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Abstract

Public clouds are inherently multi-tenant: applications deployed by
different parties (including malicious ones) may reside on the same
physical machines and share various hardware resources. With the
introduction of newer hypervisors, containerization frameworks
like Docker, and managed/orchestrated clusters using systems like
Kubernetes, cloud providers downplay the feasibility of co-tenant
attacks by marketing a belief that applications do not operate on
shared hardware. In this paper, we challenge the conventional wis-
dom that attackers cannot confirm co-residency with a victim ap-
plication from inside state-of-the-art containers running on vir-
tual machines. We analyze the degree of vulnerability present in
containers running on various systems including within a broad
range of commercially utilized orchestrators. Our results show that
on commercial cloud environments including AWS and Azure, we
can obtain over 90% success rates for co-residency detection using
real-life workloads. Our investigation confirms that co-residency
attacks are a significant concern on containers running on modern
orchestration systems.

1 Introduction

Cloud computing adoption has grown exponentially in the last
decade, with revenue of $175 billion in 2018 [19] and $206.2 bil-
lion projected in 2019. Several diverse industries have begun mi-
grating workloads to the cloud including healthcare, financial ser-
vices, technology, and insurance [19]. Dependence on cloud ser-
vices continues to increase as all companies, from small startups
to large multi-national corporations and governments, store and
process their data on the cloud. The data handled by many of these
organizations can be highly sensitive. In most cases, customers run
their code on the same physical machine as others (a state called
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co-residency). Those other customers could include potential adver-
saries, and this co-residency exposes a major attack surface. De-
spite the isolation between processes and virtual machines, shared
access to hardware resources introduces security and privacy con-
cerns for tenants running on the same hardware.

Several recent events have shown that such vulnerabilities are be-
ing exploited by adversaries. Reported attacks against data-centers
include NordVPN’s data-center breach, which took place on a third-
party provider, leading to leakage of TLS keys [34]. Misconfigura-
tion by Tesla of a Kubernetes cluster led to a cryptojacking attack
and exposed secret access keys to an AWS account, leading to attack-
ers launching crypto-currency mining software on Tesla’s compute
resources [43]. In cases where misconfiguration was not the issue, a
rarely disclosed datacenter breach showed a targeted attack where
the adversaries employed Trojan malware to compromise websites
hosted on a Central-Asian datacenter [33]. Cases like these show
that attackers are employing sophisticated mechanisms to attack
data-centers with specific targets. As providers patch misconfigu-
ration vulnerabilities, the adversaries are bound to turn towards at-
tacks on the virtualization layer. Zero-day vulnerabilities have been
publicly exploited in virtualization software in controlled environ-
ments [37], which are bound to make their way into actual exploits.
To locate targets then, we suspect that attackers will implement co-
residency detection on cloud environments as a major attack vector.

So far, Cloud Service Providers (CSPs) have adopted hypervi-
sors, e.g., KVM, container runtimes, e.g., Docker, and orchestration
systems, e.g., Kubernetes to streamline access to cloud resources.
CSPs depend on low-layer abstractions such as hypervisors and
container sandboxes [6] to provide security from co-residency at-
tacks. The processes themselves run using abstractions that elide a
shared-hardware view: providing an illusion that the VM and pro-
cesses share no part of the hardware with others. A study by Eder
[23] claims that the combination of container-based isolation and
hypervisor-based virtualization may provide an improved security
model. The direction of engineering and research in the industry
indicates that this belief is widespread. The development of orches-
tration systems regularly downplays the potential impact of co-
residency. CSPs are introducing multi-tenant, managed Software-
as-a-Service implementations of container orchestrators that make
running applications easier for customers [4, 44]. However, these
implementations share the cluster-level abstractions between ten-
ants, making co-residency more likely.

The growth of such orchestration systems has fundamentally
changed the way cloud platforms manage virtualized computation.


https://doi.org/10.1145/3411495.3421357
https://doi.org/10.1145/3411495.3421357
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3411495.3421357&domain=pdf&date_stamp=2020-11-09

Session: HOSTING AND CONFINEMENT

In these systems, containers become the fundamental unit of com-
putation, rather than customers managing discrete VMs per appli-
cation. The marketing literature for containers are largely driven
by security. They are rapidly poised to replace VMs, made evident
by the development of Kata containers [1], etc., which claim to have
the security of VMs while maintaining low overhead.

Research by Atya et al. [14, 15], Bazm et al. [18] have confirmed
that virtual machines are vulnerable to co-residency attacks. The
structure of containers induced speculation that similar vulnera-
bilities also exist for containers, even when running within virtual
machines and orchestration systems. For example, Gao et al. [26]
showed that the way containers mount the procfs pseudo file sys-
tem exposes many exploitable side-channels. Indeed, Google also
suggests that containers should not be trusted as a security bound-
ary due to the lower isolation provided by the containers [12]. More-
over, the authors suggest that the ideal isolation boundary should
include a hypervisor to be the most secure boundary possible. Re-
search has still not shown however, whether this secures against
co-residency attacks. !

This paper is the first to challenge the conventional wisdom that
containers within VMs and orchestration systems are secure against
co-residency attacks. We adapt the co-residency watermarking
attack [17] which uses hardware side-channels on VMs to establish
whether an adversary is co-resident with its target. We show that
the attack is also successful when deployed against containers
running on virtual machines, even within commercially deployed
orchestration systems.

To analyze the effectiveness of the attack, we perform experi-
ments on real-life workloads on a variety of system configurations.
These range from structured environments (Local, Local Separated,
Quiet Cloud, Noisy Cloud) to real-world clouds, e.g., AWS[7], and
Azure[8]. We measure the sensitivity of the attack to architecture,
load, orchestrator selection, and adversarial activity. Using mod-
ern orchestrator implementations (Docker Swarm (DS), Kubernetes
(K8), Helios), we show that variations in these choices have little
effect on the success of such an attack. Our evaluation yielded re-
sults with 90% success rates on commercial cloud environments.

Finally, we analyze how inconspicuous an adversary can be dur-
ing the attack and show that an adversary can detect co-residency
with little work, making them much harder to detect.

We make the following observations in this paper:

e We empirically confirm that systems running on containers
within virtual machines are vulnerable to co-residency at-
tacks, with over 90% detection rate on cloud systems.

e We demonstrate that co-residency detection can tolerate
background noise at a 70% success rate, as long as it does
not exceed hardware capacity.

e We show that changes to the architecture and choice of
orchestrator reduce the fidelity of detection by at most 10%,
demonstrating little effect on adversarial success.

Despite this, Alibaba cloud claims that their Container Service for Kubernetes "Ensures
end-to-end application security and provides fine-grained access control" [9], while
IBM Cloud claims aAIJHighly secure environment for production workloads with
built-in container-level securityaAl [10]. These statements are representative of the
security-related claims about containers made by cloud service providers.
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e We analyze the amount of adversarial work necessary for
the adversary to be successful in detecting a target and con-
firm that an adversary can be successful by generating in-
terference without reaching the hardware capacity, around
70% of the capacity in one of our experiments.

2 Background

Orchestration platforms have ushered in a new way of virtualiz-
ing execution on shared cloud systems. They provide a way for ad-
ministrators to deploy their applications at a cluster-level abstrac-
tion. The primary goal of orchestration platforms is to orchestrate
the placement, scaling, and lifecycle of applications in a distributed
manner, providing high availability and scalability. This removes
the effort needed to plan how the applications run. As a result, large
scale applications are adopting these strategies because fast scaling,
cost-effective usage, and lower downtimes help make their systems
much more reliable. Applications have been growing in size and
complexity, requiring layers of authentication, web-capabilities, in-
tegration with other platforms, caching, and storage. To make these
applications easier to maintain, engineers are developing and de-
ploying them as smaller units, or micro-services, that can be scaled
and managed independently.

Google’s Borg project led to the development of the Kubernetes
orchestrator [46] which helps automate assigning containers to
physical machines (nodes). Also, the platform performs virtualiza-
tion at the compute, device, and network levels to simplify applica-
tion development. Other developers have invested significant effort
into such systems, e.g., Docker Swarm [21], Spotify’s Helios [42],
and Apache Mesos [13].

2.1 Prior work

Varadarajan et al. [45] describe performance covert-channel co-
residency detection as: If an adversary is co-resident with the victim
and is generating contention that leads to measurable performance
degradation for the victim, it can be measured by the adversary
to detect co-residency. Prior works have used various methods
to analyze this drop in performance on various attack surfaces.
When generating contention in the memory bus [45], the authors
compared the means and medians of the distributions, taking into
account the noise of the system when the adversary was not active.
Building on this methodology, when detecting co-resident VMs in
VPC enabled clouds, Xu et al. [49] thresholded the latency of a trace-
route to a possible candidate VM. Finally, Bates et al. [17] generated
contention in the NIC and measured the difference in distributions
of the travel time for packets that were watermarked and ones that
were not. They measured the difference in these distributions using
the Kolmogorov-Smirnov statistical test, confirming co-residency
if the test rejected the null hypothesis. All of these attacks used
virtual machines as the sole isolation boundary; our work adapts
these in containerized environments and shows that such isolation
is still not enough to prevent co-residency attacks. We also show
that a simpler detection strategy (Mean Square Error) is sufficient
to prove co-residency in most realistic systems.

2.2 Containers

Micro-services demand that each running service can start and
stop quickly (scale), have a small footprint, and automate easily.
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Figure 1: Components of orchestration platform

This makes virtual machines a very poor choice. Creating a VM per
application would require a very long setup time, requiring a new
initialization of the operating system per service instance, leading to
much higher resource usage. To solve this problem, the industry is
rapidly switching over to a new type of process-isolated runtime for
applications. This runtime uses Linux namespaces, control groups,
and the Union File system (OverlayFS [22]) to make the application
system-agnostic as well as easy to spin-up and isolate. This runtime
defines the process as a container, which contains all the libraries
necessary to run the application. By building the blueprint for this
ahead of time, the spin-up time and resource usage for containers
tend to be very low [32]. Due to these reasons, containers are
becoming the standard unit of computation within micro-services.

2.3 Orchestrator implementation

Most orchestrators only differ in architectural structures (See Fig-
ure 1). The core concept includes a coordinator application (Master)
that communicates in a distributed way with all the physical nodes
(VMs) running the client’s applications. The coordinator uses a dis-
tributed database that stores the latest state of the cluster of client
containers. The state includes which containers need to run, how
many instances of a container should be active, which node they
should run on, and other metadata. All these administrating pieces
together constitute the control-plane of the cluster.

The control-plane is responsible for continuously monitoring
the cluster, so it implements health checks that verify the states
of all container instances using periodic HTTP calls. The control-
plane also implements a cluster network to allow containers to
communicate with each other. Each client node runs a local man-
ager that the coordinator communicates with. The local manager
manages the container runtime and keeps track of the running con-
tainers and their health. Finally, it provides the firewall rules and
port mappings necessary to implement the cluster network subnet
needed by the containers running on that node. Utilizing the health
checks, if a container is in a non-ideal state, the control-plane takes
steps to fix that. In most cases, the control-plane is managed by the
cloud-provider and is physically separated from client applications.

We looked into the source of three orchestrators listed above:
Docker Swarm, Kubernetes, and Helios. DS and K8 expose HTTP
APIs for communication between the coordinator and nodes, ini-
tiated by the coordinator. Thus, the majority of computation hap-
pens there. On the other hand, Helios implements a poll-based par-
adigm, where each node queries the state database directly to com-
pute the action needed for the cluster to reach the “goal state". Since
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Figure 2: Isolation provided by all layers in K8 [12]

the orchestrators are critical to the operation of the cluster, best
practices suggest that they are separated from the actual compute
nodes by administrators [24].

2.4 Virtual machines and isolation

CSPs such as Amazon Web Services (AWS), Microsoft Azure, Google
Cloud Platform, etc., provide services to their customers with a set
of guarantees (i.e., , service level agreements). While it is evident to
customers (i.e., tenants), that they are sharing hardware with other
tenants, the cloud platform also provides certain isolation guaran-
tees for code running on these systems. More specifically, the oper-
ating system provides guarantees between processes that ensure
that the memory access is isolated. Access Control mechanisms in
the operating system provide isolation at file and device levels. Sim-
ilarly, hypervisors provide isolation to virtual machines running
complete operating systems. These isolation guarantees are sup-
posed to ensure that tenants’ code will not be adversely affected by
others from a security, performance, and privacy perspective. Since
each layer of isolation describes a new attack surface, each layer
must be properly secured.

The Kubernetes (K8) project describes the isolation provided at
each layer, seen in Figure 2. K8 wraps the containers in an abstrac-
tion called the Pod (a collection of processes), which are isolated
from other processes by a Linux namespace. The VM running these
is called the node. In this paper, we focus on the isolation guaran-
tees provided by the node layer and below. At this layer, all the con-
tention is generated in the hardware of the physical machine, how-
ever, orchestration platforms claim that multiple layers of isolation,
including Kernel security, network, resource, and data isolation ex-
ist among all the layers below the Node.

2.5 Co-residency Attacks

A co-residency attack considers an active, malicious adversary that
has no affiliation to the cloud provider [39]. The adversary appears
as an innocuous tenant to the CSPs with no elevated privileges on
the actual machine. They access the standard interface for launch-
ing instances, same as the victim, are free to launch as many VM
instances on the cloud service as they want (barring some limits
for specific CSP), and can choose the hardware configuration the
instances will have. This hardware configuration is applied at the
VM level, however, certain CSPs tend to restrict the type of VM in-
stance that can be placed on a specific type of machine [5]. This
means that the adversary can choose from a subset of physical ma-
chines in some cases. For example, if an adversary decides to use
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m2.large instances on AWS, they will most likely be placed on ma-
chines specified for m2.large instances [45]. As a result, co-resident
placement becomes much simpler. Zhang et al. [51] shows that in-
fluencing co-tenancy with a 90% probability takes only 20 instances
on a chosen instance type.

The victim is a legitimate cloud tenant performing security-
sensitive operations using hardware shared with the adversary.
The victim has the same capabilities for launching instances as the
adversary. Both members in this model trust the cloud provider
and have little to no insight into the placement policies of the
datacenter. Additionally, the adversary gains little information from
metadata provided to the instance such as the IP address. While this
information was useful in older attacks for cloud cartography [39],
this is no longer viable [45] on current cloud architectures due to
the introduction of Virtual Private Clouds, where all user VMs are
launched in a logically isolated section of the cloud, giving the user
the ability to pick their IP addresses [49].

Instead, the adversary uses one of the available side channels
to gain unauthorized access to some information belonging to the
victim. This can range from knowledge of existence [17, 39], to
application data [30], to cryptographic keys [52]. Gao et al. [26]
show the extent of channels that can be used by containers on cloud
providers, including benign information such as power usage.

Most of these studies looked at the isolation provided by virtual
machines on clouds, assuming that each application runs within
its virtual machine. However, containers and orchestrators seem
to provide an added abstraction layer that may improve the iso-
lation guarantees. Indeed Eder [23] claims that the addition of
containerization-based isolation within hypervisor-based virtual-
ization may be an improved security model. The direction CSPs
have taken with their development of orchestration services seem
to certainly imply that this is the case [4, 44]. For example, man-
aged orchestration clusters support multiple tenants on an identi-
cal set of virtual machines, vastly increasing the possibility of co-
residency. Honig and Porter [29] claim that the KVM hypervisor is
secure enough to protect from side-channel attacks since the vul-
nerabilities in libraries are patched by the developers quickly. All-
clair and Kaczorowski [12] from Google suggest that the layers of
isolation in Kubernetes generate enough security for containers on
VMs and orchestrators. Recent research by Atya et al. [14] shows
that this is certainly not the case for VMs.

Sources intuit that containerized isolation is not secure, even
while running within virtual machines and orchestrators. Edwards
et al. [24] recently completed a security review of all systems within
the Kubernetes architecture and outlined some of the major at-
tack vectors and best practices relating to clusters running on Ku-
bernetes. They note that multi-tenant clusters are a major attack
surface for orchestrators today. However, their definition of multi-
tenancy differs from ours in the following way: they define a multi-
tenant cluster as an orchestrated collection of containers deployed
on compute nodes that have containers deployed by multiple ten-
ants. This may induce co-resident multi-tenancy, but the attack sur-
face looks at access control and over-privilege as the main issues
to protect from. Our definition deals with applications that are as-
signed the same physical node to containers deployed by two un-
related tenants on different clusters. As a result, the attack surface
we investigate deals with adversaries circumventing the combined
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isolation guarantees provided by the hypervisor and container run-
time using some side-channels.

3 Co-resident Watermarking Attack

The goal of this study is to ascertain that containers running on vir-
tual machines are also vulnerable to co-residency attacks, regard-
less of system configuration. To achieve this goal, we picked a rep-
resentative attack that requires a reasonably low setup cost. The at-
tack attempts to determine if the adversary’s container is running
on a VM that is co-resident to their victim’s container. We then an-
alyze the various sensitivities of the attack to the architecture, sys-
tem load, orchestrator choice, and adversarial activity.

For measuring architectural sensitivity, we run the attack on a
quiescent setup where only the adversary and the victim are active.
With this setup, we can show that the attack is possible and ensure
that the measurements are affected by external interference. After
this, the attack is run on a cloud environment to analyze the effect of
other tenants on the success of the attack. Similar to realistic cloud
environments, we analyze the effect of other load in the system to
the attack. In addition to the victim and adversary, we analyze the
attack’s success when other processes and tenants are demanding
a high amount of CPU and network bandwidth.

The third sensitivity we measure is the choice of orchestrator.
We show that the presence and choice of an orchestrator plays a
minimal role in increasing resiliency against the attack. Finally, we
vary the amount of activity the adversary performs, i.e., quantity
and duration of interference generated, and measure how deceptive
an adversary can be while successfully detecting the co-resident
victim.

Cloud Platform
Compute Node
Victim VM Adversary VM

Containers

FLOODER
Container -

Orchestration Platform

Other
Containers

Other ‘

SERVER
Container

CLIENT

Orchestration Platform

Container Runtime Container Runtime

T~ Hypervisor .-

Figure 3: Attack setup: FLOODER and SERVER are co-resident
while the CLIENT communicates with them externally

3.1 Attack Phase

We use the co-resident watermarking attack [17], which works
against public-facing web servers to detect when a malicious VM
is running co-resident to the server. The setup for this attack is
similar to the one implemented for Tor traffic analysis [38]. For
this paper, we found that the watermarked network-flow detection
attack was sufficient as it runs very quickly (<2 minutes for each
run) and has a higher success rate than other attacks. In our setup,
we have two applications running inside containers that play the
following roles: the SERVER and the FLOODER as shown in Figure 3.
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set p as period

set d as duration

notify_client ()

loop for d seconds
notify_client ()
loop p seconds: Watermarking Sequence (On-"WM)

send_burst_packet ()

end loop
notify_client() // Notify end of watermarking sequence
sleep (10-p) // Idling Sequence (On-Idle)
notify_client () // Notify end of idling sequence

end loop

notify_client () Notify Start of off sequence

loop while client.active ()

On sequence

sleep (p) Watermarking Sequence (Off-WWM)
notify_client () Notify end of watermarking sequence
sleep (10—p) Idling Sequence (Off-Idle)
notify_client () Notify end of idling sequence

end loop

Algorithm 1: Flooder implementation

3

®

Round-trip Time (ms)
s o

0 2000 4000 8000 10000 12000

Request number

-

Round-trip Time (ms)

0 2000 4000 6000

Request number

8000 10000 12000

Figure 4: Expected trace of RTTs: The trace shows a square
wave (top) when the FLOODER causes interference (On se-
quence), while a near constant RTT when the FLOODER is not
causing interference (bottom) (Off sequence)

The third application, the CLIENT runs on an external machine and
connects over the network to both the SERVER and the FLOODER.

The SERVER is the modeled victim in this attack and has no
knowledge of the adversary. It listens for web requests, which for
simplicity were restricted to one type, where the SERVER sends a
10 MB file in chunks of 8 KB.

The CLIENT is controlled by the adversary and is aware about
the co-residency detection attack in progress. It maintains commu-
nication with the adversary that is potentially co-resident with the
SERVER, and it measures round trip time (RTT) for requests made to
the SERVER. The CLIENT continues to make requests to the SERVER
until the adversarial container i.e., FLOODER notifies completion.

Finally, the FLOODER is a container that generates interference in
the network interface card (NIC) of the physical machine by flood-
ing it with large amounts of data. To minimize the interference
from the hypervisor, the FLOODER signals the CLIENT, runs for pe-
riod p, signals the CLIENT, and idles for the next 10 — p seconds.
The code for FLOODER is provided in Algorithm 1.

The FLOODER runs in two sequences: On and Off. During the On
sequence, the FLOODER runs in a loop for d seconds. In this loop, the
first p seconds are the watermarking sequence (On-WM), while the
idling sequence (On-Idle) is made up of the following 10 — p seconds.
During On-WM, the FLOODER generates large bursts of traffic sent
out of the machine, approaching the capacity of the NIC. Due to
the generated contention in accessing the NIC, we expect that the
Round Trip Time (RTT) for the CLIENT s requests should increase.
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Figure 6: Expected histogram of RTTs: The histograms look
identical when the FLOODER is not causing interference (Off
sequence)

The FLOODER signals the CLIENT the end of the On sequence
and goes into the Off sequence. This sequence is useful to obtain
a model of the environmental noise (load [), which is factored out
during the co-residency detection phase. During this sequence, the
CLIENT makes the same RTT observations with signals from the
FLOODER. The FLOODER sleeps for p seconds (instead of actually
sending packets), which is the Off-WM sequence. After notifying
the client, the FLOODER sleeps again for 10 — p seconds, which is
the Off-Idle sequence. We expect that the RTTs should be nearly
identical during the entire Off sequence. The expected RTT trace
for both the Off and On sequences is shown in Figure 4. Using the
collected RTT trace, the CLIENT analyzes whether the FLOODER is
actually co-resident with the SERVER.

3.2 Co-residency Detection Phase

For detection, we found that applying the KS-test to round trip
times does not work. Unless the measured values generate near
ideal distributions (Figure 6), the KS-test has a very high false-
positive rate due to the high variance in RTTs. For this paper, it was
sufficient to use a simple distribution distance metric such as the
Mean Square Error (MSE) between the histograms for On-WM and
On-Idle. We calculate the MSE as follows: for each data point in the
RTT histogram (Y) when then FLOODER was active, we average the
squared difference with the corresponding RTT histogram (¥) value
without the FLOODER active. Histograms where the FLOODER has
generated enough interference should be separate, as demonstrated
in Figure 5. In contrast, when the FLOODER is not co-resident, the
distributions will be nearly identical, as shown in Figure 6. Thus,
the MSE value should be high when the FLOODER is co-resident and
close to zero otherwise.

n
MSE= = 3(%; = Y, 0
"=
The final piece of detection is generating the threshold MSE value.
We need to determine the threshold to identify which configurations
are co-resident. In the case of the ideal clean square wave, that is
trivial. Any MSE value greater than zero should be a successful
detection since there will be no effect generated when the adversary
is not co-resident. However, during our evaluation, we found that



Session: HOSTING AND CONFINEMENT

as the system gets noisier, the distributions for the On-WM and On-
Idle sequences get closer together while the distributions for Off-
WM and Off-Idle show pseudo-separation. This makes it difficult to
determine a ground-truth threshold value for the MSE.

To determine and eliminate the effect of this background noise,
we use a model of the background noise by obtaining an RTT trace
when the FLOODER is inactive (Off sequence). This technique is
similar to the technique used when determining co-residency based
on memory bus access contention [45]. Using the Off sequence, we
generate a baseline MSE value for the system without the activity
of the FLOODER. Since the Off sequence is obtained immediately
after, it should provide reasonable measurement of the background
noise. We subtract this value (MSE,s¢) from the (MSEon) and use
the result to generate the correct threshold.

aMSE = MSEon — MSE o )

Since the model of the background noise may change on each
system we evaluate, we run a controlled experiment where we
assume that the adversary has access to the SERVER and can force
co-residency. Using the aMSEvalue from these runs, we generate
the Receiver Operating Characteristic (ROC) curve, find the Pareto
point on the curve given by Equation 3, and obtain the optimal
threshold value (aMSEy) for that system configuration.

aMSEy = argmax(TruePositive — FalseNegative) 3)

4 Evaluation

As part of the evaluation, we try to answer the following:

o Is co-residency detection possible when running containers
on virtual machines?

e Is co-residency detection affected when containers run on
varying system configurations and how?

e Do orchestrators play a role in the success of co-residency
detection? Which components of orchestration software play
the largest role?

e Do system load and architecture affect success metrics?

e How deceptive can an adversary be before co-residency de-
tection is not possible? What is the least amount of data
needed by the adversary for the attack to succeed?

o Is the signal obtained from the side-channel affected by du-
ration of contention?

e Does network-watermarking co-residency detection react
to the vendor of orchestrator? If yes, why?

For each measured sensitivity, we establish the experimental
variables show in Table 1.

Variable Name Symbol | Description
Period of sequence p How long the flooding se-
quence (On-WM) lasts
Detection threshold | aMSE; | The threshold to detect co-
residency
Load l The load in the system on the
shared hardware
Orchestrator choice 0 The chosen orchestrator
Duration of run d How long each run takes

Table 1: Experimental Variables
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4.1 Experimental setup

We performed our experiments with three different setups: the first
emulated a small, simple cloud environment, the second mimicked
a realistic cloud provider, and the third used commercial cloud
providers with dedicated hosts. We chose not to run any of the
sensitivity analysis on the commercial cloud provider due to ethical
reasons, ensuring that uninvolved third parties were not affected.

4.1.1  Simple setup

Local Our simple setup involved just two physical nodes capable
of running workloads. We set up two orchestration clusters: one for
the target container (SERVER) and the other controlled by the adver-
sary. Each cluster had its coordinating application, i.e., Master, run-
ning on the same node, meaning that the Master node VM for each
cluster was allowed to run client containers directly. This allowed us
to generate a footprint for the amount of computation and IO inter-
ference generated by the Master, which is a significant piece in any
orchestration system. Since the role of the Master is to simply desig-
nate a specific node (including itself) to run the container, perform
health checks, and virtualize access to other portions of the system,
we expected that once an application has been successfully assigned
to a node, i.e., scheduled, the orchestration system should gener-
ate minimal interference in the actual containers’ performance.

4.1.2 Realistic setup

Local Separated Running client containers on the Master node
does not reflect realistic cloud system setups. Cloud providers gen-
erally handle the setup for the Master node(s) and keep them sepa-
rate from the user’s applications [3]. To mimic this, we separated
the Master nodes and CLIENT onto different physical machines.
With this, we were able to isolate the victim and adversary with no
other system-level interference (barring the OS and hypervisor).

In such a setup, the only piece of software from the orchestra-
tion platform that runs on the same machine as the application is
the node manager. This software only responds to health-check re-
quests and ensures that the application container is healthy. We ex-
pect lesser interference from the orchestration here and the attack
should be much more robust.

Quiet Cloud We created the same setup as above in a realistic,
cloud-like environment. The Master node ran on separate hard-
ware, with only the local manager running alongside the client ap-
plications. On this setup, other tenants did not share the physical
hardware with the SERVER and FLOODER, however, other tenants
were active in the local network, generating more noise than the
Local and Local Separated setups.

Commercial Cloud We tested the feasibility of this attack on two
of the biggest commercial cloud providers, Amazon Web Services
(AWS) [7] and Microsoft Azure [8]. We used dedicated hosts to
ensure that (1) The contention generated was not affected by any
tenant not involved in the experiment and likewise, (2) the attack did
not affect any real tenants. For these reasons, we also chose not to
perform any sensitivity analysis on the commercial cloud platforms,
instead, we use the Quiet Cloud environment controlled by us.

4.1.3  Non-quiescent environment
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Noisy Cloud We also ran the attack in a setup that includes a
lot more system noise on the victim. To emulate this, we used
the popular benchmarking tool Yahoo! Cloud Serving Benchmark
(YCSB) [20] to continuously benchmark Memcached, a fast, per-
sistent key-value store. This generates many disk-IO and network
calls on the system. Within this environment, we kept the Master
node separate to ensure that the load in the system is predictable.

In addition to the YCSB benchmark, we use a realistic server trace
of traffic as background noise to evaluate how realistic load in the
system will affect the detection rates. We use a recent trace (April
2019) from the MAWTI dataset [41] to mimic background traffic. We
adjust the multiplier on the trace replay to increase the contention
in the NIC due to noise.

The local setups (Local and Local Separated) for experiments
used two Dell Precision T7600 machines with identical internal
configurations. They had 32 GB RAM, six-core Intel Xeon E5-2630
processor, Ubuntu 18.04, and were connected to a local network
over Ethernet with a Cisco Linksys E1550 router. The NIC for the
target machine had a 1 Gbps Ethernet connection. A third machine,
a 2013 Mac Pro was used as a packet sink and existed on the local
network, but took no computational part in the actual attack. The
KVM hypervisor was the virtualization layer, which is the standard
in industry [2].

The experiments were repeated on a cloud-like cluster (Quiet
Cloud and Noisy Cloud) which contains sixteen compute nodes.
Each node is a Dell PowerEdge M620 machine running eight-core
Intel Xeon E5-2609 processors with 64 GB RAM. All nodes were
running Ubuntu 18.04 Server and were connected to the cluster
network. Each node communicated through a central NIC for the
cluster, which had a bandwidth of 1 Gbps. Any node that required
virtualization used the KVM hypervisor like above. The cluster is
currently in use by other researchers to run various workloads and
applications, making it similar to an Infrastructure-as-a-Service
(TaaS) cloud service. Other tenants of the cluster were accessing
some nodes on the same shared network, leading to slightly higher
background noise than Local Separated and Local.

4.2 Co-residency Detection

Recall that the job of the FLOODER was to generate interference in
the network interface (NIC) of the physical machine by flooding it
with large amounts of data. In this experiment, we fixed the value of
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the period p to 5 seconds. The setup was on the Local Separate setup.
The result of this can be seen in Figure 7a. Every time the FLOODER
ran, the measured RTT from the SERVER increased as expected.
This sequence continued for a minute, after which it signaled the
CLIENT and went into the Off sequence, where it continued the
above cycle without actually sending any data. During this period,
the RTTs show little to no pattern as seen in Figure 7b.

During the co-residency detection, we compared the histograms
of the two sequences. Figure 8 shows a clear separation in the mean
RTTs. The histogram during the control sequence, as seen in Figure
9, has nearly no separation and shows that the adversary is not co-
resident. For each setup, we calculated the aMSEy threshold value
from the ROC curves using Equation 3, seen in Figure 10.

4.2.1 Local and Local Separated We ran this experiment 20 times
on each setup and created the confusion matrices for all setups and
orchestrators. This section presents and compares the success rates
for detection.

Initially, the local setup was very simple. The orchestrator’s co-
ordinator shared the physical node with the application contain-
ers, the effect of which is described in much more detail in section
4.5. Confusion matrices for this run are presented in Table 2. As
the orchestrator’s coordinator is generally managed by the cloud
provider, so the effect of the coordinator should be extracted away
from the evaluation. The interference generated by the coordinator
seemed to be reacting to external traffic in the system. As a result,
when the FLOODER was active during On-WM, the RTTs took much
longer, generating very high success values. While this shows that
the attack is possible, the results seem unrealistically high.
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Configuration
Local Local Separated Quiet Cloud Noisy Cloud
5 True Positive | False Positive | True Positive | False Positive | True Positive | False Positive | True Positive | False Positive
E K8 100 38 94 15 91 35 35 36
E DS 100 22 92 9 72 5 58 29
£ Helios 100 21 100 10 88 18 45 47
°© Table 2: Successful detection rates across orchestrators and configurations
Once we separated the coordinators onto different machines for AWS | Azure
the realistic setup, the noise in the system became extremely low True Positive 80 94
and provided realistic success rates for detection. Table 2 describes False Positive | 25 6

the confusion matrices generated for each of the orchestrators.

Due to the Master containers being co-resident, we saw that the
ideal MSE threshold value determined for this setup was able to get
great separation between true positives and true negatives. As a
result, the prediction rate here was extremely high. While running
the containers co-resident, the response to the noise generated by
the Master was extremely high on Helios and Docker, creating very
high MSE values for most runs. The same effect was not observed
when the Master containers were moved to an independent node.
The MSE values for co-residency detection were in a much tighter
range, leading to a higher number of false positives and lower
success rates. However, even in this state, the success rates were
reasonably high - close to 95% for all orchestrators. This detection
was carried out with an aMSE, value of 25.

Summary: Co-residency detection is possible with high accu-
racy and precision on containers within virtual machines, even
when deployed on container orchestration systems.

4.2.2 Cloud Environment The first experiment ran on a semi-
quiescent network (Quiet Cloud) where the network backbone was
only shared at a switch level and no VM or user shared the CPU and
RAM allocated for this experiment. The success rates for this run
are presented in the confusion matrices in Table 2. Success rates on
all three orchestrators on this cloud-like environment are high and
show that co-residency attacks are significant.

Commercial Clouds: We ran the same experiment on two commer-
cial clouds: Amazon Web Services and Microsoft Azure. Our results
are listed in Table 3, calculated with a threshold value 0. The pri-
mary difference between these providers is that AWS uses a modi-
fied KVM [2] hypervisor while Azure uses the proprietary Windows
Azure Hypervisor. The differences between these cause variations
in how the FLOODER’s activity affects the priority of the SERVER.

The reason for higher success rates on commercial clouds is that
the allocated system had high CPU and memory availability (96
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Table 3: Detection rates on commercial cloud systems

vCPUs and 384 GB memory), but only a small amount of that was
used by each VM. As a result, the only contention generated is in
the target’s NIC making the attack’s signature much clearer to the
adversary. Regardless, the success rates for both providers make it
clear that commercial cloud systems are highly vulnerable to co-
residency attacks.

Noisy Cloud: The second run ran the YCSB benchmark in the
SERVER container in the background. This generated load that made
the system non-quiescent. The results of this run are described in
the confusion matrices in Table 2.

The addition of the noise on this setup generates an expected
drop in the success rates. Because this drop varies, it shows that the
orchestrators are variably sensitive to noise in the environment.

Finally, we also investigated the reasons behind the failures
during detection on the previous setups. Some platforms seemed to
have a much higher failure rate than others. In general, we found
that during the cases when the detector failed, the FLOODER was
throttled by the KVM scheduler. In such cases, the CPU time that
the FLOODER VM ran for was about 20x higher than the SERVER VM.

In our initial solution to this problem on the local cluster, we
added a cooldown to the FLOODER so that it may gain back schedul-
ing priority, but since the SERVER was also inactive during those
times, it had little effect. To create more realistic CPU usage by the
server, we chose to add more CPU usage to the SERVER’s VM by
making it read from /dev/urandom. As a result, the FLOODER VM’s
priority with the scheduler increased, giving much better results.

Summary: Co-residency detection within virtual machines is
possible in cloud-like environments. Background noise in the sys-
tem has a significant effect on the success of co-residency detection.

4.2.3 Non-quiescent setup To verify that IO and network interfer-
ence from virtualization or the master plays a role, we also ran the
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setup on the Noisy cloud while a separate application issued a lot of
IO and network calls on the SERVER container. We used the Mem-
cached benchmark tool from the YCSB benchmarking tool [20] for
this purpose, which added a high level of load on the system. The
result here seems to build on the above postulation. The additional
network and disk usage make K8 and DS react more than Helios.
Kubernetes seems especially sensitive to such load in the system.
The success values shown in Table 2 are very low. This shows that
the attack is fairly sensitive to system noise.

Realistic noise setup The YCSB benchmark generates very high
noise in the NIC since it makes requests as fast as possible. The
successful detections in this scenario are low since the amount of
traffic generated in the NIC is over the capacity of the NIC, leading
to thrashing. We confirm that this is the case by running the same
experiment with a recent (April 2019) traffic trace from the MAWI
dataset [41]. The results of this experiment are displayed in Figure
11. When the overall load [ in the system is within the capacity of
the NIC, we find that detection is quite successful. As [ passes this
value, we find that successful detection gets much harder.

Summary: Background noise in the system significantly affects
the success of the attack. However, this is only the case when [
exceeds the capacity provided by the hardware. Any background
noise under that limit is tolerated and does not reduce detection
success rates significantly.

4.3 Adversarial deception

On the Quiet Cloud, we controlled the amount of interference gen-
erated by the adversary for several runs of the attack and evaluated
the number of times the attack succeeded. Figure 12 shows the suc-
cesses the adversary obtained when flooding at varying rates. This
result presents an interesting finding. As flooding reaches 1 Gbps
(network capacity), the success rates seem to flatten out. As the
FLOODER’s activity approaches network capacity, the NIC starts to
thrash, making it difficult for the system to keep up. At this point,
the adversary generates the highest contention possible. This result
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Figure 12: Success rates at varying rates of flooding

concurs with the previous section: as the background noise gener-
ates enough contention to generate thrashing in the NIC, the suc-
cess of the attack reduces. However, if the adversary can prevent
the system to reach such a state, the amount of activity needed by
the adversary can be quite reasonable. Based on this result, we can
conclude that the adversary can have significant success at detec-
tion while only using around 70% of network capacity for the node
in a quiescent environment.

Summary: An adversary can be fairly deceptive when gener-
ating contention in the shared resource, requiring close to 70% of
network capacity for high successes on our setup.

4.4 Flooding period

We evaluate if the period of flooding has any sensitivity to the attack.
This experiment also provides us with a measure of covertness that
the adversary can employ. The technique used for this experiment
differs slightly from the previous co-residency detection mechanism.
Rather than looking at the overall RTT trace, we consider each
flooding cycle (On-WM and On-Idle). In such a cycle, we define that
the On-WM sequence will generate a 1— bit if there is separation
generated from the baseline. A combined sequence of On-WM and
On-Idle will then generate a pair of one and zero bits. An ideal trace
with perfect contention will generate a maximum of d/p bits. We
then measure the cycles that generated separation; any cycle that
does is counted as two bits of signal.

To measure the separation, we use the difference of mean RTT
between On-WM and On-Idle. If the difference is positive, that is a
detectable pair of bits. The results for this are shown in Figure 13a.
Each data point shows the average signal over eight runs. We vary p
and measure the signal we find in a number of runs. This shows that
for variations in flooding duration, there is not a lot of signal lost.

We note here the importance of the On-Idle portion of the cycle.
During our experiments we found that at certain flooding frequen-
cies, the flooder’s activity generates trashing in the kernel queues
causing delays during the On-Idle sequence to rise significantly
enough to generate incorrect data. To alleviate this issue, we in-
creased the duration of the On-Idle sequence to 15 seconds giving
enough time for the system to revert to a stable state. Thus, the
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Figure 13: Sensitivity analysis of flooding sequence period
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On-Idle sequence is not only important while generating the sig-
nal, but it is also necessary to restore the state of the system and
improve the success of the adversary in the following cycle.

To analyze the covertness of the attack, we consider the mean
amplitude of the generated separation. The more delay the adver-
sary generates, the easier it is to detect. Figure 13b shows the av-
erage amplitude vs flooding duration (p). The amplitude is much
higher in runs with lower p. For runs with a higher p, the ampli-
tude of separation is much less detectable. As a result, we empiri-
cally conclude that the ideal period to maximize signal while mini-
mizing detectability is 6-7 seconds.

Finally, we also considered results by varying the overall duration
d, however, we did not see any significant difference in the results.
All experiments here use d = 2 minutes.

Summary: Empirically, the ideal flooding period which maxi-
mizes the signal and covertness is 6-7 seconds.

4.5 Orchestrator Comparison

4.5.1 Local When running the same experiment on three orches-
tration systems, we see that the effect of the FLOODER is clearly vis-
ible in Figure 15. The RTT graph shows a clear square wave that
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coincides with the FLOODER’s interference. Some outlier RTT val-
ues drop to zero for requests that were lost on the network, but we
can conclude that orchestrators do not prevent such attacks.
However, the successes for each orchestrator seem to differ on
each system. To understand why this is the case, we compared the
system performance while running the application containers with
the Master on the same node (Local setup). We found that all systems
had differing CPU and memory usage on average. Figure 14a shows
a comparison for each of these metrics. The architecture of these
systems provides a better understanding of why this is the case.
Kubernetes and Docker Swarm both use a centralized database
(e.g., Etcd) to store the state of the cluster. All possible Master
nodes maintain a consistent state of the cluster in the database
instances they run. Each database instance communicates with
others to maintain this consistency. Whenever the Master realizes
that the state of the cluster is less than ideal, for example, when a
new application is deployed on the cluster, an application crashes,
etc., the Master node picks a client node to run the application
container on and enforces this by making an HTTP request to
the node’s manager. Additionally, to understand the state of the
cluster, the Master node sends a heartbeat, health-check request
to all client nodes (including itself). The Master itself also runs
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Figure 15: RTT histogram for a flooding sequence across K8
(top), Helios (middle), and DS (bottom): Square wave is visi-
ble on all three platforms

virtualization for IO, DNS, etc. While Docker Swarm and Kubernetes
are similar in architecture, their differences arise from the actual
implementation of the software used. By exploring the source code
for K8 [25], Helios [42], and DS [21], we were able to draw the
following conclusions: DS has a much simpler connection to talk to
the Docker runtime while K8 implements many more abstractions
to ensure container-runtime agnosticism. As a result, DS has much
lower CPU, memory, and IO usage than K8.

Helios on the other hand uses a completely different architec-
ture. It maintains an Apache Zookeeper cluster instance that both
the Master and client nodes connect to. The Master stores what-
ever changes are necessary to the cluster and the clients continu-
ously poll Zookeeper on a KeepAlive TCP connection. Whenever
they notice a change, they implement these into their state and
communicate it back to Zookeeper. Due to this reason, Helios uses
more CPU and memory while it queries the Zookeeper instances
for data, but spends less time waiting on IO. Thus, the CPU load
when Helios runs is much lower than its competitors.

Summary: The inclusion of orchestrators does not have any
major impact on the success of co-residency detection.

4.5.2  Local Separated By separating the Master and the client
nodes, we were able to isolate the interference generated in the sys-
tem by the Master node. While the data was useful, it did not repre-
sent a realistic setup. In such a setup, we can now compare the real-
istic effect an orchestrator will have on the success of co-residency
detection. Any effect by the orchestrator will exist whether or not
the attack is currently in progress. Hence, we used the RTTs gen-
erated during the Off sequence for each orchestrator as well as a
baseline measurement where no orchestrator was present. We com-
pare the average RTT for each run on the orchestrator and com-
pare the average for each run during the baseline. We can compare
the averages using a simple statistical T-test. The T-statistic and p-
value values for each are presented in Table 4.

For each orchestrator, we reject the null hypothesis suggesting
that the orchestrator does have some effect on the RTTs. This means
that the interference generated by the orchestrator will raise the
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baseline RTTs, possibly generating a higher number of false pos-
itives. However, all orchestrators only raise the baseline by at most
0.55ms. Compared to the RTT increase generated by the FLOODER
(~4 ms), the increase by the orchestrator is minimal. Finally, it is
interesting to note that the rise in the baseline is lower in Helios
than the other orchestrators, which, due to the poll-based imple-
mentation, sees comparatively more CPU than IO usage.

K8 Helios DS
P-value 0.00013 | 3.9% 1077 | 5.29 % 107°
T statistic 4.198 7.922 5.395
Mean RTT gain (ms) 0.51 0.36 0.55

Table 4: T-test statistic values for each orchestrator

Summary: The orchestrators have some effect on the success
of co-residency detection, but the effect is minimal and not enough
to be claimed secure against co-residency attacks.

From our experiments, we highlight a few key takeaways:

e Co-residency detection attacks are feasible on containers
running within virtual machines. Additionally, orchestration
platforms play a minimal role in the success of attacks. These
results were verified with a simple setup as well as mimicked
and real cloud environments.

e Adding load to the attack surface reduces the success of co-
residency attacks. However, this is only the case when the
load exceeds the hardware capacity of the system.

o The attacker can be fairly deceptive in their attack and only
needs about 70% of the bandwidth over ten seconds to detect
co-residency.

5 Discussion and Future Work

5.1 Effect of noise

While we found that added noise to the system reduces the success
of the attacks, that is not necessarily the end of the road for co-
residency detection. The detection success rates we generated were
for one-shot detection: this means that the adversary runs the
attack once with duration d seconds. Based on the data obtained in
that run, the adversary detects whether or not they are co-resident.
However, modifying the detection mechanism can help improve
the accuracy of detection. If the adversary were to increase d, the
background noise would be more likely to normalize and improve
detection. Alternately, if the adversary used a combination of runs
to detect co-residency, they could define a successful detection
when more than 50% of the runs return positive results. This could
be a significant boost in the detection success.

5.2 Why does this attack generalize?

Bazm et al. [18], Singh and Somani [40], Zhang et al. [51] performed
comprehensive studies on the various types of side-channel attacks.
They demonstrated that VMs and containers are both individually
vulnerable to the entire class of co-residency attacks. These include
last-level cache attacks [28], network topography and instance
placement [45], memory bus attacks [48], and network interface
cards [17]. Each of these attacks follows a very specific pattern:
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e The attack surface is some shared hardware resource that
may or may not be virtualized. Despite the status of virtual-
ization, there is no isolation guarantee provided by the soft-
ware for such shared hardware.

For example, in case of the attack on the shared cache during
encryption/decryption, the attack relies on access to shared
memory pages in the encryption libraries.

During both the Ristenpart et al. [39] placement attack and
the knowledge of existence [17] attack used in this paper,
the NIC is the shared hardware resource under contention.
Despite the kernel scheduler’s best efforts, when the attacker
demands access to the NIC for transmitting data, it takes
away bandwidth from the victim, delaying its transmissions.

e Once the attacker has some form of shared hardware, the
attacks attempt to generate some sort of contention while
accessing it. As a result, the original execution of the victim
takes a latency hit, which the adversary can measure and
glean information from.

o Since the software that enables and performs this access does
not play a significant role in isolating access to the hardware,
each of these attacks is made possible.

The addition of another abstraction layer (orchestrator) to the
applications has no major impact on how the hardware is isolated
between tenants. Since noise in the system seems to reduce detec-
tion success, this may be implemented as a defense. The results in
this paper show that while it is possible for the orchestrators to
add noise to the system during the attack and make it slightly less
effective, they don’t have any effect on whether the hardware is
completely isolated to prevent co-residency attacks altogether.

Note that while we show that this attack works quite well in
various environments, there is no claim of optimality. The work
here shows that co-residency attacks are still a reasonable threat
in the cloud-computing domain, even in commercial settings us-
ing modern technologies like containers and orchestrators. We ac-
knowledge and encourage that other techniques for detecting co-
residency and exploiting side-channels in hardware exist, which
achieve the same result more covertly. Indeed, the co-residency de-
tection technique that uses probing instead of flooding [14] could
achieve the same results with a more covert footprint. Other tech-
niques like traffic shaping, previously used for stealth VM migra-
tion [11], could be implemented with flooding to make the traffic
indistinguishable from a real source of heavy traffic like a stream-
ing service. These techniques should be considered in future work.

Other work should consider the effects of newer container run-
times like Kata and gVisor [1, 27] that utilize hardware-level iso-
lation between processes. Since these runtimes are focused on se-
curity and isolation, it presents an interesting challenge to either
show that co-residency attacks are viable against such setups or
evaluate how these systems provide strong enough isolation to pre-
vent the effects of side channels.

5.3 Defenses

While the attack analysis here is a good representation of co-
residency attacks on containers, there are some caveats when the
correlations may not apply. Since this attack depends on water-
marking network traffic, the CLIENT must be able to communicate
with the same server constantly. In cases when the web-server sits
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behind a load balancer, the CLIENT’s successive requests may get
routed to other server instances and the attack may be unsuccessful.

For other attacks, specific defenses should also work. Blocking
access to the clflush instruction for VMs seems to solve last-
level cache attacks [50]. Duplicating pages instead of sharing them
across VMs will be an effective defense against cache-based side-
channel attacks [31]. Zhang et al. [51] suggests periodically flushing
cache lines to prevent all FLUSH+RELOAD attack variants. Finally,
adding noise to the specific attack surface may be a possible defense.
However, since the success of the attack is only affected when
hardware capacity is reached, such a defense is not encouraged
since it will adversely affect the performance of client applications.

To implement defenses that encompass a wider range of attacks,
moving target defenses [14, 16, 36] are successful. Since orchestra-
tors often manage a large number of nodes for a cluster, perform-
ing container migration on these nodes will be easier than migrat-
ing the entire VM as suggested by Atya et al. [14]. There are multi-
ple benefits to implementing migrations of applications at the con-
tainer level. The migration cost for a virtual machine is very high
since a new operating system instance needs to be instantiated at
each migration. As a result, migrations cannot be made frequently.
Additionally, migrating VMs generate enough detectable traffic for
an adversary to potentially follow the target to the new location
[11]. Due to the lightweight nature of containers, if the persistent
data used by an application is handled properly, there may poten-
tially be no trace of a migrated container. The orchestration plat-
form may also implement a hybrid migration strategy, where VMs
are also migrated, but less frequently.

Since the orchestration components are closely linked to the
running kernel, we also suggest implementing migration triggered
through VM-monitoring as described by [35, 47]. Such a solution
would further reduce the cost incurred by the migration while
providing stronger security against co-residency attacks.

6 Conclusion

In this paper, we showed that containers running on virtual ma-
chines are susceptible to co-residency attacks. We analyzed the at-
tack on systems varying in architecture, load, and orchestrators
and showed that this plays a minimal role in how they affect re-
siliency to co-residency based attacks. Our analysis showed that
while orchestrators may add some amounts of noise to the system,
there is no evidence that enough interference is provided by the or-
chestrators to make the system significantly and provably secure to
network-based co-residency detection attacks. Any differential ad-
dition to the resiliency of the system comes at a performance cost
that may not be worth paying. Cloud customers that have secure
computing requirements should not depend on the orchestration
platforms to provide enough protection from co-residency attacks.
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