SCS/Brake boost/Aux. brakes

Wheel Brakes Brake application in each tire

Traction Traction control system status

ABS Anti-lock system status

SCS Stability control status

Brake Boost Brake boost system status

Auxiliary Brakes Auxiliary brakes system status

Vehicle Size Vehicle’s length and width ©
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reduces the motion fields in the RV. The RV will appear closer 
from the HV than it actually is, and when the Time to Collision 
(TTC) is reduced, the false FCW is triggered. In contrast, the 
EEBL alert is triggered only when negative accelerations of 
−3.92 m/s2 or less are received in the HV. In both scenarios, after 
the false warning is achieved, the HV will then slow down or hard 
brake to prevent a collision. As a result of this misled decision 
taken by the HV, traffic builds up and collisions can occur.

In Figure 3, the HV seeks to turn left in a given intersec-
tion. RV-2 prevents the HV from detecting incoming parallel 

traffic and RV-1 perturbs its fields to trigger a false LTA alert 
in the HV. The false LTA alert will be enough to prevent the 
HV from turning left causing traffic build-ups behind the HV. 
Similar to LTA, in the ICW attack, the adversary manipulates 
different fields to prevent an HV from crossing the intersec-
tion. In this case, the HV is perpendicular to RV-1 and there 
is no RV-2.

Table 2 summarizes our security model and gives a 
general overview of our attack scenarios, including other 
scenarios explored in [20, 21, 22, 23, 24, 25]. The definition of 
each attack scenario is based on how the adversaries leverage 
their capabilities to trigger false warnings in an HV. The detec-
tion method column relates the attacks to the mechanisms 
presented in VCADS.

C.  VCADS Overview
VCADS detection mechanisms are divided into two compo-
nents: Field Validation and Cross-Validation. Field Validation 
detects single-field anomalies by creating configurable 
constraints based on physics models derived from kinematics 
relations and limitations from vehicular mechanics. Field Cross-
Validation analyzes the consistency and accuracy of a given 
field by relating it to other fields as different messages arrive 
over time. Five kinematics equations, one explored in [1], are 

 FIGURE 3  The HV’s line of sight is diminished by RV-2. RV-1 
misreports motion information and triggers an LTA alert in the 
HV. This prevents the HV from turning, and traffic builds up in 
the intersection.
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TABLE 2 Safety applications attacker model.

Attack Capabilities Threat Definition Detection method
Forward Collision 
Warning (FCW)

1. Speed

2. Location

3. Acceleration

4. Brake status

5. Transmission 
status

1. Sensor fooling

2. Internal network

3. V2X transceiver

Attacker reduces capability field(s) in an 
RV located in front of the HV. An FCW 
triggers in the HV and causes it to slow 
down or hard brake.

Cross-Validation of capability 
field(s) against field(s) that the 
attacker does not control. 
Available field(s) derive the 
same field measurement(s) as 
the capability field(s). The 
difference between these 
measurements are flagged by 
VCADS once they surpass a 
sensitivity threshold.

Emergency 
Electronic Brake 
Lights (EEBL)

Attacker decelerates to show a hard brake 
in an RV located in front of the HV. An 
EEBL warning gets triggered in the HV 
and causes it to hard brake.

Intersection 
Collision Warning 
(ICW)

Attacker perturbs capability field(s) to 
position an RV in the intersection that the 
HV is approaching. This causes the HV to 
hard brake and stop.

Left Turn Assist 
(LTA)

Attacker modifies capability field(s) to 
position an RV in the intersection that the 
HV seeks to turn left. This prevents the HV 
from turning left.

Lane Change 
Warning (LCW), 
Blind Spot 
Warning (BSW)

Attacker modifies capability field(s) to 
position an RV in the HV’s blind spot or 
lane change trajectory. This triggers a 
BSW or LCW in the HV and prevents it 
from changing lanes.

Cross-Validation of location and 
motion fields. Available field(s) 
derive the same field 
measurement(s) as the 
capability field(s). The difference 
between these measurements 
are flagged by VCADS once they 
surpass a sensitivity threshold.

Event 1. Location

2. Event (e.g., 
traction control 
loss, airbag 
deployment)

1. Internal network

2. V2X transceiver

Attackev modifies capability field(s) to 
transmit an event from an RV (e.g., airbag 
deployment, traction control loss). This 
causes receiving vehicles to slow down or 
reroute.

Not explored in this article (see 
[21, 22, 23, 24, 25, 26])
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used to combine independent fields and derive a measurement 
from a field that is also reported in the message. The derived 
and reported fields are compared and the numerical difference 
between them is used to detect anomalies. A configurable 
threshold, known as sensitivity, is used to show the allowed 
variation between these fields; any difference above this sensi-
tivity is considered anomalous. In this article, the sensitivity is 
varied in order to show the overall detection range of the system; 
however, a commercial implementation of VCADS could 
optimize this value to achieve better detection results using a 
variety of techniques, such as machine learning.

VCADS is located in the Application layer, and it is the first 
component to receive a BSM: the decoded payload of a WSM. 
The Field Validation and Cross-Validation components detect 
anomalies in all incoming BSMs’ Core Data Fields and protect 
the Safety Applications from receiving erroneous or malicious 
information. Specifically, messages are validated before they are 
stored in the Safety Applications’ database, formally known as 
LDM. As a result, VCADS seeks to prevent false warnings from 
triggering in an HV. Figure 4 shows VCADS location and inter-
actions with other components in the V2X stack.

In order to show how fields relate and are used in VCADS, 
we  separate the fourteen Core Data Fields into classes 
according to the information they represent:

 • Metadata: ID, Timestamp (DSecond), Msg Count 
(Message Count), and Vehicle Size

 • Location: Latitude, Longitude, Elevation, Positional 
Accuracy, Heading, and Steering Wheel Angle

 • Motion: Speed, Acceleration Set, Heading, Transmission 
State, and Brake State

Figure 5 shows the classes and how they interact. The 
metadata fields give context to the motion and location fields. 
The Temporary ID shows which RV sent the BSM, DSecond 
when the field measurements were taken, and Message Count 
the sequence in which BSMs were created.

The location class represents GPS-related measurements. 
These fields allow us to approximate the exact positioning of 
a vehicle and its trajectory. When these values are combined 
with the metadata values (e.g., DSecond, Temporary ID), they 
derive motion fields.

Motion fields represent all the measurements from 
internal sensors that relate to the vehicle’s kinematics. The 
combination of motion, metadata, and the previous location 
yields the following location measurement of a vehicle. Thus 
previous BSMs can relate their fields with the incoming BSMs. 
We use this principle as the theory behind the Field Cross-
Validation component. For the remainder of this article, 
we assume HVs are augmented with a VCADS implementa-
tion to detect anomalies of several incoming messages from 
different RVs.

D.  Field Validation
Field Validation finds constraints by applying vehicular, struc-
tural, and mechanical limitations, as well as physics equations 
and models. These constraints derive lower and upper bounds 
that narrow the allowable measurements of a data field. Field 
values that surpass these bounds are flagged as anomalous. It 
is up to the Safety Applications to filter the flagged fields or 
decide to discard the entire BSM.

BSMs with anomalous fields may trigger false warnings 
or unexpected behavior in the HV. Thus it is important to take 
certain actions in order to prevent error propagation into the 

 FIGURE 5  V2X Core Data Fields divided into three classes 
based on the type of data that they hold. Metadata gives 
context to the data, location values give a sense of the position 
of the vehicle, and motion values allow us to understand the 
kinematics and dynamics of the vehicle.
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 FIGURE 4  Data flow in an HV. Several RVs send secure data 
to the HV, the data is decoded into BSMs, and Core Data Fields 
are taken as the input of the Application layer. VCADS flags 
any anomalous fields and sends validated messages into 
the LDM.
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databases, Safety Applications, or other Application layer 
components. Fields that are within the limits of these 
constraints are assumed to be properly measured and safe to 
process by the Field Cross-Validation component.

Latitude Constraint: Latitude measurements range from 
−90° to 90°. We narrow this by geofencing (virtual perimeter 
of a geographic area) inside the USA, a given communication 
radius, or a specific perimeter of interest. Geofencing can 
be further narrowed to target RVs that have high probability 
of interacting with the HV. This includes the division of 
different transportation locations and motion patterns (e.g., 
finding perimeters that divide streets and highways). Any 
latitude that does not conform to the geofence perimeter is 
flagged. The resulting constraint becomes

 Latitude SRV Lat∈  Eq. (1)

where LatitudeRV is the latitude reported by the RV, ∈ is the 
logic symbol exists and SLat is the set of all possible latitude 
values inside a determined geofence.

When a circular geofence is used, this constraint can 
be  simplified by using a radius as the maximum allowed 
distance between the HV and surrounding RVs:

 Latitude RRV HV� �  Eq. (2)

where LatitudeRV-HV is the difference (in meters) between the 
HV and the RV latitude, and R is a geofence radius. VCADS 
defaults this radius to 300 m (as per protocol [12]). However, 
this parameter can be adjusted depending on the desired 
detection sensitivity.

Longitude Constraint: Longitude measurements range 
from −180° to 180°, and they follow the same geofence 
constraints as the latitude field. Longitude values are constraint 
by the following equation:

 Longitude SRV Long∈  Eq. (3)

where SLong is the set of all the possible longitude values inside 
a determined geofence. Similarly, when a geofence is defined 
by a radius, the resulting equation becomes

 Longitude RRV HV� �  Eq. (4)

where LongitudeRV-HV is the difference (in meters) between the 
RV and HV longitude values, and R is the geofence radius.

Elevation Constraint: Although most roads are above 
sea level, V2X protocol elevations can range from −409.5 m 
to 6143.9 m [15]. Just like latitude and longitude, we constrain 
elevation values according to the geofence created around the 
HV and translate it to the elevation axis:

 Elevation SRV Ele∈  Eq. (5)

where ElevationRV is the elevation reported by the RV and SEle 
is the set of all the possible elevation values that an RV can 
report inside a geofence. When the geofence is determined by 
a radial distance from the HV, we use a reference angle α to 
translate the radius into the elevation axis. Our reference angle 
α is 25°, based in [26, 27]. Nonetheless, this angle can 

be modified to fit exclusive geographic areas, where α can 
be less than 25°.

 R RElevation � �sin�  Eq. (6)

where RElevation is the projection of R in the elevation axis. For 
example, when using R as 300 m and α as 25°, the lower and 
upper bounds for Elevation become

 RElevation � �� �sin25 300 127m m 

 Elevation RRV HV Elevation� �  Eq. (7)

where ElevationRV-HV is the elevation difference between the 
RV and HV.

Location Constraint: When all coordinates (latitude, 
longitude, and elevation) are combined, we can derive the 
overall location distance that an RV can take with respect to 
an HV:

 Lat Long Ele RRV HV RV HV RV HV� � �� � �2 2 2  Eq. (8)

where latitude, longitude, and elevation have been simplified 
to Lat, Long, and Ele, and R is the geofence radius. R can 
be changed based on the desired geofencing model and is 
defined as the maximum distance that an RV can report with 
respect to the HV. In our case, the total magnitude of all 
vectors combined has to be less than or equal to a given radius.

Speed Constraint: Speed is not a field that can 
be constrained by any physics equation in such a way that can 
be used for anomaly detection in vehicles. Since the highest 
speed limit in the USA varies by state, we have chosen to 
constrain the maximum value of speed with the highest allow-
able speed limit nationwide: 85 mph (38 m/s) [28]. Although 
speed is not validated using physics equations, it is largely 
validated by the Field Cross-Validation component (described 
in Section III-E). The following equation shows a generic way 
for constraining speed, and we suggest possible approaches 
to find the upper and lower bounds for speed:

 � � �min max� �RV  Eq. (9)

where υmin is the lower bound and υmax is the upper bound for 
speed. In our Field Validation component, we chose υmin as 0 
(since speed is a magnitude and cannot be negative) and υmax 
as 42 m/s (4 m/s more than the highest posted speed for 
the USA).

From the BSMs analyzed in the IV dataset, we suggest 
that a more aggressive and realistic constraining model can 
be used to calculate MinSpeed and MaxSpeed. This model can 
be based on the HV’s measured speed or an offset of said 
speed, given that vehicles in similar roads will follow 
similar patterns.

Accuracy Constraint: In our model, the positional 
accuracy constraint is based on the standard structure of 
vehicles, specifically the vehicles’ width (2.6  m [29]). 
Inaccuracies that yield an uncertainty higher than 2.6 m are 
flagged due to the increasing error, nondeterministic behavior, 
and possible false warnings that can be triggered in the Safety 
Applications. RVs with these inaccuracies cannot be pinned 
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to a specific lane in order to calculate possible collisions with 
the HV. Therefore, we derive the overall accuracy needed for 
these fields in the following equations:

 SemiMinor L≤  Eq. (10)

 SemiMajor L≤  Eq. (11)

 SemiMinor SemiMajor L2 2� �  Eq. (12)

where SemiMinor and SemiMajor are BSM data fields. L is the 
maximum allowable uncertainty and the overall magnitude. 
When combining SemiMinor and SemiMajor fields, their 
magnitude must be less than the L parameter. L defaults to 
2.6 m in our model.

Steering Wheel Angle Constraint: Ackermann’s steering 
geometry predicts the maximum steering angle of vehicles 
based on their turn structure [30, 31]:

 �Steering � �65  Eq. (13)

where αSteering is the RV’s steering wheel angle in degrees.
Longitudinal Acceleration Constraint: The longitudinal 

acceleration spans from the vehicle’s center of mass and goes 
through its plane of symmetry [32]. It represents the accelera-
tion of the vehicle’s heading and is driven by the friction coef-
ficient μ of the vehicle tires with respect to the surface, and 
the acceleration due to gravity g:

 Longitudinal gAcc � ��  

μ can be configured to find the maximum and minimum 
longitudinal accelerations of the vehicle:

 MinLong Longitudinal MaxLongAcc Acc Acc≤ ≤  Eq. (14)

where MinLongAcc is the lower bound and MaxLongAcc is the 
upper bound of the longitudinal acceleration values that can 
be reported by an RV.

A suggested value for μ is 1.0; however, the bounds chosen 
for this field used a data-driven approach to find the best 
possible bounds for the current consumer vehicles. The model 
takes the acceleration developments of passenger vehicles over 
time. Every decade, the maximum average acceleration of 
vehicles decrease by 2 s while reaching speeds from 0 km/h 
to 96.6 km/h (26.83 m/s) [33]. Currently, passenger vehicles 
can achieve a speed of 26.83 m/s in 6 s; this translates to an 
acceleration of 4.47 m/s2. In addition, the fastest passenger 
vehicles’ times are between 2.3 s to 2.8 s. For example, the 
Tesla Model S [34] can reach 26.83 m/s in 3.1 s, and when 
ideal conditions are met, it can reach this speed in 2.3 s. 
We can use the previous information to find the upper and 
lower bounds for the acceleration fields:

  Max
Speed

Time
Acc

Top

Elapsed

= = =
26 83

2 65
10 12 2.

.
.

m/s

s
m/s  Eq. (15)

where SpeedTop is the speed reference and TimeElapsed is the time 
that a vehicle takes to reach that speed. If g is considered as 
9.8 m/s2, the friction coefficient μ is calculated as 1.03.

For negative longitudinal accelerations (i.e., braking), the 
model has been also simplified to use MaxAcc as the limiting 
value. Both positive and negative accelerations depend on the 
road friction coefficient and weather conditions. Increasingly 
complex models can be built to take these factors into account 
and vary μ as the vehicle enters different environments.

Lateral Acceleration Constraint: Lateral acceleration of 
a vehicle is driven by the same dynamics of longitudinal accel-
eration. Both longitudinal and lateral accelerations are parallel 
to the surface and they only differ in the direction from the 
center of mass. For this reason, the bounds for lateral accelera-
tion have been simplified to ref lect the same bounds as 
longitudinal acceleration.

 MinLat Longitudinal MaxLatAcc Acc Acc≤ ≤  Eq. (16)

where MinLatAcc is the lower bound and MaxLatAcc is the upper 
bound of the lateral acceleration values that can be reported 
by an RV, and they are based on the data-driven value MaxAcc.

Vertical Acceleration Constraint: For vertical accelera-
tions, we use a road slope and translate MaxAcc to the vertical 
axis. Due to gravity, the negative vertical accelerations differ 
from the positive ones. We define UpAcc as the positive upward 
acceleration and DownAcc as the negative downward accelera-
tion. These two bounds are combined to yield the resulting 
vertical acceleration (VertAcc) constraint.

 Down Vert UpAcc Acc Acc≤ ≤  Eq. (17)

The effects of gravity on the vehicle motion depend on 
the slope of the road that is mathematically defined as α. 
We calculate all the vector forces acting on a vehicle, which 
yield the total acceleration vector; this vector is then projected 
to the vertical axis. Since the vehicle’s weight is multiplied in 
all accelerations, this parameter is simplified. The following 
equation shows how to calculate the total acceleration:

 a Max g gAcc� � � � � �sin cos� � �  Eq. (18)

where a is the resulting vector acceleration, g is gravity, and 
μ is the friction coefficient. Similar to other fields, α, and μ 
can be varied depending on the geographic area and the 
desired sensitivity of the model. Note that as α increases, so 
does the effect of the gravitational force in the vehicle. 
Similarly, the acceleration due to the friction force is always 
opposing the MaxAcc acceleration. The resulting acceleration 
a is then translated to the vertical axis. For example, when α 
is 25°, MaxAcc is 10.12 m/s2 and μ is 0; the resulting UpAcc and 
DownAcc are

 UpAcc � � � �� � �sin . sin . .� �10 12 9 80 2 52 2m/s  

 DownAcc � � � � �� � � �sin . sin . .� �10 12 9 80 6 03 2m/s  

Given that gravity is always acting on the vehicle, the RV 
will always report the vertical acceleration with g. If we take 
g as −9.8 m/s2, both constraints will be  updated as 
UpAcc =  − 7.28 m/s2 and DownAcc =  − 15.83 m/s2

.
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It is important to note that these constraints do not 
consider uneven surfaces, which can trigger high spikes in 
vertical acceleration beyond these bounds. This can happen 
when a vehicle cruises through a pothole or a speed bump. 
The instantaneous speed at which the vehicle encounters the 
uneven surface will become a factor in the magnitude of the 
acceleration spike.

Yaw Rate Constraint: Similar to the steering wheel angle, 
the bounds for Yaw Rate can be calculated using [31]. Another 
important parameter is the maximum velocity that a vehicle 
can experience while turning. This is calculated by relating 
the centripetal force experienced by a vehicle while turning 
in addition to the friction force between the tires and the road.

 m

R
g m

�
� � �

�
�

2

 

 � �� � �g R  

where υ is the maximum allowed turning speed given a 
friction coefficient μ, gravity acceleration g, vehicle’s mass m, 
and radius R.

For example, if the friction coefficient μ is 0.72 and R is 
7.62 m:

 � � � � �0 72 9 80 7 62 7 37. . . . m/s 

The yaw rate sign is based on the turning direction of a 
given vehicle; therefore, the lower and upper bounds are 
equivalent in magnitude. Using v as shown above and 
TurnRadius, the equation for yaw rate becomes

 Min Max
Turn

Yaw Yaw

Radius

� �
�  Eq. (19)

where MinYaw is the lower yaw rate bound, MaxYaw the upper 
yaw rate bound, and TurnRadius) is the steering wheel angle of 
the vehicle. For example, assuming a vehicle’s length is 5.18 
m, θ is 44.33°, and υ is 7.37m/s; the maximum yaw rate is

 Turn
Vehicle

Radius

Length� �
cos

.
�

7 24 m 

 MaxYaw = = =
7 37

7 24
1 01 57 86

.

.
. / . deg/rad s s 

Note that the turning speed calculated with the above 
equation is for nearly level surfaces present in our datasets. 
In [35], the above equation is extended by using the supereleva-
tion of the road to scale the value of the turning speed. In 
order to achieve higher precision in the speed calculation, 
other factors can be analyzed, as well as understanding in 
what situations is convenient to use spin analysis.

Vehicle Size Constraint: The Federal-Aid Highway Act 
of 1976, and subsequent amends, require vehicles to be at most 
2.6  m wide, excluding mirrors. The maximum allowable 
length of a vehicle varies upon several factors that depend on 
the state, load, and its configuration [29]. Vehicles follow this 

structural constraints in order to drive across all US roads 
and around the world:

 Vehicle LWidth Width≤  Eq. (20)

 Vehicle LLength Length≤  Eq. (21)

where LWidth is the configurable parameter for maximum 
allowable width and LLength for length. The default configura-
tion of our model sets LWidth to 2.6 m and LWidth to 16.15 m. 
LWidth is based on the most common trailer load. Note that 
these constraints should be applied to the BSMs before other 
constraints. The rationale for this order is that other field 
constraints such as yaw rate and positional accuracy use these 
fields as parameters to find the lower and upper bounds.

In conclusion, each constraint has certain parameters 
that can be updated to relax or tighten the bounds for allow-
able values (e.g., 3.10 s instead of 2.65 s in order to calculate 
maximum acceleration will result in 8.65 m/s2 instead of 
10.12 m/s2).

E.  Field Cross-Validation
The Cross-Validation component relates field values by taking 
a given reported value from a BSM and using other indepen-
dent fields to derive the same measurement. Subsequently, 
we can assess the accuracy of a given field measurement, the 
consistency between fields, and show the numerical difference 
of a given measurement with respect to its derivations. If an 
adversary manages to perturb one or more data field values, 
this behavior will be evident in the Cross-Validation component.

If a BSM is cross-validated and no anomalies are detected, 
VCADS does not flag the message. From VCADS point of 
view, the RV that sent the BSM is not misbehaving or having 
sensor failures, and it can be propagated up the stack. If the 
variations on the BSMs field measurements and their deriva-
tions are beyond certain configurable sensitivity, the BSM is 
f lagged as anomalous. The sensitivity can be  modified 
according to the desired error variations.

Just like in Field Validation, the anomalies detected in 
this component do not determine intent. Field measurements 
might be perturbed due to sensor error or malicious behavior, 
and they are also dependent on the sensitivity to be deemed 
as anomalous. In our evaluation, it is evident that sensor errors 
portray smaller deviations between the derived and the 
reported measurements than the deviations from 
attack perturbations.

In order to relate field measurements with its derivations, 
the Field Cross-Validation component uses several equations 
that will be introduced in the following subsection.

1. Kinematics Equations 

 s s tFinal Initial
Final Initial� �

�
�

� �
2

�  Eq. (22)

 s s t
a t

Final Initial Initial

Avg� � � �
�

� �
� 2

2
 Eq. (23)
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 s s t
a t

Final Initial Final

a Avg� � � �
��� �
� 2

2
 Eq. (24)

 � �Final Initial Avga t� � ��  Eq. (25)

 � �Final Initial Avga s2 2 2� � � ��  Eq. (26)

In the above equations, s is displacement, υ velocity, a 
acceleration, t time, Δ variation, and avg average [36].

2. Haversine Formula The Haversine Formula is a 
mathematical model that approximates the distance between 
two coordinates [37]. The approximation error using this 
model for the distances that correspond to V2X is virtually 
zero and negligible. For more precision and coordinates that 
are further apart from V2X transmission radius, the approxi-
mation error of haversine becomes ~1% and increases as the 
coordinates are further apart. Such distances can be better ap-
proximated with models that have higher fidelity with respect 
to Earth’s ellipsoid [38]. The following equation shows how to 
calculate the distance between two coordinates:

 a �
�

� � �
�

sin cos cos sin2 2 1
1 2

2 2 1

2 2

� �
� �

� �  

 distance r a� � �2 arcsin  Eq. (27)

In this equation, r is the Earth’s radius, ϕ is latitude, and 
λ longitude.

We can relate the different data fields using Equations 25 
and 26. These relationships are two way, meaning one combi-
nation of fields can validate the other and vice versa. 
We employ metadata fields (DSecond, Temporary ID, and 
Message Count) to relate location (i.e., latitude, longitude, 
elevation, and heading) with motion fields (speed, accelera-
tion, yaw rate, brake system, and transmission system).

Within the motion fields, we cross-validate acceleration, 
speed, and bra and transmission systems. Acceleration is 
further validated with the steering wheel angle and heading. 
Yaw rate is also cross-validated with location coordinates, the 
vehicle size, and heading. Finally, two different location coor-
dinates are cross-validated with the heading and steering 
wheel angle.

For instance, two consecutive BSMs from the same RV 
must match the RV’s speed, acceleration, and heading. 
Likewise, speed is related to acceleration, and acceleration 
relates to the vehicle’s brake and transmission systems. We can 
cross-validate these data fields and find anomalies from 
misbehavior and erroneous or malicious RVs.

Similar to the reported measurements, the derived 
measurements can also be  Field Validated (III-D). These 
measurements can then be flagged based on single-field lower 
and upper bounds. Not only do we cross-validate a given field 
measurement and its derivations but also validate the field 
derivations themselves. The variations between a reported 

measurement and its derivations are calculated with the 
following equations:

 
Actual Derived

Actual

�
�100% Eq. (28)

When calibrating the Field Cross-Validation component, 
the allowed sensitivity can be chosen instead of the error 
percentage between the reported and derived measurements. 
Any inconsistency above the sensitivity value is flagged as 
anomalous. Note that high sensitivity values allow more varia-
tion between the actual and derived fields, and the likelihood 
to flag anomalous BSMs is reduced In contrast, low sensitivity 
values result in a higher detection rate with the downside that 
correct values could be flagged as anomalous. Using several 
data points allows us to choose the best sensitivity that will 
not f lag expected error variations but wil l f lag 
anomalous behavior.

3. Cross-Validation Constraint: 

 Actual Derived Sensitivity� �  Eq. (29)

where Sensitivity is the threshold allowed between the differ-
ence of the field measurement and the derived measurement 
from other fields. Table 3 summarizes all the constraints used 
in VCADS.

IV.  Evaluation
This evaluation answers two fundamental questions:

 1. Is VCADS able to model and constrain a wide variety 
of real-life driving environments?

 2. Is VCADS an effective mechanism for detecting 
anomalies and data field perturbation attacks?

The above questions were answered using four real V2X 
USDOT field testing datasets and attack simulations for EEBL, 
FCW, LTA, and ICW. Figure 6 shows how the evaluation setup 
and the attack simulator interacts with the datasets and 
VCADS. The simulations were developed using a baseline with 
no attacks and, afterwards, we applied several kinds of pertur-
bations to BSMs to trigger alerts in the HV. The diverse char-
acteristics portrayed in the field testing datasets allow the 
evaluation of VCADS’ ability to model and constrain different 
environments. In addition, the data accounts for the natural 
errors that occur when using hardware in V2X testing. The 
attack simulations help understand the detection effectiveness 
of VCADS on a wide range of attacks.

Through this evaluation, the Field Validation and Cross-
Validation components were able to model the behavior of 
vehicles in different environments and driving patterns. On 
the other hand, these components also detected anomalies 
from sensor errors and data perturbation attacks. The lack of 
errors found in the speed and acceleration fields when subject 
to the Field Validation component suggests that these 
constraining bounds should be tightened. However, when 
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 FIGURE 6  Simulation data flowchart: interaction between USDOT datasets, attack simulator, and VCADS.
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TABLE 3 VCADS constraints summarized by the Core Data Field.

Field Constraint
Latitude |LatitudeRV − HV| ≤ R

Constraints the RV’s latitude at a radial distance R from the HV

Longitude |LongitudeRV − HV| ≤ R

Constraints the RV’s longitude at a radial distance R from the HV

Elevation |ElevationRV − HV| ≤ R ×  sin α
Constraints the RV’s elevation at a radial distance R from the HV

Location
− − −+ + ≤2 2 2

RV HV RV HV RV HVLat Long Ele R

Constraints the overall magnitude of the location fields to a radial distance R from the HV

Speed vmin ≤ υRV ≤ υmax

Generic constraint bounds; field limits are not based on physics models

Accuracy SemiMinor ≤ 2.6 m; SemiMajor ≤ 2.6 m; + ≤2 2 2.6mSemiMinor SemiMajor

Constraints the location ellipsoid accuracy based on the width of vehicles

Steering Wheel Angle αSteering ≤ 65°

Constraints the steering wheel angle based on the structure and turning mechanics of a vehicle

Longitudinal Acceleration MinLongAcc ≤ LongitudinalAcc ≤ MaxLongAcc

Constraints the acceleration based on friction coefficients and top acceleration of vehicles

Lateral Acceleration MinLatAcc ≤ LateralAcc ≤ MaxLatAcc

Constraints the acceleration based on friction coefficients and top acceleration of vehicles

Vertical Acceleration DownAcc ≤ VertAcc ≤ UpAcc

Constraints the acceleration based on friction coefficients and top acceleration of vehicles

Yaw Rate
Yaw Yaw

Radius

Min Max
Turn

υ
= =

Constraints the yaw rate based on turning mechanics and top acceleration of vehicles

Vehicle Width VehicleWidth ≤ 2.6 m

Constraint based on US regulations for vehicular width design

Vehicle Length VehicleLength ≤ 16.15 m

Constraint based on US regulations for vehicular length design

Cross-Validation |Measurement − MeasurementDerived| ≤ Sensitivity

Constraint based on a field measurement and the same derived measurement from other fields

©
 S

A
E 

In
te

rn
at

io
na

l

Downloaded from SAE International by Amy HASAN, Friday, April 29, 2022



12 Andrade Salazar et al. / SAE Int. J. of CAV / Volume 5, Issue 3, 2022

subject to cross-validation, these fields were largely flagged. 
The cross-validation variations from the field and the derived 
measurements from V2X hardware errors were lower than 
the variations that occur from attacks. As a result, the Field 
Cross-Validation component was able to detect attack anoma-
lies with high precision in the motion data fields, including 
speed and acceleration.

Moreover, both components detect ~85% to ~95% of 
attacks with no more than ~20% false positive rate in EEBL, 
~2% in ICW and LTA, and ~10% in FCW. Although different 
attack scenarios and adversaries with different capabilities 
were considered, VCADS was able to consistently perform 
with these high detect ion rates and low fa lse 
positive compromises.

For research replication purposes, the preprocessing, 
validation of the datasets, and attack simulations were devel-
oped using an 8 core, 2.3 GHz processor, 16 GB of memory, 
and 100 GB of storage.

A.  Dataset
The four datasets from the V2X pilot field testing are shown 
in Figure 7. The BSMs in these datasets are the input of the 

Field Validation and Cross-Validation components. We named 
the datasets after the locations where the V2X pilot tests were 
performed: Wyoming, Ann Arbor, Tampa, and Arlington.

The Wyoming dataset is recorded on an interstate with 
almost straight motion patterns, which implies low field value 
variations. In comparison, Arlington was recorded in an inter-
state environment and has higher motion variations than 
Wyoming. Ann Arbor is a city bounded dataset that covers 
different driving patterns in streets. Tampa is similar to the 
Ann Arbor environment, although it accounts for narrower 
streets and more concentrated areas surrounding downtown.

Additionally, the size and amount of BSMs in each dataset 
varies. The total amount of BSMs per dataset is as follows: 13, 
085, 109 in Ann Arbor; 5, 612, 741 in Arlington; 3, 800, 001 in 
Wyoming; and 34, 750 in Tampa. For these datasets, the Core 
Data Fields in a BSM were not reported in their entirety. 
Arlington has the most fields, followed by Tampa, Wyoming, 
and Ann Arbor (see Figure 10). However, none of the funda-
mental location, motion, and metadata fields used in VCADS 
validation were missing. Therefore, all datasets were used to 
perform VCADS Field Validation and Cross-Validation.

For the attacks simulations, we took a subset of 545 BSMs 
from the Ann Arbor dataset (as shown in Figure 8) and 
perturbed different values, following our threat model. Ann 

 FIGURE 7  BSM location of the different USDOT CVPD datasets used for the VCADS evaluation. Upper left: Wyoming state. 
Upper right: Ann Arbor, MI. Lower left: Tampa, FL. Lower right: Arlington, VA.
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Arbor was chosen for the simulations because it (1) had the 
least errors after the Field Validation and (2) has intersections 
needed to simulate the LTA and ICW attack. The BSMs in 
Wyoming did not have a Timestamp; thus, they could not 
be sequenced. Additionally, the interstate highway environ-
ment in Wyoming lacks the intersections needed to simulate 
the ICW and LTA attacks. Similarly, Arlington is a state 
highway and does not have the intersections needed to 
simulate the attacks. On the other hand, Tampa’s environment 
can simulate all attacks, though the dataset had several 
missing fields and anomalies after the Field Validation. Filling 
those fields with the right values would have removed the real 
aspect of the V2X dataset field testing. Overall, Ann Arbor 
was a reliable dataset and had enough data fields to simulate 
the attacks in a subset of 545 BSMs across an avenue with 
intersections. For the ICW and LTA attacks, we select the 
intersection of East Huron Street and South State Street as a 
pivot point. We use this pivot point to modify BSMs and make 
the RV appear to reach this intersection earlier than it actually 
is. For the FCW and EEBL attacks, we modified the BSMs to 
make the RV hard brake or appear closer to an HV than it 
actually is.

B.  Simulation Setup
All BSMs were decoded and mapped to the International 
System of Units (IS). The IS mapping varied depending on the 
dataset and the field units encoding scheme. We found the 
following encoding: [15] encoding, nonstandard encoding 
with metadata files that described the units, and imperial 
system units. Once all the BSMs were mapped to the IS, each 

BSM was taken as input to the Field Validation. Subsequently, 
the dataset with Timestamps and Temporary IDs were used 
in the Field Cross-Validation.

The Timestamp and Temporary ID allow the Field Cross-
Validation component to understand and relate consecutive 
BSMs. In a real-time detection environment, the Timestamp 
can be derived by combining the DSecond and Message Count 
fields. The Temporary ID is used to link BSMs to a specific 
vehicle. All datasets had BSMs with Temporary IDs. However, 
only Ann Arbor, Arlington, and Tampa had a Timestamp in 
the BSMs required for the Field Cross-Validation component.

For the attack simulations, Figure 9 shows the initial state 
of the simulation and how it changes once an adversary intro-
duces perturbations in certain field values. The initial state 
shows an average difference between the field value and its 
derivations of less than 0.1 m/s. In the other hand, the attacks 
show an average difference of 2.4 m/s in the time derivation 
(kinematics Equation 25) and 1.1 m/s in the location deriva-
tion (kinematics Equation 26). Although the perturbations 
vary according to the attack scenario, the difference between 
slight inconsistencies in the datasets when no attacks are 
present versus when they are is evident.

In the EEBL attack, the adversary manipulates the overall 
acceleration by perturbing the individual vector fields at different 
ranges. These ranges are negative accelerations that are meant 
to trick an HV into thinking that an RV (in front) made a hard 
brake (deceleration with a magnitude of 3.92 m/s2 or more [12]). 
In our attack simulation, this overall acceleration parameter 
varies from –4 m/s2 to –13 m/s2

, and we use VCADS to detect 
this anomalous behavior.

Similar to the EEBL attack, the FCW attack modifies 
acceleration fields to reduce the distance between the RV and 

 FIGURE 8  Subset of Ann Arbor dataset used to test our attacks.

M
ap

 d
at

a 
©

 2
0

21
 G

oo
gl

e

Downloaded from SAE International by Amy HASAN, Friday, April 29, 2022



14 Andrade Salazar et al. / SAE Int. J. of CAV / Volume 5, Issue 3, 2022

the HV. However, no hard brakes are needed and other motion 
fields can be modified. The motion field values are reduced to 
the point that Safety Applications sense a possible collision 
between the RV and HV, and a false FCW is triggered.

In our FCW attack simulation, we use a reduction factor 
parameter that ranges between 0.0 and 1.0. A complete reduc-
tion in all motion fields is represented by 0.0. This is equivalent 
to an RV making a full stop. Contrarily, 1.0 represents no 
reduction performed. In this attack, the adversary is able to 
reduce Speed and/or Acceleration motion field(s) that report 
false locations closer to the HV.

For the LTA attack, the attacker perturbs the Speed and/
or Acceleration field(s) to make an RV appear as if it is 
approaching an intersection faster than it actually is. This will 
trigger an LTA alert in the HV, which seeks to turn left while 
parallel and in opposing direction with respect to the RV. In 
our simulation, we use a distance parameter from the intersec-
tion point and a given BSM. The subsequent BSM field values 
are perturbed according to this distance parameter and the 
RV will appear as if it is reaching the intersection. Evidently, 
if an RV is closer to the intersection, the perturbations of the 
BSM location fields are going to be less than if it were further 
from the intersection.

Similar to LTA, the ICW attack uses a distance parameter 
from an intersection location in order to calculate how the 
motion fields are perturbed. However, in this scenario the HV 
approaches the intersection perpendicular to the RV heading.

C.  Results
1. Field Validation The default values calculated in 
Section III-D were used as the boundaries of this detection 
component. Tighter bounds can be achieved by modifying 
the configurable variables of the equations in order to create 
higher sensitivity and flag more values of a field. Figure 10 

shows the results of the Field Validation detection component 
in the 22, 532, 601 BSMs from all datasets.

From the 28 Core Data Field values the validation was as 
follows: 25 Core Data Fields, including the 3 added fields 
explained above, where Ann Arbor had 12, Arlington 20, 
Tampa 20, and Wyoming 16. The results show that all datasets 
are incomplete. However, by analyzing all datasets we can 
have a full coverage of all field values in a BSM, except for 
Brake Boost Applied Status and Auxiliary Brake Status. Both 
of the latter fields measure systems are not common in most 
passenger vehicles at this time. The remainder of this section 
will expand on the specific results of each dataset.

Firstly, the Ann Arbor anomalies were negligible in 
comparison with the overall amount of BSMs. The heading 
only had one anomalous value of 360.01°. This is 0.01° higher 
than any possible measurement of heading from protocol 
limits. Speed and acceleration had 48 and 2, 121 anomalies 
respectively, where speed values exceeded 94.33 mph, and the 
accelerations recorded were beyond 11.2 m/s2 in the longitude 
axis (higher than the fastest Tesla in all axes). Yaw rate showed 
anomalous values ranging from 97.4  deg /s to 326.59  deg /s, 
this is well beyond the bounds of any vehicle and turning 
motions, according to its structure.

Secondly, Arlington had the most fields available of all 
datasets. The resulting anomalous behavior was as follows: 
1.62% of anomalies were found in the Steering Wheel Angle. 
The anomalies range from 65.89° (right above protocol 
threshold) to 188.96° (well beyond Ackermann’s geometry). 
The Transmission Status showed the gear in neutral while in 
motion 0.05% of the time, and the Stability Control field had 
unavailable values in 31.32% of the BSMs.

Thirdly, the Tampa dataset had a wide range of anomalies. 
Although Tampa is close to sea level, negative elevations were 
reported in 99.78% of the BSMs. This figure suggests a poor 
calibration of the altimeter sensor. Similarly, both vertical and 
latitude accelerations were unavailable 99.77% of the time, 

 FIGURE 9  The speed and derivations of an RV in the Ann Arbor dataset. The left graph displays the initial state of an RV in a 
one-minute interval. The right graph shows the same RV when 11 EEBL attacks are introduced by an adversary. We have circled the 
derivations that start to diverge from the reported speed when the attacks are present.
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which caused the overall acceleration set to be flagged in the 
same way. Furthermore, the vehicle width presented anoma-
lies in 38.02% of the BSMs. The width reported for some 
vehicles was 3.1 m instead of the manufacturing limit of 2.6.

Finally, Wyoming had several anomalies in the semi 
major and minor accuracy fields. A total of 29.28% of the 
semi-major and 34.70% of the semi-minor fields had anoma-
lies between 2.7 m and 12.65 m. The average inaccuracy was 
equivalent to 7.82 m in the semi-major field and 7.92 m in the 
semi-minor fields. The overall BSM accuracy showed anoma-
lies 38.39% of the time, suggesting a low GPS precision that 
is not fit for V2X Safety Applications processing. Other field 
anomalies were negligible compared to the overall BSMs in 
the dataset. These anomalies were elevation with 12 BSMs of 
unavailable data, heading with 17 BSMs of values beyond 
protocol measurements (28, 800 rad), and yaw rate with 163 
values between 84.8  deg /s and 326.59  deg /s, resulting in 
an average of 262.41  deg /s.

2. Field Cross-Validation The results in this compo-
nent were achieved by dividing BSMs using the Temporary 
ID. The BSMs from each RV were sorted in chronological 
order. In real-time mechanisms DSecond and Message Count 
are used to derive the BSM Timestamp. However, in these 

datasets, DSecond values wrap around the 60,000 millisec-
onds and Message Count around 127, making it impossible 
to know the exact order of the BSMs. Fortunately, the datas-
ets come with a Timestamp metadata field for each BSM. The 
Timestamp is created when all the Core Data Fields have 
been measured, right before sending the BSMs. This meta-
data allows us to sort the BSMs and use them as inputs for the 
Field Cross-Validation.

As explained in Section III, we  derive a given field 
measurement using other independent data fields found in 
the same and consecutive BSMs. With regard to acceleration, 
Figure 11 shows three derived measurements: time, location, 
and speed. The fourth measurement represents the actual field 
value referred to as baseline. The time measurement for accel-
eration is based on Equation 23 or 24, speed uses Equation 25 
and location Equation 26. All the variables in these equations 
are filled with fields in the previous and current BSMs. 
Additionally, acceleration is cross-validated with the trans-
mission and brake system. These values are not plotted due 
to the fact that they are binary validations on the acceleration 
sign and magnitude.

For Figure 12, we show two measurements: location and 
time, as the derived measurements of the reported baseline. 
Time uses Equation 25 and location Equation 26.

 FIGURE 10  Field Validation results in V2X pilot field testing datasets from four different cities.
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 FIGURE 11  A total of 60 BSMs’ acceleration and its derivations are plotted over an ~10-second period from an RV in the 
Arlington dataset. This figure shows an overall inconsistency with the acceleration reported and its derivations.
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 FIGURE 12  A total of 60 BSMs’ speed and its derivations are plotted over an ~10-second period.
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3. Attack Simulations For the attack simulations we iso-
lated an RV that cruises around Ann Arbor. Its reported BSMs 
are perturbed according to the explored attacks in this article 
(i.e., FCW, ICW, LTA, EEBL). We used 545 BSMs shown in 
Figure 8. The Cross-Validation mechanism was used to de-
fend against the data perturbations of these attack scenarios 
by detecting the anomalies that they caused.

The attack scenarios were implemented according to our 
attack model in terms of adversarial capabilities and specifications. 
The results of each attack scenario are plotted as ROC curves.

For EEBL, Figure 13 shows the ROC curves resulting from 
an attack at different acceleration ranges. The EEBL warning 
in [39] defines a hard brake (deceleration) of −3.92 m/s2 or 
higher magnitude. We  show the results for hard brakes 
ranging from −4 m/s2 to −13 m/s2. These values translate 
from a vehicle suddenly braking from an unexpected situation 
to a vehicle braking with its highest possible deceleration and 
ideal friction conditions.

The EEBL attack scenario shows that as the deceleration 
magnitude of the attack increases, it becomes easier to detect. 
An adversary that wants to be as stealthy as possible will try 
to trigger an alert with the smallest deceleration value 
(−3.92 m/s2). The overall True Positive Rate ranged from 80% 
(−4 m/s2 perturbations) to 97 % (−13 m/s2 perturbations), 
which indicates a very high detection ratio.

Given the nature of the Acceleration Set fields in the 
BSMs, VCADS jumps above the random line (50/50 True 

Positive and False Positive rate) at 21%. As a result, some BSMs 
were incorrectly detected as anomalous. The overall compro-
mise between True Positive and False Positive rates is justifi-
able and shows that VCADS is able to detect EEBL attacks 
with high precision and with few compromises.

The FCW attack results (in Figure 14) depict higher detec-
tion ratios and less False Positive rate compromises. The 
reductions done in the RV by the adversary were easier to 
detect when the factor approaches to 0.0, rather than staying 
close to 1.0. Overall, there was a 80% True Positive detection 
rate with False Positive rates compromises between 7% and 
11%. After 11%, all reduction factors seem to converge and 
increase the detection ratio as the sensitivity decreases without 
any regard for the reduction factor.

For the LTA attack, more than one field was perturbed by the 
adversary. Figure 3 shows that there were high efficiency detection 
ratios (between 85% and ~100%) with almost no compromises 
(0% to 3% False Positive rate). With an adversary that can only 
manipulate the Acceleration Set fields, the detection of our mecha-
nism was the highest. This was followed by an adversary that can 
only manipulate Speed, and finally, an adversary that is able to 
manipulate both the Acceleration Set and Speed fields. As the True 
Positive and False Positive rate increase, the benefits of an adver-
sary that can manipulate more data fields becomes evident.

The results of the ICW attack (in Figure 15) are similar 
to the LTA attack. This is a consistent result with the fact that 
both LTA and ICW attacks are crafted based on the 

 FIGURE 13  ROC curve of the Cross-Validation mechanism detecting anomalies from an EEBL attack scenario at different 
acceleration values (ranging from −4 m/s2 to −13 m/s2).
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 FIGURE 14  ROC curve of the Cross-Validation mechanism detecting anomalies from an FCW attack scenario. The adversary 
controls the speed capability and reduces it to show the RV in imminent collision with the HV.
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 FIGURE 15  ROC curve of the Cross-Validation mechanism detecting anomalies from an LTA attack scenario. The adversary 
controls different capabilities: Speed and/or Acceleration.
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intersection location. Although the True Positive rate of the 
ICW attack was not as high as the LTA attack, which varies 
from 85% to 90%), it had very similar compromises in the 
False Positive rate, and the difference in capability fields of an 
adversary was evident.

Furthermore, Section III-B shows that an adversary may 
manipulate one or more field values to attack an HV and 
trigger false warnings. If an adversary is able to manipulate 
all fields in consecutive BSMs and synchronize them to 
be consistent with each other (using the Field Cross-Validation 
equations or other approximation mechanisms), the variation 
between fields and derivations will not be detected as we can 
see in these results. For this reason, if the adversaries are aware 
of the Cross-Validation mechanism, they will not be able to 
bypass this mechanism as long as they cannot manipulate all 
the vehicular fields.

V.  Related Works
In this section, we present related works on data-centric trust 
and misbehavior detection in V2X.

So et al. [7] proposed an RSSI-based misbehavior detector 
and tested it on the VeReMi dataset. However, signal strength 
is not an stable indicator as it can be faked by increasing or 
decreasing the transmit power. Similar detection mechanisms 
were explored in [20, 21, 22, 23, 24, 25], including trust models 
that allow vehicles to share the detected signal strength 
through tables. One of the caveats in these tables is the vector 
attacks that span from trusting other vehicles (e.g., Sybil and 
Byzantine attacks). A detection system to verify transmission 
signals’ energy was developed in [40]. The system extracts 
features of pre-established anomalous signals and uses it to 
validate future signals.

Golle et al. [41] validated V2X data traffic by finding 
explanations as to why data has certain values. It uses internal 
physical sensors, such as radar. This approach limits the 
amount of vehicles that can be validated, as it is dependent 
on the presence of specific sensors in vehicles.

Unsupervised learning model (i.e., K-means clustering 
for vehicular distances) was used in [42]. It uses speed and 
acceleration values in order to detect vehicles outside the 
clusters. K-means clustering optimizes the hyper-parameter 
K before it can be used, but here it is arbitrarily chosen by 
clustering vehicles into groups of 30. This rather creates an 
unstable model that does not necessarily fit the population of 
vehicles. Moreover, vehicle count is often inaccurate as vehicles 
are constantly changing their temporal IDs and certificates. 
Thus, using unsupervised approaches is challenging in highly 
dynamic environments, such as modeling traffic patterns.

Similarly to [42, 43] used K-means clustering for fuzzy 
time series to detect Sybil attacks. Unlike [42, 43] optimized 
the K hyper-parameter. The whole article assumed Sybil 
attacks are co-located but did not specify distance ranges and 
the ability of receivers to monitor vehicles as their IDs 
constantly change. Contrary to [42, 43, 44] applied supervised 
machine learning to extract vehicular features regarding 

location, speed, acceleration, and message periodicity; 
however, supervised learning requires previously defined 
training data, and the variability of vehicular environments 
is high enough that the training data in one environment 
cannot be trivially generalized to other environments.

Attacks on stationary features of a BSM (e.g., vehicle 
dimensions) were analyzed in [6]. Machine learning algo-
rithms such as MLP, AdaBoost, and Random Forest were used 
to detect attacks with a high success rate.

Finally, [1] developed a detection mechanism similar to 
ours. It uses Kalman filter to predict the future behavior of 
vehicles by relating position, speed, and acceleration. This is 
the same theory used in VCADS’ Field Cross-Validation 
component. However, redundant data is not explored in depth 
and models to constrain single fields were not shown.

VI.  Conclusion
V2X is an important technology capable of synchronizing 
vehicles and making the transportation system safer and more 
efficient. Security efforts have been focused on providing 
reliable message transmissions and detecting signal transmis-
sion anomalies. However, detecting anomalous content from 
incoming BSMs is still under research and development.

An anomaly detection system at the Safety Applications 
layer of an ITS stack ensures that data inaccuracies and incon-
sistencies, coming from an adversary or erroneous sensors, 
can be detected and filtered out. This security system is para-
mount to create reliable Safety Applications that can warn 
drivers or self-driving algorithms of real possible collisions. 
In this article, we proposed physics-based misbehavior detec-
tors for BSMs. Our solution, called VCADS, was implemented 
and tested on real datasets provided by the USDOT Connected 
Vehicle Pilot Deployment and other State DOTs. We simulated 
a series of attacks, and demonstrated that sensor error and 
attack perturbations can be detected with field validation and 
cross-validation constraints.

The attacks on LTA and ICW were proven to be inefficient 
and easily detectable by VCADS. On the other hand, the EEBL 
and FCW false attacks were more effective and yielded higher 
false positive rates. In the case of the EEBL attack, higher false 
positive rates than expected were attributed to the noise levels 
in the acceleration parameter of the datasets. Real-life datasets 
in V2X are expected to have noise levels from the environment 
and hardware sensor measurements. Nevertheless, the results 
in Figures 13, 14, 15, and 16 show that, even with such noise 
levels, VCADS can be  implemented and has proven to 
be useful at detecting anomalies that come from malicious 
attacks and misbehaved vehicles. We hope that standardiza-
tion bodies in V2X use our constraint models to specify 
minimum requirements of misbehavior detection for commer-
cial V2X platforms.

As future work, VCADS will be tested against a wider 
range of attacks. Indeed, such tests will allow us to formally 
learn what classes of misbehavior can be detected via our 
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physics-based detectors. Moreover, VCADS will be added to 
the open-source simulation framework F2MD [45] to ensure 
fair comparison against other detection systems.
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Acronym Table
BSM - Basic Safety Message
BSW - Blind Spot Warning
C-V2X - Cellular V2X
CAM - Cooperative Awareness Message
DSRC - Dedicated Short Range Communications
ECU - Electronic Control Unit
EEBL - Emergency Electronic Brake Lights
FCW - Forward Collision Warning
HV - Host Vehicle
ICW - Intersection Collision Warning
IMA - Intersection Movement Assist
LCW - Lane Change Warning
LDM - Local Dynamic Map

LLC - Logical Link Control
LTA - Left Turn Assist
PDCP - Packet Data Convergence Protocol
RLC - Radio Link Control
RV - Remote Vehicle
TTC - Time to Collision
USDOT - United States Department of Transportation
V2X - Vehicle to Everything
VCADS - V2X Core Anomaly Detection System
WAVE - Wireless Access in Vehicular Environments
WSM - WAVE Short Message
WSMP - WSM Protocol
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