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Abstract. Many clustering algorithms for mesh, ad hoc and Wireless
Sensor Networks have been proposed. Probabilistic approaches are a pop-
ular class of such algorithms. However, it is essential to analyze their
robustness against security compromise. We study the robustness of
EEHCA, a popular energy efficient clustering algorithm as an example
of probabilistic class in terms of security compromise. In this paper, we
investigate attacks on EEHCA through analysis and experimental simu-
lations. We analytically characterize two different attack models. In the
first attack model, the attacker aims to gain control over the network by
stealing network traffic, or by disrupting the data aggregation process
(integrity attack). In the second attack model, the inducement of the
attacker is to abridge the network lifetime (denial of service attack). We
assume the clustering algorithm is running periodically and propose a
detection solution by exploiting Bernoulli CUSUM charts.

Keywords: Probabilistic clustering algorithm · Anomaly detection ·
CUSUM test

1 Introduction

Clustering algorithms are widely used in wireless ad hoc and sensor networks to
help improve efficacy of performing functions such as routing and data aggre-
gation. Clustering provides scalability, efficient communication, and energy con-
servation, and prolongs the network lifetime [1,26].

A Wireless Sensor Network (WSN) typically consists of low cost sensor nodes
which are not tamper resistant, and are typically left unattended. Consequently,
they are susceptible to physical and cyber-attacks. In particular, they are vulner-
able to insider attacks in which a compromised node retains its full credentials,
and is able to operate in compliance with security rules within the network.
Likewise, in many ad hoc and mesh network applications nodes are vulnerable
to insider attacks. Attackers have different incentives including stealing traffic,
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agitating the data aggregation process, changing routing information, or dimin-
ishing the network lifetime. Specifically, the damage from an attack may be more
extensive if the compromised node plays the clusterhead role. In this paper, we
analyze the impact of node compromise on a probabilistic clusterhead election
protocol and propose an algorithm to detect compromised nodes as soon as
possible.

Each cluster has a leader called a clusterhead. As opposed to ordinary net-
work nodes which are mainly responsible for sensing or generating data, clus-
terheads have more responsibilities. Ordinary members of a cluster send their
gathered data to their clusterhead. A clusterhead may perform some initial pro-
cessing on the gathered data, and then forward the data to the base station or
possibly other clusterheads. Clusterheads are further responsible for organizing
activities within the cluster, maintaining routing tables and paths to ordinary
nodes as well as other clusterheads and the base station. Accordingly, the energy
resources of a clusterhead are depleted more quickly than ordinary nodes.

In this paper we focus on the robustness of probabilistic clusterhead forma-
tion protocols which are very popular. We use EEHCA as an example. We con-
sider two types of attacks. In the first attack, malicious nodes try to gain control
over the network by stealing network traffic, or by disrupting the data aggre-
gation process. This attack is known as an integrity attack where the attacker
inserts itself into the data path and manipulates data. To illustrate the impact
of this attack, we derive the percentages of legitimate ordinary nodes served
by a malicious clusterhead as a function of the number of compromised nodes.
We will observe that even if only a small fraction of nodes are compromised,
a considerable number of legitimate ordinary nodes would follow an anomalous
clusterhead.

The second attack we consider is called battery drain attack under which mali-
cious nodes try to make the energy spent by legitimate ordinary nodes increase.
They might further aim to increase the traffic going through legitimate cluster-
heads. For this attack, we compute the ratio of the expected number of nodes in
each cluster under this attack model to the expected number of nodes in each
cluster in an honest system. Moreover, since legitimate ordinary nodes in this
attack scenario most likely have to join a cluster with a clusterhead positioned at
a farther distance, we compute the ratio of the expected energy spent by legit-
imate ordinary nodes in a cluster under this attack over the expected energy
spent by ordinary nodes in a cluster in an attack free environment.

We investigate the effectiveness of these attacks and propose a detection
strategy against them which aims to detect malicious nodes as soon as possible.
We exploit Bernoulli CUSUM charts to detect misbehaviors rapidly, and discuss
how to design an anomaly detection algorithm with a zero false positive rate.

The main contributions of this paper are:

1. We analyze the robustness of EEHCA, a popular probabilistic energy efficient
clustering algorithm for WSNs against security compromise.

2. We introduce two types of attack models and analytically characterize the
impact of these attack models on the network as a function of the number
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of compromised nodes; the scope of the first attack is to gain control over
the network (integrity attack). For this attack, we derive the percentage of
legitimate ordinary nodes served by a malicious clusterhead as a function of
the number of compromised nodes. In the second attack model, the incentive
is to abridge the network lifetime (denial of service attack). For this attack,
we consider the ratio of the expected energy spent by legitimate ordinary
nodes in a cluster under this attack model over the expected energy spent by
ordinary nodes in a cluster in an attack free environment.

3. We propose a detection method by exploiting Bernoulli CUSUM charts that
results in a rapid anomaly detection while preserving a zero false positive rate.
In addition to CUSUM test, we also consider different statistical techniques
to detect anomalous sensors including Score test and Likelihood-ratio test.

We begin in the following Section with a review of several key related work.

2 Related Work

Many algorithms for clustering in WSNs have been proposed [1,3,13,26]. One
popular class of clustering algorithm takes a probabilistic approach in which
nodes become clusterhead with some probability. This class of clustering enables
a rapid cluster formation with a low overhead as nodes independently define their
role. The objective in this class is to find the optimal probability which results in
minimizing the energy spent in the network. This feature is particularly suitable
for WSNs where energy conservation is vital to enhancing the network lifetime.
LEACH [10], EEHCA [6], HEED [25], and the algorithm proposed by Choi and
Lee [8] are examples of this class.

[24] surveyed anomaly detection in WSNs. Perrig et al. [15] proposed a
prevention-based scheme which exploits cryptographic primitives such as secret
key management, encryption, and authentication. [23] presented a relatively effi-
cient access control method in a sensor network based on public-key and Ellip-
tic Curve Cryptography. However, prevention-based approaches such as cryp-
tographic primitives cannot address security threats due to insider attackers.
[12] proposed an anomaly detection algorithm that captures insider attackers
with a high detection rate and a low false positive rate only when as many as
25% of sensor nodes are compromised and misbehaving. However, we will show
that even if only 10% of sensors are compromised, a considerable percentage of
legitimate ordinary nodes will follow an anomalous clusterhead.

Our problem of detecting anomalous sensor nodes in the EEHCA clustering
algorithm is an instance of a change detection problem. The change detection
problem has found many applications from quality control and economics [4] to
network security [22] and fraud detection [21]. CUSUM (CUmulative SUM) chart
[9,14], sometimes called CUSUM test, is a quickest detection [16] algorithm.
CUSUM test is more effective and more popular than other algorithms such
as Shewhart control chart [11], Sets method, CUSCORE method and SHDA
method [20]. In this paper, in addition to CUSUM test, we also consider different
parametric statistical tests to detect anomalous nodes in EEHCA including Score
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test and Likelihood-ratio test [2], and compare their performance in terms of
detection rate and percentages of falsely removed legitimate nodes.

3 Background Material

In this Section, we review EEHCA, a popular probabilistic energy efficient clus-
tering algorithm, two common operations on point processes that we will exploit
in our attack model scenarios, namely thinning and superposition. We further
review two parametric statistical tests and Bernoulli CUSUM test as tools and
techniques to detect anomalous behavior in the clusterhead formulation process.

3.1 EEHCA

Authors in [6] proposed a distributed energy efficient clustering mechanism
named EEHCA in which they assume sensor nodes are distributed as a homoge-
neous spatial Poisson process in a 2-D square plane. In their scheme, sensor nodes
become a clusterhead voluntarily with a same fixed probability, p, independent
of their location and each other. These nodes are called volunteer clusterheads.
Volunteer clusterheads then advertise themselves to nodes within at most k hops.

Nodes that are not volunteer clusterheads themselves join the cluster with
the closest volunteer clusterhead within k hops. These nodes are called ordinary
nodes. As a result, a Voronoi tessellation is formed. A Voronoi tessellation is a
partition of a plane into cells (clusters) such that each cell contains only one gen-
erating point (volunteer clusterhead) and the distance of other points (ordinary
nodes) in a given cell to the corresponding generating point is smallest among
the distances to other generating points.

Any other nodes that are neither volunteer clusterheads nor ordinary nodes
become forced clusterheads. These nodes only serve themselves.

A routing infrastructure is assumed already to exist so that to send data from
one node to another node, only the nodes on the routing path forward the data.
Moreover, the communication environment is error-free and the nodes do not deal
with retransmitting data. In their energy model the energy spent is proportional
to the distance and radio range (r) directly and inversely, respectively.

The authors exploit results from independent homogeneous spatial Poisson
processes [5] and derive the optimal probability of becoming clusterhead (popt)
and the optimal k that lead to the minimum energy spent in the network.

Below, we review techniques related to point processes as we use them in our
performance evaluation of the clustering algorithm against security compromise.

3.2 Two Common Operations on Point Processes

A Point Process [7] is a collection of points randomly scattered in some compact
set W. It can be viewed either as a random set or as a random counting measure.
A point process is called spatial point process when W ⊂ R

d for d = 2 or 3. In
our setting, each point represents the location of a sensor node.
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Poisson point process is the most basic and important point process. A sta-
tionary Poisson point process has two properties: The number of points of the
process which fall into a bounded Borel set B has a Poisson distribution with
mean of λ‖B‖ for some constant λ, where ‖B‖ denotes Lebesgue measure of B.
Furthermore, the number of points of the process in B1 is independent from the
number points of the process in B2 for disjoint Borel sets B1 and B2.

In the following, we review two main operations on point processes: thinning
and superposition. We exploit these operations to characterize our attack models.

3.2.1 Thinning
Thinning is an operation of removing points from a basic point process Φb which
has intensity of λb by some definite rule. p-thinning is the simplest thinning oper-
ation in which points are removed from Φb with probability (1−pr) independent
of location and possible removal of other points in Φb. The points remaining
after the p-thinning operation are also a point process (p-thinned process) that
is stationary if the basic point process is stationary. p-thinned process intensity
(λ) is related to the intensity of the basic point process (λb) by:

λ = prλb (1)

3.2.2 Superposition
Given two stationary non-overlapping point processes Φ1 and Φ2 with intensities
of λ1 and λ2 respectively, define:

Φ = Φ1 ∪ Φ2

Then clearly, Φ is point process with intensity of:

λ = λ1 + λ2 (2)

Next, we review some statistical techniques that can be adapted to detect
possible anomalous behaviour of the compromised nodes.

3.3 Parametric Statistical Tests

We now provide some background on two main parametric statistical tests: Score
and Likelihood-ratio tests. These tests require a fixed number of samples. The
larger the sample size, the more accurate results are achieved. When the sample
size is large enough, their statistic follow a chi-square distribution, and if the
samples are derived from binomial distribution, the degree of freedom is one.

– Score Test: The score statistic for binomial proportion is:

S2 =

⎡
⎣ p̂ − popt√

popt(1−popt)
n

⎤
⎦
2

where n is the total the number of samples.
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– Likelihood-ratio Test: The Likelihood-ratio statistic for binomial proportion
is:

LR = 2
[
y log

(
p̂

popt

)
+ (n − y) log

(
1 − p̂

1 − popt

)]

where p̂ is the estimated probability of success from the observed sample, and
y is the number of successes (number of times a node under test volunteered
to be clusterhead) out of n trials (election rounds).

3.4 Bernoulli CUSUM Test

When the observations follow a Bernoulli distribution, the Bernoulli CUSUM
test [17–19] can be exploited. Define p0 as the in-control probability (popt) and
p1 as the out-of-control probability (pm = γpopt). Given a sequence of inde-
pendent Bernoulli observations X1, ...,Xn, where Xi = 1 if the node under test
volunteered to be clusterhead in the ith round of clusterhead formation and 0
otherwise, Bernoulli CUSUM aims to detect a shift from p0 to p1 as soon as
possible.

One advantage of CUSUM test is that it does not need to wait for a fixed
number of samples (here, the status of neighbor nodes after each clusterhead
formation) to perform the detection process. In contrast, as soon as a sample is
available, CUSUM can check whether any changes have been occurred.

To detect an increase (γ > 1) in the Bernoulli parameter, a sensor node
computes the Increase CUSUM statistic corresponding to each of its neighbor
nodes in each round of clusterhead election:

C+
i = max(0, C+

i−1) + (Xi − k) (3)

where k is the reference value and is defined by k = r1
r2

where

r1 = − log
1 − p1
1 − p0

and r2 = log
p1(1 − p0)
p0(1 − p1)

. (4)

Then, it compares the computed result with a control limit (hh). If C+
i > hh,

it signals the corresponding neighbor node is declaring to be clusterhead with
some probability greater than popt.

Similarly, to detect a decrease (γ < 1) in the Bernoulli parameter, a sen-
sor node computes the Decrease CUSUM statistic corresponding to each of its
neighbor nodes in each round of clusterhead election:

C−
i = min(0, C−

i−1) + (Xi − k) (5)

Then, it compares the computed result with a control limit (hl). If C−
i < hl, it

signals the corresponding neighbor node is volunteering to be clusterhead with
some probability smaller than popt.
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To exploit Markov chains in the performance analyses of CUSUM, it is
required to select k such that k = 1

m , where m is an integer. In practice, one can
tolerate a small change from p1 to p1,a so that m is an integer (m = round( 1

k )).1

The CUSUM statistic (Ci) can be initialized in three different ways. In a
zero-start, the CUSUM statistic initially starts from 0 (C0 = 0). In the Fast
Initial Response (FIR), a faster anomaly detection can be achieved by giving
the CUSUM statistic a head-start with the cost of a small increase in the false
alarm rate. h/4 or h/2 (fractions of the control limit) are usually used for initial
value of the CUSUM statistic. Finally, one can assume that the CUSUM statistic
has reached a steady-state or stationary distribution by the time a shift occurs.
Before reaching the steady-state, if the CUSUM statistic exceeds the control
limit, the generated signal is ignored and the statistic is restarted from 0.

Typically, the Average Number of Observations before Signal (ANOS) is
used as a performance metric for CUSUM. ANOS(p) is the expected number
of observations needed to signal when the node under test volunteers to be
clusterhead with probability of p. The in-control ANOS (ANOS(p0)) measures
the average number of observations between two successive false positives. The
out-of-control ANOS (ANOS (p �= p0)) indicates the speed of change detection
and is defined as the average number of clusterhead election rounds until an
alarm is given, indicating a neighbor node is becoming clusterhead with some
probability other than the optimal probability. It is desired to have a sufficiently
large in-control ANOS and as small as possible out-of-control ANOS. In the
case of the steady-state, ANOS is called the Steady State ANOS, SSANOS.
Simulation results show that convergence to the steady-state distribution occurs
long before 1.5ANOS(p0) [20].

A general approach in designing CUSUM is to first select a desired ANOS(p0)
(average number of observations between two successive false positives) and then,
find the control limit h that approximately achieves the desire ANOS(p0). There
are two approaches in approximating ANOS(p0); one method is Corrected Dif-
fusion (CD) approximation and the other approach is by using Markov chain
formulation. In the CD approximation, first h∗ is computed from2:

ANOS(p0) =
exp(h∗r2) − h∗r2 − 1

|r2p0 − r1| (6)

Once h∗ is obtained, hh for Increase CUSUM and hl for Decrease CUSUM can
be computed from:

hh =
floor

[
m

(
h∗ − εp0

√
p0(1 − p0)

)]

m
(7)

1 To find such a p1,a, Newton-Raphson method with starting point of p1 for solving
the nonlinear equation quickly converges to a solution.

2 Newton-Raphson method with starting point h∗
0 in the range 4 ≤ h∗

0 ≤ 8 for increase
detection scenario or starting point h∗

0 in −4 ≤ h∗
0 ≤ −8 for decrease detection case

can be adopted to solve the nonlinear equation.
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hl =
floor

[
m

(
h∗ + εp0

√
p0(1 − p0)

)]

m
(8)

where εp is approximated from:

εp =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

0.410 − 0.0842(ln(p)) − 0.0391(ln(p))3−
0.00376(ln(p))4 − 0.000008(ln(p))7 if 0.01 ≤ p ≤ 0.5

1
3

(√
1−p
p −

√
p

1−p

)
if 0 < p < 0.01

(9)

4 Attack Models

We analyze the performance of EEHCA against two attack models by exploit-
ing Thinning and Superposition operations. In the first, the attackers aim to
gain control over the network by setting their probability to become volunteer
clusterheads to a value greater than popt. Consequently, they become volunteer
clusterheads more often and can gain control over the network by stealing the
traffic or by deleting the data sent by ordinary nodes depending on their incen-
tives.

In the second attack model, attackers try to avoid being volunteer cluster-
heads. In this attack model, the malicious node sets its probability to become
volunteer clusterhead to a value less than popt for the sake of increasing the
energy spent by legitimate ordinary nodes as well as overwhelming legitimate
clusterheads by increasing the amount of traffic passing through them.

4.1 Attack Model 1

In this subsection, we analyze an attack model where the attacker volunteers
to be a clusterhead with a fixed probability (pm) greater than popt. This attack
is known as integrity attack. Clearly, the higher the pm it chooses, the higher
the control it may gain over the network. However, if the attacker becomes a
clusterhead too frequently, it may exhaust its own battery lifetime more rapidly.
Furthermore, detection of such an extreme attack is easier for the legitimate
nodes. Therefore, if the incentive of the attacker is to gain the maximum control
over the network during its lifetime (assuming no anomaly detection exits), it
would select a pm equal to 1. However, if the attacker wishes to gain control
over the network while conserving its energy for a longer period of time, it will
become a volunteer clusterhead with some probability not significantly greater
than the optimal. We consider the attacker to have an arbitrary fixed pm for
this attack model in our analyses.

Assume the number of sensor nodes (N) is known and nodes are distributed
according to a homogeneous spatial Poisson point process Φb with intensity of
λb. In the following we analyze the percentage of legitimate ordinary nodes that
belong to clusters with malicious clusterheads under attack model 1.
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Fig. 1. Percentage of legitimate nodes served by malicious clusterheads for different
values of pm under attack model 1 for a network with 500 sensor nodes (intensity of 5)
and popt = 0.1012.

Theorem 1. In a sensor network with n nodes where nodes are distributed as
a homogeneous spatial Poisson point process, in order to cause more than 50%
of legitimate ordinary nodes to belong to clusters with malicious clusterheads, an
attacker needs to be become volunteer clusterhead with probability of pm satisfy-
ing: pm ≥ ( n

m − 1)popt where m is the number of compromised nodes.

Proof. For proof, see Appendix A.

Figure 1 illustrates the effectiveness of launching an attack under attack
model 1 for the sake of gaining control over the network for a network with 500
sensor nodes (λb = 5) where according to [6], popt = 0.1012. In this figure, we
show the percentages for 5 different values of pm selected by malicious nodes.
For example, if only 10% of nodes are compromised, 25% of legitimate ordinary
nodes will follow a malicious clusterhead if pm = 3popt. Whereas if the attacker
selects pm = 1, the percentage of legitimate ordinary nodes served by a malicious
clusterhead would be more than 50%. By setting pm = 1, the attacker can gain
the most control over the network with the cost of running out of power rapidly
and increasing the chance of being detected by legitimate nodes. Note that the
curve is linear for the case where pm = popt.

We further simulate a network with 500 nodes placed in a square plane with
an area of 100 (unit square) and compare the analytical versus experimental
percentage of nodes served by malicious clusterheads for different values of pm
selected by the attacker for 100 trials. Our simulation results demonstrate agree-
ment between experimental results and analytical results.
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4.2 Attack Model 2

Clusterheads have more responsibilities than ordinary nodes. Consequently, their
energy depletes more rapidly. In the following, we analyze the case in which the
attackers aim to launch a denial of service attack or alternatively a battery drain
attack by abridging the battery-lifetime of legitimate nodes. To achieve this goal,
they refuse to play the role of volunteer clusterheads when they are supposed
to volunteer. Gaining a “free-ride” and taking advantage of clustering without
paying its cost may be another incentive for attackers. They set their probability
of becoming clusterhead (pm) to a value less than popt. As a result of this attack,
legitimate ordinary nodes have to spend more energy to send their data to their
clusterhead since they have to join a cluster where its clusterhead is positioned at
a farther distance relative to an attack-free environment. Moreover, more traffic
is sent to legitimate clusterheads in this scenario.

We compute the ratio of the expected number of nodes in each cluster under
this attack model to the expected number of nodes in each cluster in an honest
attack free system. Furthermore, we compute the ratio of the expected energy
spent by legitimate ordinary nodes in a cluster under attack model 2 over the
expected energy spent by ordinary nodes in a cluster in an attack free system.

Theorem 2, characterizes the increase in the number of nodes served by legit-
imate clusterheads under attack model 2:

Theorem 2. In a sensor network with n nodes where nodes are distributed as a
homogeneous spatial Poisson point process, if an attacker who has compromised
m nodes (m �= n) never becomes a volunteer clusterhead, then:

E[NOrd,Amodel2|N = n] ≈ 1
(1 − m

n )
E[NOrd,Afree|N = n] (10)

where the random variable NOrd,Afree is the number of ordinary nodes in each
cluster in an attack-free system and NOrd,Amodel2 denotes the number of ordinary
nodes in each cluster under attack model 2.

Proof. For proof, see Appendix B.

Theorem 3, characterizes the increase in the expected energy spent by legit-
imate ordinary nodes under attack model 2:
Definition 1. Let CAfree

1 be the total energy to send 1 unit of data to the clus-
terhead by ordinary nodes of a cluster in an attack-free system. Similarly, let
CAmodel2

1 be the total energy spent by legitimate ordinary nodes to send a unit of
data to the clusterhead when nodes are compromised according to attack model
2.

Theorem 3. In a sensor network with n nodes where nodes are distributed as a
homogeneous spatial Poisson point process, if an attacker who has compromised
m nodes (m �= n) never becomes a volunteer clusterhead, then:

E[CAmodel2
1 |N = n]

E[CAfree
1 |N = n]

≈ 1
(1 − m

n )1/2
(11)

Proof. For proof, see Appendix C.
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5 Anomaly Detection

In Sect. 4, we observed that a considerable percentage of legitimate nodes may
be affected even if only a small fraction of nodes are compromised. Hence, we
would like to detect any anomalous behavior in the sense that a node volunteers
with some probability other than popt. On one hand, we want a high detection
rate. On the other hand, we desire no false positives. Furthermore, the detection
should be done as soon as possible.

This problem can be formulated as an anomaly detection problem. Nor-
mal, in our problem, means nodes volunteer with probability of popt. Deviation
from normal means change in the probability of becoming volunteer clusterhead.
Therefore, our problem reduces to detecting changes in the probability distribu-
tion. Hence, any detection mechanism for this problem should detect changes in
the probability of success popt of a Bernoulli random variable.

In this Section, we present our strategy to detect malicious nodes that volun-
teer to be clusterheads with some probability other than popt as soon as possible.
Considering that the clustering algorithm is run periodically, with the existence
of even a small false positive rate, falsely removed legitimate nodes accumulate
and at some point a significant number of legitimate nodes will be eliminated
from the network. Removing legitimate nodes falsely results in degradation in
the performance and in the optimality of the clustering algorithm.

At a high level, our detection strategy works as follows: Given in EEHCA,
each node becomes a clusterhead voluntarily independent of the other nodes,
each legitimate node monitors all of its neighbor nodes by recording their status
(clusterhead or ordinary node) for each round of election. Using the observation
sequence corresponding to the status of each neighbor node and applying some
quickest detection algorithm, a node can detect malicious nodes in its neighbor-
hood rapidly. By comparing different statistical tests performance for detecting
anomalies, we choose CUSUM chart as our quickest detection method. Legiti-
mate nodes will stop sending traffic or providing services to the detected nodes.

In the following, we provide the design details of CUSUM test, Score test and
Likelihood-ratio test. We then compare their performances in terms of detection
rate and percentages of legitimate nodes removed incorrectly.

5.1 Design Details and Simulation Results

5.1.1 Parametric Statistical Test
Since the underlying distribution is known here, and samples are expected to
come from a Bernoulli distribution with probability of success of popt, we consider
parametric statistical tests. Our null hypothesis (H0) and alternate hypothesis
(Ha) are:

H0 : nodes volunteer with probability of popt

Ha : nodes volunteer with some probability other than popt
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Based on the observed data for each neighbor node (the status of neighbor
nodes after each clusterhead formation), we find the P-value. We reject the null
hypothesis if P-Value is less than significance level of 5%.

We have two goals; first, a rapid anomaly detection is needed. Second, no
legitimate node should be removed incorrectly. In the ideal situation where we
have a large number of samples available (e.g. over 100 samples), the parametric
statistical tests would have a false positive rate of 5%. However, since we cannot
wait until 100 rounds of election to act on detecting malicious nodes, for the
parametric statistical tests, we progressively add samples to the tests. Initially,
we gather 9 samples before running the tests. From the 10th round on, we perform
the tests on all the available data up to that point. Lack of enough sample size
would result in a higher false positive rate than the nominal 5%.

5.1.2 CUSUM Test
Setting ANOS to a higher value, results in a higher control limit hh for Increase
CUSUM (or, a lower control limit hl for Decrease CUSUM) and hence, achieves
a lower false positive rate. However, a higher ANOS results in a slower detection
rate. We further observed that the zero-start CUSUM has the lowest detection
rate as well as the smallest possible false alarm rate relative to the head-start
approaches. Moreover, even if a node acts normal and becomes a volunteer clus-
terhead with probability of popt, after, on average, ANOS(p0) clusterhead for-
mation rounds, it will be detected and marked as a malicious node assuming
zero-start is used. Removing legitimate nodes falsely results in degradation in
the performance and in the optimality of the clustering algorithm. Hence, it is
essential to deal with the generated false alarms.

Resetting the CUSUM statistic to zero after every few rounds of cluster
formation is one approach to reduce false positives. We call this approach the
resetting method. A candidate value for the number of rounds before restarting
the CUSUM statistic is determine as follows: Suppose we may tolerate up to x%
of traffic to be controlled by an adversary. Considering m

n % of the sensor nodes
are compromised, we find the pm that results in x% of legitimate ordinary nodes
belonging to a cluster with a malicious clusterhead by using Eq. (22). We set the
restarting value to ANOS(pm) + 1.

An obvious drawback of this approach is that it results in a slower anomaly
detection. Moreover, our simulation results show that the above approach is
not very effective in preventing high false alarm rates even if we increase the
tolerance up to 25% which requires pm = 3p0.

A second approach to reduce the false positives, which we call it the self-
monitoring method, is to have each legitimate node not only monitor its neigh-
bors by recording their status (clusterhead or ordinary node) and applying the
CUSUM method (Increase and Decrease), but also to have it monitor its own
status. The intuition behind this method is to prevent legitimate nodes from
getting marked as malicious nodes because of crossing the control limits in the
CUSUM tests performed by the other nodes.
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Fig. 2. Percentage of legitimate nodes removed incorrectly under resetting method
assuming tolerance of up to 25% (pm = 3p0) for 100 rounds of elections.

The self-monitoring method works as follows: In each election round, a legiti-
mate node tentatively decides to become a volunteer clusterhead with probability
of popt. If the tentative result is to not become clusterhead, the node computes
its own Decrease CUSUM statistic. If its Decrease CUSUM statistic is less than
the Decrease CUSUM control limit (hl), it tentatively becomes a clusterhead. If
a legitimate node is tentatively a clusterhead (either as a result of the original
decision or as a result of Decrease CUSUM), it computes its Increase CUSUM
statistic. Finally, if the Increase CUSUM statistic is less than Increase CUSUM
control limit (hh), then it definitively becomes a volunteer clusterhead for that
round of clusterhead formation.

One concern with the self-monitoring method is that a legitimate node might
now become a volunteer clusterhead with some probability considerably lower
than the optimal probability. However, we find this is not the case. Our simu-
lation results show that as the number of clusterhead election rounds increase,
legitimate nodes become clusterhead with some probability very close to the
optimal probability. We recorded the status of legitimate nodes in the system
for 500 election rounds. On average, a legitimate node volunteered to be a clus-
terhead with probability of pleg = 0.0994 (as opposed to popt = 0.1012) where
the standard deviation is 0.0072. Hence, the normalized error of the probability
of becoming a volunteer clusterhead for a legitimate node is (popt−pleg)

popt
= 0.0783.

Figure 2 illustrates the percentage of legitimate nodes removed incorrectly
for a network with p0 = 0.1012 when 10% nodes are compromised for 100
clusterhead election rounds. For Bernoulli CUSUM we set ANOS(p0) = 208.
Assuming tolerance of 25% (pm = 3p0), the CUSUM statistic is reset to 0 after
19 clusterhead formations. From Fig. 2, we observe that the self-monitoring
method eliminates the false alarms. For the other methods, the number of nodes
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Fig. 3. Comparing detection rates. The network has 500 nodes in which 10% of them
are compromised.

incorrectly characterized as compromised nodes accumulates over the rounds of
clusterhead formations. Moreover, the parametric statistical tests have a higher
percentage of incorrectly removed nodes than the CUSUM test. Although reset-
ting the CUSUM statistic slows the false positive rate, false alarms still result
in incorrectly removing a substantial fraction of legitimate nodes.

In Fig. 3, we compare the detection rate of the discussed anomaly detection
methods. As expected, the CUSUM self-monitoring approach detects malicious
nodes with a higher rate than the resetting approach. Recall, the CUSUM reset-
ting approach, and the parametric tests result in false positives as shown in Fig. 2
while the CUSUM self-monitoring approach eliminates false positives. Although
Score and LR tests have slightly higher detection rates from the round 10 to 40,
their high false positive rates offset this advantage as discussed above.

Because of the high detection rate and zero false positive rate, we select
the CUSUM self-monitoring approach as our anomaly detection method. To
illustrate the performance of our detection method, we run an experiment for
100 trials on a network with popt = 0.1012 in which 10% of nodes are ran-
domly compromised. We set the out-of-control probability p1,a = 0.1517 for
Increase CUSUM and 0.0478 for Decrease CUSUM. For Increase CUSUM, we
set ANOSh = 208 resulting in a control limit of hh = 3.1250. For the Decrease
CUSUM, we set ANOSl = 195, which results in a control limit of hl = −2.2143.
We evaluate the performance of the proposed anomaly detection method under
two different probabilities selected by an attacker, pm = 0.9512 and pm = 3popt.
We depict the percentage of the detected malicious nodes versus the number of
the clusterhead election rounds when exploiting zero-start and h/4 head-start
CUSUM tests.

Figure 4 exhibits the performance of the self-monitoring approach consid-
ering two different probabilities, namely pm = 0.9512 and pm = 3popt, for an
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Fig. 4. Detection rate of the Self-Monitoring approach considering two different pm’s
for an attacker when CUSUM charts with two different head-starts are exploited. The
network has 500 nodes in which 10% of them are compromised.
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Fig. 5. Percentage of legitimate nodes served by a malicious clusterhead for different
values of pm after integrating CUSUM test into the clustering algorithm.

attacker to become a volunteer clusterhead. As Fig. 4 shows, the more vigorous
the attacker, the higher the detection rate. We further compare the performance
of CUSUM with different head-starts. CUSUM with a head-start of h/4 has
a higher detection rate than CUSUM with zero-start because of the provided
head-start. Using CUSUM with a head-start of h/4, 87% of malicious node
were detected in only three rounds of clusterhead formation when the attacker
becomes a volunteer clusterhead with pm = 0.9512. On the other hand, it takes
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21 election rounds to detect 83% of malicious nodes when pm = 3popt. This
result might be misleading in the sense that one might think it takes too long to
detect malicious nodes. However, it should be noted that when attackers chose
a pm relatively close to popt, they are in fact, not behaving maliciously in the
first few election rounds and volunteer as expected. It is in the later rounds that
they start to deviate from the protocol and act maliciously. Once they start
to act maliciously, our proposed anomaly detection algorithm can capture they
misbehavior effectively.

The ultimate goal of the proposed detection strategy is to eliminate any
legitimate traffic toward malicious nodes without incorrectly removing legitimate
nodes. Our proposed solution effectively detects malicious nodes misbehaviors
without introducing any false positives. The self-monitoring approach can almost
immediately detect extreme attacks in which the attacker volunteers to be a
clusterhead with a high probability.

In Fig. 5, we illustrate the result of applying CUSUM combined with the
self-monitoring method. Attackers that become volunteer clusterheads with a
probability significantly greater than the optimal probability are almost imme-
diately detected. These attackers gain a higher percentage of traffic control ini-
tially. However, they lose their control dramatically after only a few rounds of
cluster formation. On the contrary, detection of the attackers that volunteer with
a probability close to the optimal probability requires more time, however, these
types of attacker have a low impact.

6 Conclusions

We analyzed the performance of EEHCA, a probabilistic energy based clustering
algorithm against security compromise. Our results demonstrate a significant
vulnerability in EEHCA performance when compromised nodes exist. We then
presented a detection strategy to detect anomalous nodes effectively. We showed
that when CUSUM test is combined with a self-monitoring approach, anomalous
nodes are detected quickly without removing legitimate nodes falsely.
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A Proof of Theorem 1

Proof. Suppose a realization of the random point process Φb with number of
nodes equal to N = n is given. Arbitrarily compromise m nodes independent of
location and each other under attack model 1. One can consider compromising
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nodes as a p-thinning operation with pr = 1 − m
n . As a result, legitimate nodes

and malicious nodes are distributed independently according to a homogeneous
spatial Poisson point processes (PPP ):

PPPleg : λleg = prλb (12)

PPPmal : λmal = (1 − pr)λb (13)

Legitimate nodes become volunteer clusterheads with probability of popt.
Hence, legitimate clusterheads and legitimate ordinary nodes are distributed as
independent homogeneous spatial Poisson point processes:

PPPCH,leg : λCH,leg = poptλleg (14)

PPPOrd,leg : λOrd,leg = (1 − popt)λleg (15)

Malicious nodes become volunteer clusterheads with probability of pm and
therefore, malicious clusterheads are distributed as a homogeneous spatial Pois-
son point process:

PPPCH,mal : λCH,mal = pmλmal (16)

It should be noted that PPPmal and PPPleg are non-overlapping and
independent and hence, PPPCH,mal and PPPCH,leg are independent non-
overlapping point processes. Consequently, one can apply the Superposition oper-
ation and define:

PPPCH = PPPCH,leg ∪ PPPCH,mal (17)

which is a spatial Poisson point process with intensity of:

λCH = λCH,leg + λCH,mal = popt(1 − m

n
)λb + pm

m

n
λb (18)

Similarly, one can derive the intensity of PPPOrd,leg as

λOrd,leg = (1 − popt)(1 − m

n
)λb (19)

Denoting the number of PPPOrd,leg process points in each Voronoi cell by
the random variable NOrd,leg and applying the results of [5], we get:

E[NOrd,leg|N = n] ≈ E[NOrd,leg] =
λOrd,leg

λCH
=

(1 − popt)(n − m)
popt(n − m) + mpm

(20)

where E denotes expected value operation.
Since there are m malicious nodes and each of them becomes a clusterhead

with probability pm, there are on expectation mpm cells having a malicious clus-
terhead. As a result, the expected number of legitimate ordinary nodes belonging
to clusters with a malicious clusterhead is:

Lm = mpmE[NOrd,leg|N = n] (21)
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On the other hand, there are a total of Lleg = (n − m)(1 − popt) legitimate ordi-
nary nodes on expectation. Hence, one can compute the percentage of legitimate
ordinary nodes served by a malicious clusterhead under attack model 1 from:

qaffected =
Lm

Lleg
=

mpm
popt(n − m) + mpm

(22)

From (22), more than 50% of legitimate ordinary nodes would belong to
clusters with malicious clusterheads if the fraction of the compromised nodes
satisfies:

m

n
≥ popt

pm + popt
(23)

Alternatively, for a given n and m, an adversary causes more than 50% of legit-
imate ordinary nodes to belong to clusters with malicious clusterheads if it sets
its probability of becoming volunteer clusterhead to:

pm ≥ (
n

m
− 1)popt (24)

B Proof of Theorem 2

Proof. Before any attack has been launched (i.e. nodes become clusterhead with
probability of popt), clusterheads and ordinary nodes form two homogeneous,
independent, non-overlapping spatial Poisson point processes with intensities of
poptλb and (1 − popt)λb, respectively. Consequently, one can derive the expected
number of ordinary nodes in each cluster in an attack-free system from [5]:

E[NOrd,Afree|N = n] ≈ λOrd,Afree

λCH,Afree
=

(1 − popt)
popt

(25)

Now consider a system under attack model 2. Similar to the analysis presented
in Appendix A, legitimate clusterheads form a spatial Poisson process:

PPPCH,leg : λCH,leg = popt(1 − m

n
)λb (26)

Legitimate ordinary nodes and malicious ordinary nodes are two independent
non-overlapping point processes, and hence, their union is also a spatial Poisson
point process, PPPord:

PPPord = PPPord,leg ∪ PPPord,mal (27)

And hence:

λOrd = λord,leg + λord,mal = (1 − popt)(1 − m

n
)λb + (1 − pm)

m

n
λb (28)

Denote the number of ordinary nodes in each cluster under attack model 2
by the random variable NOrd,Amodel2. Then:

E[NOrd,Amodel2|N = n] ≈ λOrd

λCH,leg
=

(1 − popt)(n − m) + (1 − pm)m
popt(n − m)

(29)
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Therefore, the ratio is computed from:

E[NOrd,Amodel2|N = n]
E[NOrd,Afree|N = n]

=
(n − m) + (1 − pm)m

(n − m)
(30)

According to [6], popt is very small for networks with density higher than 10.
Since the attacker selects a pm even smaller than popt under attack model 2, one
can approximate this ratio by:

E[NOrd,Amodel2|N = n]
E[NOrd,Afree|N = n]

≈ 1
(1 − m

n )
, m �= n (31)

C Proof of Theorem 3

Proof. By applying the results of [6], the total energy to send 1 unit of data
to the clusterhead by ordinary nodes of a Voronoi cell in an attack-free system
(CAfree

1 ) is computed from:

E[CAfree
1 |N = n] ≈ λOrd,Afree

2rλ
3/2
CH,Afree

=
(1 − popt)

2rp
3/2
optλ

1/2
b

(32)

Likewise, for a system under attack model 2, one can calculate the expected
value of the total energy spent by legitimate ordinary nodes in a cluster to send
a unit of data to the clusterhead, CAmodel2

1 by:

E[CAmodel2
1 |N = n] ≈ λOrd,leg

2rλ
3/2
CH

=
(1 − popt)(1 − m

n )

2r(popt(1 − m
n ) + pm

m
n )3/2λ1/2

b

(33)

By assuming pm is much smaller than popt, we approximate the total energy
spent by legitimate ordinary nodes in a cluster under attack model 2 by:

E[CAmodel2
1 |N = n] ≈ (1 − popt)

2rp
3/2
opt [(1 − m

n )λb]1/2
(34)

Hence, the ratio of E[CAmodel2
1 |N = n] to E[CAfree

1 |N = n] is computed
from:

E[CAmodel2
1 |N = n]

E[CAfree
1 |N = n]

≈ 1
(1 − m

n )1/2
, m �= n (35)
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