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ABSTRACT

Machine learning is vulnerable to adversarial examples–inputs de-
signed to cause models to perform poorly. However, it is unclear

if adversarial examples represent realistic inputs in the modeled

domains. Diverse domains such as networks and phishing have

domain constraints–complex relationships between features that an

adversary must satisfy for an attack to be realized (in addition to

any adversary-specific goals). In this paper, we explore how domain

constraints limit adversarial capabilities and how adversaries can

adapt their strategies to create realistic (constraint-compliant) ex-

amples. In this, we develop techniques to learn domain constraints

from data, and show how the learned constraints can be integrated

into the adversarial crafting process. We evaluate the efficacy of our

approach in network intrusion and phishing datasets and find: (1)

up to 82% of adversarial examples produced by state-of-the-art craft-

ing algorithms violate domain constraints, (2) domain constraints

are robust to adversarial examples; enforcing constraints yields an

increase in model accuracy by up to 34%. We observe not only that

adversaries must alter inputs to satisfy domain constraints, but that

these constraints make the generation of valid adversarial examples

far more challenging.
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1 INTRODUCTION

Machine learning has demonstrated exceptional problem-solving

capabilities; it has become the tool to learn, tune, and deploy for

many important domains, including healthcare, finance, education,

and security [10, 19, 29, 51]. However, machine learning is not

without its own limitations: countless works have demonstrated

the fragility of models when in the presence of an adversary [12, 26,

36, 42, 48]. Across a variety of threat models, research has shown

how adversaries fully control model outputs, by classifying school

buses as ostriches [62], students as celebrities [56], or generating

photos of synthetic, yet unsettlingly realistic, people [25].

This field of adversarial machine learning is rich with research

into the exploitation of these models. While alarming to domains

that have observed significant advancements as a result of ma-

chine learning (i.e., network intrusion detection, spam, malware,

etc.), it is not clear yet whether these domains are as vulnerable as

posited. This observation is rooted in the domain which exempli-

fies the end-to-end capability of deep learning: images. Influential

works often use images as an empirical demonstration of their find-

ings [12, 26, 36, 42, 48]. This has an implicit assumption on the

underlying threat models; adversaries can manipulate features arbi-

trarily and independently. In other words, adversaries are assumed

to have full control over the feature space and, more importantly, all
input manipulations are equally permissible in the domain under in-

vestigation. While often bound (exclusively) by some self-imposed

ℓ𝓅-norm (canonically used as a surrogate for human perception),

there are constructs, rules, and other forms of domain constraints
that many domains contain which images do not.

Domain constraints
1
describe relationships between features. For

example, in network flow data, TCP flags can only be set for TCP

flows in networks—having these flags for UDP would violate the

semantics of the underlying phenomenon (network protocols). Con-

straints encode the maneuvers (i.e., perturbations) that are possible

for an adversary when crafting adversarial examples. Yet, existing

threat models broadly ignore this requirement, serving to generate

examples that may or may not represent legitimate examples of
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the domain. Thus, any vigilant system could simply discard non-

compliant samples because they are manifestly adversarial—they

do not represent a sample that could benignly exist. Such detectable

adversarial examples, thus, pose no risk.

We argue in this paper that to properly assess the practical vul-

nerability of machine learning in a domain, the constraints that

characterize the domain must be learned, incorporated, and demon-

strated in attacks. Naturally, some domains contain incredibly rigid

structures (e.g., binaries or networks) that could offer robustness

against adversaries (that is, an inability to craft realizable adversar-

ial examples), which is one of the central questions we investigate

in this paper. By learning domain constraints, those who use ma-

chine learning can build accurate threat models and thus, properly

assess realistic attack vectors.

Learning what the constraints are in arbitrary domains is a non-

trivial process; domains can contain multiple layers of complex ab-

stractions, frustrating any manual constraint identification through

expertise. Fortunately, there are data-driven approaches for learn-

ing and encoding useful representations of constraints from areas

within formal logic. One such method comes from the seminal work

of Leslie Valiant on PAC learning (probably approximately correct

learning) [67]. In this work, Valiant described a setting for learning

boolean constraints (specifically, 𝑘-conjunctive normal form (CNF))

theories from data. Valiant’s constraint theory formulation and

paired learning protocol provides a simple, yet exhaustive, mech-

anism for identifying constraints and, coincidentally, an elegant

representation for integration into adversarial crafting algorithms.

In order to understand the robustness provided by domain con-

straints, we characterize the worst-case adversary. Specifically, the
worst-case adversary is defined as one who is least constrained. Said
formally, the number of possible observations rejected by a con-

straint theory is minimal. We describe the worst-case adversary by

exploiting a theoretical property in our setting; a constraint theory

is sound if the observations it certifies comply with the domain

constraints. From this property, we show that sound constraint

theories reduce to memorization of the training data, and how eas-

ing soundness yields generalization, with the worst-case adversary

occurring under the most general (i.e., least constrained) constraint
theory that can be learned.

In this paper, we explore adversarial examples with domain con-

straints by answering two fundamental questions: (1) How would
adversaries launch attacks in constrained domains?, and (2) Are con-
strained domains robust against adversarial examples? We design

our approach by leveraging frameworks within formal logic to

learn constraints from data. Then, we modify an algorithm for con-

straint satisfaction, Davis-Putnam-Logemann-Loveland (DPLL), to
project adversarial examples onto a constraint-compliant space.

Finally, we introduce a new adversarial crafting algorithm, the

Constrained Saliency Projection (CSP): a blend of two pop-

ular adversarial crafting algorithms that, by design, aids DPLL in

projection. We evaluate the efficacy of our approach on network

intrusion detection and phishing datasets. From our investigation,

we argue that incorporating domain constraints into threat models

is necessary to produce realistic adversarial examples, and more

1
Note that the constraints discussed in this paper are different from adversarial con-
straints, which describe what an adversary seeks to achieve (commonly, a classification

mismatch between model and human).

Valid Space
Invalid Space
Decision Boundary

(2) Crafting
(CSP)

(3) Projecting
(DPLL)

(1) Learning
(Valiant’s)

Figure 1: An Overview of Our Approach—Our approach con-

sists of three steps: (1) learning the domain constraints, (2)

crafting adversarial examples, and (3) projecting adversarial

examples onto a constraint-compliant space.

importantly, constrained domains are naturally more robust to

adversarial examples than unconstrained domains (e.g., images).

We contribute the following:

(1) We formalize domain constraints in machine learning.

(2) We prove theoretical guarantees for learning domain con-

straints in our setting. We describe when and why constraint

theories are sound and complete, demonstrating an inherent

trade-off between generalization and soundness.

(3) We satisfy domain constraints by projecting non-realizable

adversarial examples onto the space of valid inputs. We also

introduce the Constrained Saliency Projection (CSP).
(4) We demonstrate the robustness produced by domain con-

straints against worst-case adversaries in two diverse datasets.

We observe that enforcing domain constraints can improve

the robustness of a model substantially; in one experiment

constraint enforcement restored model accuracy by 34%.

2 OVERVIEW

In order to measure the robustness of constrained domains against

adversarial examples, we must build a new set of techniques. We

can envision this process in three parts: (1) learning the domain

constraints, (2) crafting adversarial examples, and (3) projecting

adversarial examples onto a constraint-compliant space. A visual-

ization of this approach is described in Figure 1.

Learning Constraints. In many domains, there are regions for

which samples do not exist (e.g., UDP flows in the network domain

do not have TCP flags). The structures and rules that define these

regions may be complex and thus, we need a general approach to

learn how domains are partitioned into valid and invalid regions.
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We leverage an algorithm from PAC learning, Valiant’s algorithm,

to learn these domain constraints in Section 4.2.

Crafting Adversarial Examples. After domain constraints have

been learned, our approach can leverage any adversarial crafting

algorithm.While there are many [12, 26, 42, 48] attacks in literature,

we focus on PGD in Section 4.4 as it is considered to be the state-of-

the-art for first-order adversaries.Wewill also consider a constraint-

specific approach in Section 4.6.

Projecting Adversarial Examples.With the learned domain con-

straints and a set of adversarial examples, we must now enforce

the constraints on the crafted adversarial examples. We do this by

projecting the adversarial examples onto the constraint-compliant

space (defined within some budget, as to preserve the goals of

the adversary). Specifically, we manipulate features in constraint-

noncompliant adversarial examples until they either satisfy the do-

main constraints or exceed the allotted budget. We augment a sem-

inal solver for constraint satisfaction, Davis-Putnam-Logeman-

Loveland, to perform this projection in Section 4.5.

3 BACKGROUND

3.1 Threat Model

Adversarial Goals. Adversaries can have a variety of objectives,

from reducing model confidence to misclassifying a sample as a

particular target. Here, we focus on the former, that is, given a victim

model 𝑓\ with parameters \ , a sample 𝑒 , label 𝑦, a self-imposed

budget 𝜙 measured under some ℓ𝓅-norm, and a domain-dictated

constraint theory 𝑇 (which is our contribution), an adversary aims

to solve the following optimization objective:

arg min

𝛼
∥𝛼 ∥𝓅

subject to 𝑓\ (𝑒 + 𝛼) ≠ 𝑦,

𝑒 + 𝛼 ∈ B𝜙 (𝑒) ∩𝑇
(1)

Conceptually, the adversary searches within some norm-ball B of

radius 𝜙 around a sample 𝑒 for a “small” change 𝛼 to apply to 𝑒 that

yields the desirable model behavior (i.e., an adversarial example). In
the context of computer security, this could translate to bypassing

a network intrusion detection system.

“White-box” settings represent the strongest adversaries and

characterize worst-case scenarios. Akin to insider threats, these

adversaries have unfettered queries to the model, can observe its

parameters, and can use its training data. From Equation 1, suppose

𝑓\ describes the model of the defender, then white-box adversaries

either have direct access to model parameters of 𝑓\ or the training

data used to learn 𝑓\ . Practically speaking, such adversaries can

produce adversarial examples with the tightest ℓ𝓅-norm constraints

(i.e., the smallest budgets). “Gray-” and “Black-box” threat models

are two other popular threat models that remove the degree to

which an adversary has access to model parameters or training

data. These limited adversaries usually require unique techniques

for attacks to be successful [41, 46, 65].

In our work, we explore the efficacy of white-box adversaries

when domain constraints are enforced. Specifically, the adversary

seeks to minimize model accuracy (that is, the number of samples

correctly classified over the total number of samples). Referring

to Equation 1, the adversary computes samples classified as any

class 𝑦 ≠ 𝑦 (where 𝑦 is the prediction). Under this objective, the

adversary attempts to reduce the confidence an operator has in the

predictions of a model.

3.2 Adversarial Machine Learning

We describe the two algorithms that serve as the basis for the

algorithm used in our approach discussed later in Section 4.4.

Jacobian-based Saliency Map Approach (JSMA). The JSMA [48]
is an iterative approach leveraging saliencymaps: a heuristic applied
to the Jacobian matrix of the model. For our work, the insightful

component of the JSMA is that it selects a single feature to perturb

per iteration (i.e., it optimizes over ℓ0-norms). This is especially

important for security-critical domains as other ℓ𝓅≠0-norms are

largely driven as surrogates for human perception, and do not apply

to the studied domains.

Projected Gradient Descent (PGD). PGD2, by Madry et al., is con-

sidered to be the state-of-the-art for first-order adversaries [42].

Similar to the Fast Gradient Sign Method [26], PGD iteratively
multiplies a step-size 𝛼 by the sign of the gradient of the loss to

perturb the sample. As PGD has been proposed as a “universal ad-

versary (among first-order approaches),” [42] we use it to evaluate

the robustness of constraints against adversarial examples.

4 APPROACH

4.1 Preliminaries

We overview constraint learning and define the three algorithms

we leverage for constraint learning, projection, and clustering.

Problem Statement. [52] provided one formulation for framing

constraint learning as a concept-learning problem. We restate the

relevant parts of the formalization for our work. Namely, we are

given a domain 𝑋 = (𝑋1, . . . , 𝑋𝑛), where 𝑋𝑖 ⊆ Z (i.e., we have 𝑛

features where 𝑋𝑛 denotes the unique values feature 𝑛 can take),

a space 𝐶 of possible constraints (represented as 𝑘-CNF Boolean

formulae defined over 𝑋 ), and a set 𝐸 of collected observations.

Our objective is to find a constraint theory 𝑇 (𝑇 ⊆ 𝐶) such that 𝑇

certifies all observations 𝑒 ∈ 𝐸. We say𝑇 certifies 𝑒 when all clauses

𝑡 ∈ 𝑇 are satisfied by 𝑒 . We say a clause 𝑡 is satisfied when at least

one literal in 𝑡 is True (where the features in 𝑒 assign values to the

literals in 𝑡 ). Conceptually, the collected observations 𝐸 encode the

structures or rules of the domain (i.e., 𝑇 ), that we seek to learn.

Valiant’s Algorithm. Valiant’s algorithm (Algorithm 1) is a gen-

eral, exhaustive, generate-and-test algorithm for constraint learn-

ing [67]. The algorithm is initialized with a constraint theory 𝑇

of all possible constraints over 𝑋 (i.e., 𝑇 = 𝐶). Then, for each ob-

servation 𝑒 ∈ 𝐸, clauses that are not satisfied by 𝑒 are removed

from 𝑇 . The algorithm terminates when 𝐸 has been exhaustively

processed. Valiant’s algorithm will converge to the correct solution,

assuming 𝐸 sufficiently represents the domain and is free of noise.

Moreover, Valiant’s algorithm does not require any negative exam-
ples (that is, known observations that violate domain constraints,

which are absent from popular machine learning datasets), which

some constraint learning approaches require [23, 74]. Conceptu-

ally, 𝑇 initially describes the space of possible constraints and, after

2
The “projection” in PGD is unlike the “projection” used in this work through DPLL.
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Input: observations 𝐸, boolean clauses 𝑇

Output: a conjunction of the remaining clauses 𝑇

1 for 𝑒 ∈ 𝐸 do

2 for 𝑐 ∈ 𝑇 do

3 remove 𝑐 from 𝑇 if 𝑒 ⊬ 𝑐

4 end

5 end

6 return 𝑇

Algorithm 1: Valiant’s Algorithm

Input: a domain 𝑋

Output: the space of possible constraints 𝐶

1 𝑃 ← {𝒫(𝑋𝑖 ) \ {∅, 𝑋𝑖 } | 𝑋𝑖 ∈ 𝑋 }
2 𝐶 ← {𝑃1 × · · · × 𝑃𝑛}, 𝑃𝑖 ∈ 𝑃
3 𝐶 ← RelaxToCNF(C)
4 return 𝐶

Algorithm 2: Generating the Space of Possible Constraints

applying 𝑇 and the set, 𝐸, of collected observations to Valiant’s

algorithm, 𝑇 will contain the set of constraints that are satisfied by

all observations in 𝐸 (in other words, the intersection of satisfied

constraints across the observations in 𝐸).

To illustrate how Valiant’s algorithm operates, consider an ex-

ample where a dataset contains samples with two binary features,

𝑋1 = {𝑥1,¬𝑥1} and 𝑋2 = {𝑥2,¬𝑥2}. Then, 𝐶 , the space of possible
constraints is:

𝐶 = (𝑥1 ∨ 𝑥2) ∧ (𝑥1 ∨ ¬𝑥2) ∧ (¬𝑥1 ∨ 𝑥2) ∧ (¬𝑥1 ∨ ¬𝑥2)
If we initialize 𝑇 (our target constraint theory) to 𝐶 , and suppose 𝐸

(our set of collected observations) consists of two observations 𝑒1 =

(False, False) and 𝑒2 = (True,True), then Valiant’s algorithm

first removes (𝑥1 ∨ 𝑥2), and then removes (¬𝑥1 ∨ ¬𝑥2) (as they are

not satisfied by 𝑒1 and 𝑒2, respectively). Our final constraint theory

𝑇 is then (𝑥1 ∨ ¬𝑥2) ∧ (¬𝑥1 ∨ 𝑥2). This example shows the thesis

behind Valiant’s algorithm: only constraints that have support from
all observations are permissible.

DPLL. For adversarial examples that do not comply with domain

constraints, we use an algorithm from the constraint satisfaction

community, Davis-Putnam-Logeman-Loveland (DPLL) [17], to
project adversarial examples onto the learned constraint theory

returned by Valiant’s Algorithm. DPLL has some characteristics that

make it ideal for our task, namely: (1) it accepts boolean formulae

in CNF (which is the native form of the constraint theories learned

by Valiant’s Algorithm), and (2) it is a backtracking-based search

algorithm: DPLL iteratively builds candidate solutions for a given ex-
pression, which is a property we exploit, detailed later in Section 4.5.

Further details about DPLL can be found in Appendix C.4

OPTICS. Later, we show how we model arbitrary data types as

domain constraints. To support this generalization, we leverage

a clustering algorithm, Ordering Points to Identify the Clus-

tering Structure (OPTICS) [4]. OPTICS has two advantages over

other clustering algorithms for our application, namely: (1) it scales

to large sample sizes, and (2) it is not parameterized on specifying

the number of clusters. The second property is particularly im-

portant as parameterizing the number of clusters assumes a priori

knowledge of the constraints before learning them in the first place.

4.2 Learning Constraints

Recall our problem statement: given a domain 𝑋 , we first generate

the space𝐶 of possible constraints, then, with a dataset 𝐸 of samples,

we use Valiant’s algorithm to prune constraints that do not comply

with samples in our dataset (i.e., 𝑇 ⊆ 𝐶). Valiant’s algorithm is ele-

gant for binary features and the fact that it produces “hard” boolean

constraints makes it attractive for encoding rigorous structures of

domains. However, novel applications of machine learning seldom

use binary features exclusively; categorical and continuous features

(e.g., packet rates or word counts) are used in nearly every modern

application of machine learning.

To address this limitation, there are two modifications that must

be made: (1) how the space of possible constraints is generated,

and (2) how to determine if a particular sample is certified by a

constraint theory. We discuss these two modifications below.

The Space of Possible Constraints. For boolean-only constraint

theories, the space of possible constraints is on the order of O(2𝑛),
where 𝑛 is the number of features. To account for categorical fea-

tures, we can further generalize this bound to O(2𝑛 ·𝑖 ) by consider-

ing a one-hot encoding, where 𝑖 represents the largest cardinality

of possible values among 𝑛 features. This guides us on not only

how to generate the space of constraints, but also how to modify

Valiant’s algorithm to accept a richer representation of constraints.

Our approach, shown in Algorithm 2, is as follows: first, given a

domain 𝑋 , we compute a pseudo-power set 𝑃𝑖 from the set 𝑋𝑖 of

unique values for feature 𝑖 . 𝑃𝑖 is a pseudo-power set as we remove

the empty set (i.e., no value is valid for the feature) and 𝑋𝑖 (which

would allow the constraint to be trivially satisfied by any sample).

We then perform the Cartesian product over 𝑃 , which returns the

set of all possible combinations of constraints; this is the input

to Valiant’s algorithm (𝐶). At this stage, 𝐶 contains sets 𝑃𝑖 of sets

𝑝𝑖 , and so, we transform this representation to CNF (RelaxToCNF)
by adding disjunctions between each 𝑝𝑖 ∈ 𝑃𝑖 and, finally adding

conjunctions between each 𝑃𝑖 ∈ 𝐶 .
To adapt Valiant’s algorithm to perform on a set-based represen-

tation of constraints (i.e., boolean and categorical variables), we

redefine the ⊢ operator (i.e., logical entailment); instead of evaluat-

ing whether or not a feature value causes a boolean assignment to

be satisfied, we instead evaluate if it is a member of the set (i.e., ⊬
now operates as ∉, set membership, in Algorithm 1).

Consider the following example: suppose two features, 𝑋1 and

𝑋2. Let 𝑋1 be a boolean variable (encoded as 𝑥1 ∈ {0, 1}) and let

𝑋2 be a categorical variable that can take on one of three values

(encoded as 𝑥2 ∈ {𝐴, 𝐵,𝐶}). With our approach above, the space of

possible constraints is then:

𝐶 = (𝑥1 ∈ {0} ∨ 𝑥2 ∈ {𝐴}) ∧ (𝑥1 ∈ {0} ∨ 𝑥2 ∈ {𝐵})
· · ·

∧(𝑥1 ∈ {1} ∨ 𝑥2 ∈ {𝐴,𝐶}) ∧ (𝑥1 ∈ {1} ∨ 𝑥2 ∈ {𝐵,𝐶})

If we initialize our target constraint theory 𝑇 to 𝐶 , and let 𝐸 (our

training data) consists of four samples 𝑒1 = (0, 𝐴), 𝑒2 = (0, 𝐵),

Session 2C: Defenses for ML Robustness  CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

498



𝑒3 = (1, 𝐵), and 𝑒4 = (1,𝐶), then our objective is to guide Valiant’s

algorithm to learn the following:

(𝑥1 ∈ {0} ∧ 𝑥2 ∈ {𝐴, 𝐵}) ∨ (𝑥1 ∈ {1} ∧ 𝑥2 ∈ {𝐵,𝐶})
Conceptually, we can imagine a case where 𝑋1 describes a pro-

tocol (e.g., TCP or UDP), while 𝑋2 describes a service (e.g., SSH, DNS,
or NTP). Then, our target constraint theory 𝑇 would be to learn

that SSH can only be used with TCP, NTP can only be used with UDP,
while DNS can be used with either TCP or UDP.

After running Valiant’s algorithm on this example, our final

constraint theory 𝑇 will be:

(𝑥1 ∈ {0} ∨ 𝑥2 ∈ {𝐵,𝐶}) ∧ (𝑥1 ∈ {1} ∨ 𝑥2 ∈ {𝐴, 𝐵})
Using the distributive law, we see that this is precisely what we

sought to learn. As a sanity check, we can see that the observations

(0,𝐶) and (1, 𝐴) violate 𝑇 , which was our desired result.

Discretizing R.While the framework above can express a richer

expression of constraints than boolean theories, it cannot model

variables that live within the domain of real numbers R. However,
modeling constraints that have inequalities such as {𝑥 | 0.25 ≤
𝑥 ≤ 0.80} is non-trivial, as inferring the proper ranges for a given
variable has no straightforward answer.

We are motivated to extend our set-based formulation of con-

straints to model continuous variables, as our generalization from

the boolean domain B to the domain of integers Z has some ideal

properties: (1) the set-based formulation can model constraints

that are readily interpretable, (2) constraint-certification reduces

to simple membership tests, (3) elegant integration into constraint

learning algorithms, and, (4) gives a simple asymptotic bound to

conceptualize the space of possible constraints. These properties

are attractive and later we will show how our formulation can be

integrated into adversarial crafting algorithms.

We leverage OPTICS to enable encoding of continuous features

as discrete values. Here we express constraints with sets of ranges
(e.g., {𝑥 | (0.25 ≤ 𝑥𝑖 < 0.50) ∨ (0.75 ≤ 𝑥𝑖 < 1.00)}). Specifically,
continuous features in samples are mapped to the bins and there-

after the associated constraints are learned as any other discrete

feature. Later, when we project adversarial examples (discussed in

Section 4.5), continuous features have their values set to the edge

value closest to the origin of the perturbed value (i.e., a value that

is projected from a higher number is set to the top of the bin range,

and a lower number is set to the bottom of the range).

4.3 Theoretical Guarantees

In this section we define the properties that the learning process

described above guarantees. When the full space of possible con-

straints is considered, our approach learns a constraint theory that is

sound with respect to observations and domain constraints. Sound-

ness guarantees that if a sample is certified by the constraint the-

ory, then the sample complies with the domain constraints. The

approach yields a sound constraint theory through Algorithm 2,

generating the space of possible constraints (specifically the genera-

tion of the pseudo-power set). We first briefly describe our principal

findings and later discuss formally when a constraint theory learned

with our approach is sound and why.

Without loss of generality, consider that for all 𝑋𝑖 ∈ 𝑋 , |𝑋𝑖 | = 𝑛,

that is, the number of unique values for all features is 𝑛. Then, the

pseudo-power set
3
contains sets of cardinality 1, . . . , 𝑘, . . . , (𝑛 − 1).

The clauses learned from sets of cardinality 1 (i.e., the cardinality of

the literals in the clause is 1) represent the most general constraints,
while clauses learned from sets of cardinality 𝑛 − 1 represent the
least general constraints (we show later that they represent rote

memorization of the training data).

Let 𝑘 bound the maximum cardinality considered when generat-

ing the pseudo-power set. Then, from our observations we gather

that: (1) if 𝑘 = 𝑛 − 1 (i.e., the clauses generated contain literals of

cardinality at most 𝑛 − 1), the learned constraint theory is guar-

anteed to be sound, (2) if 𝑘 = 1, the learned constraint theory is

maximally general, and (3) for some 𝑘 in-between 1 and 𝑛, there

is a trade-off between the degree to which the learned constraint

theory is sound (with respect to domain constraints at cardinality 𝑘)

and how well it generalizes to unseen observations. Thus, 𝑘 allows

us to ease soundness and gain generalization, which we exploit

in characterizing the worst-case adversary. In this way, 𝑘 is the

parameter that is used to tune the learned constraint theory from

general to sound.

Next, we formally define the theoretical properties of our ap-

proach and show when and why they hold. Consider the following

properties with respect to a constraint theory𝑇 and observations 𝑒 :

(1) sound: if 𝑇 certifies 𝑒 , then 𝑒 complies with the domain

constraints.

(2) complete: for all possible observations 𝑒 that comply with

the domain constraints, 𝑇 certifies 𝑒 .

Recall (Section 4.1) that𝑇 certifies 𝑒 when all clauses 𝑡 ∈ 𝑇 are satis-

fied by 𝑒 . A clause 𝑡 is satisfied when at least one literal in 𝑡 is True

(where the features in 𝑒 assign values to the literals in 𝑡 ). Now, let Ξ
represent the space of all possible observations. We can partition Ξ
into two subspaces, Λ (the space of observations that comply with

the domain constraints) and Ψ (the space of observations that do

not comply with the domain constraints). Clearly, Λ ∪ Ψ = Ξ and

Λ ∩ Ψ = ∅. 𝑇 is sound if it does not certify any observations from

Ψ and 𝑇 is complete if it certifies all observations from Λ.

When is 𝑇 Complete? From the definition of complete, we can

gather that 𝑇 is axiomatically complete when 𝑇 arbitrarily certifies

any observation. Said alternatively, given that 𝑇 is not complete if

it does not certify all observations from Λ, 𝑇 can be axiomatically

complete when it certifies all observations, regardless if they come

from Λ or Ψ. For example, the empty constraint theory 𝑇 = ∅ is
complete, as it will certify all possible observations 𝑒 ∈ Λ that

comply with the domain constraints (as well as those that do not,

i.e., 𝑒 ∈ Ψ).
When is𝑇 Sound? From the definition of sound, we can gather that

𝑇 is axiomatically sound when 𝑇 does not certify any observations.

Said differently, given that 𝑇 is not sound if 𝑇 certifies a single

observation from Ψ, 𝑇 can be axiomatically sound when it refuses

to certify any observation. For example, when 𝑇 equals the space

of possible constraints 𝐶 , 𝑇 is axiomatically sound, as it will reject

all possible observations 𝑒 ∈ Ψ that do not comply with the true

domain constraints (as well as those that do comply, i.e., 𝑒 ∈ Λ).
Properties of Our Approach. With the two settings for when

𝑇 is sound or complete, we now turn to the setting investigated

3
Recall that we generate a pseudo-power set by excluding the empty set ∅ and the

feature space itself, which correspond to sets of cardinality 0 and 𝑛, respectively.
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in this paper. Specifically, we highlight some facts: (1) we have a

set of observations 𝐸 for which we know comply with the domain

constraints (i.e., 𝐸 ⊆ Λ), (2) we have no observations that do not

comply with the domain constraints (i.e., 𝐸 ∩ Ψ = ∅), (3) Valiant’s
algorithm can be initialized with the space of possible constraints

(i.e., 𝑇 = 𝐶), which entails: 𝑇 initially contains a superset of the
domain constraints. From (1), (3), and the fact that Valiant’s algo-

rithm returns the intersection of satisfied constraints across the

observations in 𝐸, we can derive the following: when𝑇 is initialized

to 𝐶 , the learned constraint theory returned by Valiant’s algorithm is
a superset of the domain constraints.

Notably, the degree to which 𝑇 remains a superset (and not

equal to) of the domain constraints is a function of the quality of

𝐸 in characterizing the underlying phenomena; as 𝐸 approaches

Λ, 𝑇 converges on the domain constraints. In this way, Valiant’s

algorithm prioritizes being sound over being complete.

Concretely, for any amount of observations in 𝐸, if 𝑇 certifies

a new observation, then it complies with the domain constraints

(as 𝑇 contains a superset of the domain constraints). However, if 𝑇

does not certify a new observation that does, in fact, comply with

the domain constraints, it is because this new observation failed

to satisfy a clause 𝑡∗ ∈ 𝑇 that should have been removed. Valiant’s

algorithm would fail to remove the erroneous clause 𝑡∗ if 𝐸 did not

contain a counter-example for 𝑡∗ when learning 𝑇 . Thus, unless

𝐸 = Λ, 𝑇 will not be complete (but 𝑇 will always be sound).

Why is 𝑇 Sound? The final piece in characterizing the worst-

case adversary in our setting is rooted in analyzing what makes 𝑇

sound. Specifically, 𝑇 is sound through Algorithm 2: Generating

the Space of Possible Constraints. Recall, we compute the Cartesian

product of the pseudo-power set of unique values observed across

all features. For each feature, the generated pseudo-power set can

be decomposed as the union of the unique combinations of sets

with cardinality 1, . . . , 𝑘, . . . , (𝑛−1), where 𝑛 represents the number

of unique values observed for some feature 𝑖 (i.e., |𝑋𝑖 | = 𝑛). For

simplicity, consider only the clauses whose sets have cardinality

𝑛 − 1. Trivially, this means that such clauses include all values

for a given attribute, except one. Call this set of clauses 𝐶∗. In this

setting, when 𝐸 and𝐶∗ are passed into Valiant’s algorithm, Valiant’s
algorithm will return a learned theory𝑇 ∗ that is an exclusive encoding
of 𝐸 . In other words, 𝑇 ∗ will only certify 𝐸 and nothing else (we

formally prove this in Appendix A).

Note that, this is a useful fact as if 𝐸 = Λ, then it would be

desirable to learn a constraint theory that certified 𝐸 and only 𝐸.

However, when 𝐸 ⊂ Λ (as ostensibly all practical applications of ma-

chine learning do), then this reduces learning to memorization (this

is analogous to overfitting in machine learning). From a learning

perspective, this encourages us to bound the cardinality of pseudo-

power set to be no greater than 𝑘 , such that the learned constraint

theory generalizes. Moreover, from an adversarial perspective, a

constraint theory that memorizes the training data would require

the adversary to craft adversarial examples that are precisely the

training data itself. For any well-trained model, this means we

already know where “adversarial examples” can exist: where the

model produces errors on the training set. In other words, this

characterizes the best-case adversary.

The Worst-Case Adversary. With these facts, we now character-

ize the worst-case adversary. Above, we observed how computing

clauses with cardinalities of 𝑛 − 1 results in constraint theories that

certify the training data exclusively (that is, the total number of

possible observations certified is at most |𝐸 |), which characterizes

the best-case adversary. Thus, theworst-case adversary in our setting
is one where the learned constraint theory is most general, in other

words, certifies the maximal number of observations (which subse-

quently translates to certifying the maximal number of adversarial

examples). To learn a theory that certifies the maximal number of

observations, we set 𝑘 = 1 when generating the pseudo-power set,

which then results in clauses whose literals have cardinality 1 (we

formally prove such constraint theories certify a maximal number

of observations in Appendix A).

4.4 Crafting Adversarial Examples

On ℓ𝓅. ℓ𝓅-norms have been adopted by the academic community

as the de facto standard for measuring a form of “adversarial con-

straints.” That is, it serves as a measurement of detectability as a

surrogate for human perception (for image applications) or some

arbitrary limitation on adversarial capabilities. For the former, it

has been generally agreed upon that ℓ2 or ℓ∞ serve as better esti-

mates of human perception. For the latter, adversarial capabilities

are usually argued from a domain-specific perspective. For non-

visual domains, we argue that the ℓ0 norm is most representative

of adversarial capabilities for two reasons: (1) distance across fea-

tures in non-image data is not uniform; ℓ𝓅≠0-norms on varying

data types and semantics bear no meaningful interpretation, and

(2) for non-image domains, the degree to which an adversary can

manipulate every feature yields little insight versus what features
an adversary can manipulate.

Adversarial Constraints. Yet another important topic of discus-

sion for applications of adversarial machine learning outside of

images is: what is the adversary trying to accomplish? For images,

this has been rooted in the use of ℓ𝓅-norms: there should be a

misclassification between human and machine. For other domains,

each have their own answer, e.g., consumer reviews should be read

as containing positive sentiment by humans, yet classified as neg-

ative sentiment by machine (or vice-versa) [49]; malware should

maintain its malicious behavior, post-perturbation [28, 35]; speech

recognition systems should incorrectly map audio to commands

versus what a human would hear [13], among other objectives.

For our work, we follow similar intuitive objectives, that is, post-

perturbation: malicious network flows must maintain their attack

goals and phishing websites must mimic victim websites.

After defining what the goals of an adversary are, the next ques-

tion is: how do we know the adversary has met those goals? For

images and text, it has assumed to be self-evident; peers can inspect

images produced by a crafting algorithm or read the altered text

of a consumer review. While human-based verification is possible

in some domains, in others (particularly those that are security-

critical) it is not. For example, to validate that a network flow or a

malware executable is malicious, then it must be replayed and its

behavior observed in its respective domain. However, this may not

always be possible; mapping back from a feature vector of an adver-

sarial example to its original form may be non-trivial or outright
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Figure 2: Encoding Adversarial Constraints — Distribution

for normalized, per-flow Packet Rates with classes from

the NSL-KDD dataset. The region for the adversary attempting

to classify DDoS traffic as Benign traffic, while maintaining
the semantics of the attack, is shown in the rectangle.

impossible (network intrusion detection datasets may not always

provide the packet captures used to build the dataset). Therefore,

we need an approach that preserves the goals of an adversary when

the original form of a sample cannot be rebuilt.

To address this limitation, we formulate and add an additional

layer of “adversarial constraints” that encode class-specific behav-

iors. Specifically, we capture class-specific feature bounds, which
are either: (1) the set of observations for categorical variables, or (2)

the minima and maxima for continuous variables. We argue that

the underlying behavior of a sample is preserved if it does not step

outside of its bounds (which we hand validate). The intuition is

straightforward: by staying within these bounds, then we produce

adversarial examples with behaviors (as defined by feature values)

that have already been observed for a particular class.

To illustrate this approach, consider Figure 2. Shown in this

network intrusion detection example, there are four classes, DDoS,
Benign, Probe, and Insider and each class has unique range of

values for the Packet Rates feature. Suppose an adversary begins

with a malicious DDoS sample and wishes to have it misclassified as

Benign. Then, to preserve the underlying behavior of the sample,

any perturbation to the DDoS sample must be between ∼ 0.75 and ∼
1.0 Naturally, the target region for the adversary is shown in the

box, where the packet rates for DDoS and Benign overlap. We en-

force adversarial constraints while generating adversarial examples

as well as projecting them.

4.5 Projecting Adversarial Examples

The final step in our approach is to project some adversarial example

𝑒∗ onto the constraint-compliant space described by the learned

constraint theory 𝑇 , as, if 𝑇 does not certify 𝑒∗, then 𝑒∗ is not

adversarial at all, as it would not be realizable (as 𝑇 encodes what

is valid for a domain). This projection is non-trivial as there could

be multiple features that do not comply with 𝑇 and so, deciding

which features to modify in 𝑒∗ so that 𝑇 certifies 𝑒∗ could induce

other features to become non-compliant, etc. Therefore, we need a

mechanism that can efficiently project 𝑒∗ as to comply with 𝑇 .

This problem is isomorphic to constraint satisfaction problems;

given a boolean expression 𝑇 with some number of clauses 𝑡 ∈ 𝑇 ,

we seek to find an assignment {True, False} to each literal in 𝑡

such that 𝑇 is True. For our work, we use the Davis-Putnam--
Logemann-Loveland (DPLL) algorithm [17]. As discussed earlier in

Section 4.1, DPLL has some properties that make it ideal for our

task, particularly that it is a backtracking-based search algorithm.

DPLL is parameterized on 𝐻 (shown in Algorithm 3 in Appen-

dix C.4), a boolean theory with partial literal assignments (adapted

to accept our set-based constraint representation, discussed in Sec-

tion 4.2). We can exploit this fact by projecting an adversarial ex-

ample 𝑒∗ onto the space described by the learned constraint theory

𝑇 . Specifically, for each clause 𝑡 in 𝑇 , we determine which clauses

are satisfied with respect to value of features in 𝑒∗. If all clauses
𝑡 ∈ 𝑇 are satisfied, then we simply return the adversarial example

(as 𝑇 certifies 𝑒∗). Otherwise, for each feature 𝑖 in 𝑒∗, we record the

number of clauses 𝑡 ∈ 𝑇 satisfied by 𝑒∗
𝑖
.

Finally, we build 𝐻 by allowing the bottom 𝜙% of literals to

be unassigned while we assign the top 100 − 𝜙% of literals to the

corresponding feature values in 𝑒∗. Here, 𝜙 parameterizes: (1) the

depth of the tree produced by DPLL (and thus its runtime), and (2)

indirectly controls the likelihood 𝑒∗ will still be misclassified (and

thus, an adversarial example) after the assignment returned by DPLL
is applied to 𝑒∗. To achieve (2), 𝜙 should be small to maintain the

misclassification of 𝑒∗, yet large enough that DPLL has a sufficiently-

sized search space to successfully project 𝑒∗ onto 𝑇 .

4.6 Improving Projection

In our evaluation, we find that adversarial examples produced by

PGD often fail to be projected onto the constraint-compliant space

described by 𝑇 (within the allotted 𝜙 budget). Our hypothesis on

why these projections failed stems from the fact that PGD optimizes

over the ℓ∞ norm, while the structure of the constraints and the

budget used by DPLL may favor adversarial crafting algorithms

that optimize over the ℓ0 norm. With this hypothesis, we introduce

our own ℓ0-based adversarial crafting algorithm that blends the

iterative optimization of PGD with saliency maps from the JSMA.

The Constrained-Saliency Projection (CSP). The CSP is our

approach. Like PGD, we consider a powerful adversary who can

take multiple steps on the sign of the gradient of some loss function

(or, in our case, the Jacobian of the model) and like the JSMA, the
adversary computes saliency maps to determine the single most

influential feature (and thus the feature to perturb), and unlike

either, we project back onto a constraint-compliant space (described

by 𝑇 , our extracted constraint theory). Formally, we define the CSP
as:

S = SaliencyMap
(
𝑦, J

(
𝑒𝑟
) )

𝑖 = argmax

𝑗

|𝑆 𝑗 |

𝑒𝑟+1𝑖 = 𝑒𝑟𝑖 + 𝛼 · sgn 𝑆𝑖
where S is the saliency map for a target

4
class 𝑦, J is the Jacobian

of a model with respect to the 𝑘-th perturbation of a sample 𝑒 , 𝑖 is

a feature index, and 𝛼 is the perturbation magnitude. We slightly

tweak the definition for SaliencyMap that is originally proposed

in [48]:

4
We also consider an untargeted variant of the CSP where we set �̂� to the label 𝑦 for

sample 𝑒 and use the negative of the Jacobian.
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Dataset # Samples # Features # Classes

NSL-KDD ≈ 10
5

11 5

Phishing ≈ 10
4

10 2

Table 1: Summary of Dataset Statistics

SaliencyMap𝑖 (𝑦, J) =


0 if sgn 𝐽�̂�,𝑖 = sgn( ∑

𝑗≠�̂�

𝐽 𝑗,𝑖 )

𝐽�̂�,𝑖 · |
∑
𝑗≠�̂�

𝐽 𝑗,𝑖 | otherwise

where 𝐽 𝑗,𝑖 refers to the 𝑗th class and 𝑖th feature in the model Jaco-

bian. This approach yields a subtle improvement; the formulation

of the JSMA in [48] required a perturbation parameter that could be

either positive or negative (which determined the heuristic used

to build the saliency maps). However, our formulation for saliency

maps allows the CSP to iteratively add or subtract from a feature 𝑖 ,

depending on whichever is more advantageous for the adversary.

5 EVALUATION

With our techniques to learn and integrate domain constraints into

the adversarial crafting process, we evaluate our approach on two

diverse datasets. We ask the following:

(1) Do known crafting algorithms violate domain constraints?

(2) Do domain constraints provide robustness?

5.1 Experimental Setup & Datasets

Our experiments were performed on a Dell Precision T7600 with

an Intel Xeon E5–2630 and a NVIDIA Geforce TITAN X. We used

Cleverhans [45] for adversarial attacks and PyTorch [50] for build-
ing models. We defer to Appendix C for hyperparameters, archi-

tectures, and other miscellanea concerning our models. The experi-

mental datasets are summarized in Table 1 and described below.

In the following figures, CSP and PGD refer to the attacks pre-

projection, while the Constrained-· variants show the results,

post-projection, with DPLL and the learned domain constraints. We

report the rate of invalid samples as the number of adversarial

examples that do not comply with domain constraints over the

total number of adversarial examples crafted. Model accuracy is

measured as the number of adversarial examples classified correctly

by the model over the total number of adversarial examples crafted.

For constrained variants, samples that do not comply with domain

constraints after projection are counted as correctly classified.

NSL-KDD. The NSL-KDD [63] is a subset of the seminal KDD Cup ’99
network intrusion detection dataset, dating back to 1999. While the

NIDS data is somewhat dated, the breath and depth of the NSL-KDD
makes it ideal for studying the effect of domain constraints. The

dataset contains 125,973 samples for training and 22,544 for testing,

representing four attacks and benign traffic.

As [1] demonstrates, many features in the NSL-KDD describe

redundant information. Thus, we apply the same feature reduction

techniques to the data to bring the feature space from 41 features

down to 11. This had a minor impact on the accuracy of our models

(i.e., from 77% down to 70%), yet drastically improved the scalability

of learning domain constraints from the data.

Phishing. Phishing [16] is a dataset for identifying website phish-
ing. The dataset contains internal and external features of a website,
e.g., HTML versus WHOIS records. The features were extracted from

5,000 popular phishing websites and 5,000 legitimate webpages.

Moreover, [16] demonstrates that, among the original 48 features,

only ten were necessary to maximize model accuracy. We use these

ten suggested features to apply our constraint learning algorithms

on and build our models from. As [16] claimed, we were able to

achieve maximal model accuracy (i.e., above 94%) with ten features.

5.2 Learning Domain Constraints

Constraint Representation. Modern machine learning datasets

often contain tens of thousands of samples and learned constraint

theories can be equally as large (or even greater for some domains).

Thus the runtime performance of the constraint generation and

evaluation algorithms is important; we use a representation of

domain constraints so that evaluation is efficient. Details on these

optimizations are in Appendix C.5.

The Space of Constraints. Motivated by our theoretical analysis

in Section 4.3, our evaluation characterizes the worst-case adversary.
That is, our learned constraint theory 𝑇 is maximally general in

that it certifies the maximal number of observations (i.e., the threat

surface of potential adversarial examples is maximal). To this end,

we bound the pseudo-power set 𝑃 , and therefore the literals in each

clause, to have cardinality 𝑘 = 1.

Constraints Learned From Our Datasets. After having gener-

ated clauses whose literals have cardinality 𝑘 = 1, we pass𝐶 and the

full datasets into Valiant’s algorithm. We find that the NSL-KDD, the
network intrusion detection dataset, contained the most constraints

at 5,330, while only 1,995 constraints were learned from Phishing,
the phishing websites dataset. We will provide some introspection

on the constraints learned from the NSL-KDD later in Section 6.

5.3 Crafting Adversarial Examples

For each dataset, we generate adversarial examples through both

PGD and the CSP. Both algorithms apply a 0.01 ℓ∞ perturbation at

each iteration (e.g., 35 iterations corresponds to a perturbation mag-

nitude no greater than 0.35, roughly a third of the feature space) to

continuous features. Perturbations to binary or categorical features

are enforced to be -1 or 1 through one-hot encoding (as adversarial

examples that report using 0.5 TCP for a Protocol feature are non-

sensical). We compute results by generating adversarial examples

over the test set and measure robustness through model accuracy.

5.4 Projecting Adversarial Examples

Selecting Features for DPLL to Perturb. Recall from Section 4.5,

we first identify the feature values of adversarial examples that

satisfy the fewest constraints (therein identifying the features that

are most constrained by the domain). Intuitively, the heuristic we

describe below is based on the following insight: if the most con-

strained features are perturbed, then the resultant adversarial exam-

ple is likely to be rejected by the constraint theory. Thus, for each

adversarial example, we identify the most constrained features and

use DPLL to modify these features so that the sample is likely to be

certified by the learned constraint theory.
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Figure 3 shows clause satisfaction bar charts for Phishing and
the NSL-KDD after 35 iterations of perturbations by the CSP and PGD.
Recall that to use DPLL effectively, we wish to project constraint-

noncompliant samples onto the constraint-compliant space with

minimal sample modification under a 𝜙 budget. Additional infor-

mation on the features can be found in Appendix C.3.

As the charts show, there are some features that satisfy signif-

icantly more clauses than others across the majority of samples.

Because DPLL is parameterized on some allotted 𝜙 , this discrepancy

suggests that wemight use clause satisfaction as a heuristic to select

features for DPLL to prioritize. In other words, we configure DPLL to
prioritize projecting features whose values satisfy few clauses (as

opposed to features whose values readily satisfy many clauses). We

parameterize DPLL with an additional 𝜙 budget of 20% (i.e., DPLL
will select no greater than the bottom 20% of features, as determined

by the clause satisfaction bar charts, to project adversarial examples

onto the learned constraint theory).

While this clause satisfaction heuristic is effective, other heuris-

tics may improve DPLL success further. For instance, high variance

in number of clauses satisfied by a feature across many samples

could imply that the feature is highly salient towards constraints.

We defer investigation of additional heuristics for future work.

Measuring the Efficacy of Constraints. Figure 4 illustrates the

rate of invalid samples (that is, the number of constraint non-

compliant adversarial examples over the total number crafted) and

model accuracy as a function of the number of iterations used to

craft adversarial examples.

The rate of invalid samples (Figures 4a and 4b) answers our

first evaluation question: do the known crafting algorithms violate
domain constraints? Across both the NSL-KDD and Phishing, we
observe that at least 60% of all adversarial examples produced by

PGD violate the domain constraints when the number of iterations

exceeds 10. In cases where domain constraints are violated, the

adversarial examples produced are not realizable.

For our second evaluation question: Do constraints add robust-
ness? The results suggest that domain constraints add robustness

against adversarial examples. For example, we observe that even

though DPLL was largely able to successfully project the adver-

sarial examples produced by PGD when the number of iterations

was small, many of the resultant constraint-compliant adversar-

ial (i.e., Constrained-PGD) examples were correctly classified by

the model. Notably, we observe how 34% of model accuracy is re-

stored in the Phishing dataset (Figure 4d) once invalid examples

produced by PGD are projected back onto a constraint-compliant

space. On the NSL-KDD dataset, running PGD with many iterations

produced additional examples that could not be projected into the

constraint-compliant space, increasing the accuracy of the model.

Finally, we examine the applicability of CSP to crafting valid

adversarial examples. The conservative nature of the CSP lends itself
to producing adversarial examples that readily comply with domain

constraints: at 10 iterations, only 10% of the examples produced by

the CSP violated domain constraints in the worst case (compared to

nearly 60% for PGD). Additionally, while many examples produced

by PGD cannot be projected onto the constraint-compliant space

(about 40% for the Phishing dataset), examples produced by CSP
were successfully projected nearly 100% of the time. This suggests
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Figure 3: Clause Satisfaction Bar Chart—The mean number

of clauses satisfied from the learned constraint theories on a

per-feature basis for the adversarial examples produced by

CSP and PGD. Error bars represent 95% C.I.

that saliency-based algorithms, as well as algorithms targeting an ℓ0
norm, may be more readily applicable to constrained domains than

gradient-based algorithms or those targeting ℓ∞. This is consistent
with the structure of constraints and budget used by DPLL; PGD
causes larger perturbations over ℓ0, which will likely violate more

constraint clauses and frustrate projection.

Takeaway. From our investigation, we highlight key takeaways: (A)

Crafting constraint-compliant adversarial examples is a necessarily
different process than traditional crafting approaches. Up to 82% of

adversarial examples produced by PGD violated domain constraints.

(B) Constraints add robustness. In the worst case, 34% of model

accuracy was restored after projecting adversarial examples onto

the learned constraint theory.
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(a) NSL-KDD — Rate of Invalid Adversarial Examples
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(b) Phishing — Rate of Invalid Adversarial Examples

0 5 10 15 20 25 30 35

Attack Iterations

0.0

0.2

0.4

0.6

0.8

1.0

M
o
d
e
l
A
c
c
u
r
a
c
y

PGD

CSP

Constrained PGD

Constrained CSP

(c) NSL-KDD — Model Accuracy
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Figure 4: Crafting Adversarial Examples with Domain Constraints—Rate of invalid samples and model accuracy as a function

of attack iterations (iterations add ±0.01 to continuous features and ±1 to categorical features). CSP and PGD refer to the attacks

pre-projection, while Constrained variants demonstrate results post-projection with DPLL. Shaded regions represent 95% C.I.

The results demonstrate that crafting adversarial examples in

constrained domains is a necessarily different process than those

of unconstrained domains. Domain constraints have a tangible

impact on the underlying threat surface as many of the threats

produced by known crafting algorithms are not realizable. Perhaps
most importantly, the relationships between features serve as a

form of robustness to the known crafting algorithms.

5.5 Scalability

Wenext consider the scalability of our approach. Recall that Valiant’s

Algorithm (Algorithm 1) checks each constraint against each ob-

servation, returning only constraints that certify all observations.

Valiant’s algorithm, therefore, has time complexity O(|𝐸 | · |𝑇 |)
(Note that |𝑇 | = O(|𝐶 |)). For clauses of cardinality 𝑘 = 1, |𝐶 | =

Datasets |𝐸 | ∏ |𝑋𝑖 | 𝑑 𝑑
|𝐸 | ·∏ |𝑋𝑖 |

NSL-KDD 1.5 × 105 1.0 × 104 180 s 1.2 × 10−7 s
Phishing 1.0 × 104 8.4 × 103 7 s 8.3 × 10−8 s
CICDDoS2019 2.5 × 106 1.3 × 104 4560 s 1.4 × 10−7 s
DREBIN [5] (est.) 1.2 × 105 5.6 × 105 8046 s —

a9a [34] (est.) 4.6 × 104 7.6 × 106 39 500 s —

Mean 1.1 × 10−7 s

Table 2: Measured and estimated time to learn constraints

∏
𝑋𝑖 ∈𝑋 |𝑋𝑖 |, and the algorithm takes time O(∏ |𝑋𝑖 |). Thus the com-

bined runtime is O(∏ |𝑋𝑖 | + |𝐸 | · |𝑇 |) = O(|𝐸 | ·∏ |𝑋𝑖 |).
Next, we explore how the approach scales with real datasets.

Table 2 shows, for each dataset, the number of unique samples |𝐸 |,
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Figure 5: Scalability of constraint learning. Contours show

time to learn constraints based on samples and features. Fea-

ture counts have been normalized (log
2

∏ |𝑋𝑖 |) to approxi-

mate equivalent binary features. For comparison we super-

impose actual and estimated runtimes of various datasets

the size of the power set and the total run time to execute the learn-

ing process. In addition to the NSL-KDD and Phishing datasets and

to observe performance under large |𝐸 |, we measure performance

on the large CICDDoS2019 dataset [55] which contains 2.5 million

unique samples, after applying feature reduction techniques, as

shown in [39], from a complex network environment. We also pro-

vide estimated performance on two additional datasets after feature

reduction techniques inspired by literature.

Figure 5 visualizes the performance of the learning process over

measured and estimated datasets. Here we show (1) the number

of samples in the training data, and (2) the number of features.

To allow comparison between datasets with differing classes per

feature, we use a normalized feature count, which is the equiva-

lent number of binary features which would yield the same

∏ |𝑋𝑖 |.
We superimpose actual and estimated performance numbers for

comparison. From this, it can be seen that compute time scales

linearly with the number of samples, but exponentially with the

number of features. Because the number of samples in a training

dataset should generally increase exponentially with the number of

features (i.e., the curse of dimensionality [6]: the number of features

should be O(log |𝐸 |)), the complexity of learning constraints on

well-formed datasets can be roughly modeled as O(|𝐸 |2). As previ-
ously noted, feature reduction techniques can further increase the

tractability of high-dimensionality datasets without significantly

lowering model accuracy. Additionally, further optimizations in the

constraint learning routine might greatly improve throughput.

As a final note, recall our use of OPTICS for clustering continuous
variables; we observed significant performance bottlenecks here.

OPTICS computes pairwise distances between points that are within

a parameterized 𝜖 neighborhood distance. For completeness, we set

𝜖 to∞, which yields a runtime of O(𝑛2). Depending on the number

of samples, this can take days to determine the clusters alone (for

comparison, once the clusters are identified, constraint learning

can be done on the order of minutes). Supplementary experiments

did show that OPTICS could approximate clusters fairly well with

1% randomly sampled subsets of the training data (e.g., for the

NSL-KDD, out of the 18 clusters identified across features with the

Dataset # Clauses # Violations % Violations

NSL-KDD 5, 874 401 1.7%

Phishing 2, 143 14 0.45%

Table 3: Constraint Violations from Test Set Observations

full training set, 16 clusters were consistently correctly identified

with 1% randomly sampled subsets of the training set).

6 DISCUSSION

Projecting vs. Enforcing Constraints. One of the core compo-

nents of the CSP is using DPLL to project adversarial examples onto

the constraint compliant space, characterized by 𝑇 . In preliminary

experiments, we enforced𝑇 throughout the crafting process, that is,

at any arbitrary iteration 𝑟 , 𝑒𝑟 was always a realizable adversarial

example. However, we observed that, in some cases, the domain

constraints would create “archipelagos” around inputs; any per-

turbations to an input were bound to small regions of the input

space. Unconstrained domains, however, have input spaces that are

more akin to supercontinents. This suggests that, for many domains

deploying machine learning, the threat surface exposed by vanilla

applications of adversarial machine learning is an overestimation

(sometimes a large one) of the true, practical threat surface.

Robustness ∪ Constraints. [53, 71] show two techniques for pro-

viding formal guarantees on model robustness (i.e., homogeneous

predictions in a ℓ∞-norm ball). While these approaches have (at

present) limitations that discourage practical deployment, they con-

vincingly suggest that a model robust to adversaries is attainable.

We note that there were no algorithms applied to our models to

“secure” them, yet we observed tangible gains in model robustness

from domain constraints. This suggests that the pairing of some

form of model robustness with domain constraints may produce

models that are highly challenging for an adversary to exploit. We

present this as an opportunity for future work.

Addressing Concept Drift. Many applications of machine learn-

ing involve non-stationary phenomena; as the underlying phenom-

ena changes over time, so does the space of observations that com-

ply with the domain constraints. As a natural consequence of learn-

ing constraints from data, learning relevant constraint theories may

necessitate: (1) identifying when concept drift has occurred, and (2)

rectifying its effects on the learned constraint theory. We describe

below several experiments that characterize the effects of concept

drift on constraint learning.

Identifying concept drift is an unavoidable problem in machine

learning, and there are approaches that can dynamically recognize

concept drift and react to mitigate its effects (such as moving win-

dows or detection thresholds) [22, 68, 69]. As a measurement of

detecting concept drift, we investigated whether constraint theories

learned exclusively from the training set would reject observations

from the test set. Intuitively, this exercise is useful for two reasons:

(1) it informs us if our approach overfits to a set of collected data

(i.e., does Valiant’s algorithm generalize?), and (2) emulates what

practical deployments of constraint learning would observe, given

that datasets with a dedicated test set include new observations to

approximate excepted performance when deployed.
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Our results, shown in Table 3 show a stark contrast in the vi-

olation rate between inputs from the test set and the adversarial

examples crafted in our evaluation. These results confirm that: (1)

Valiant’s algorithm does learn constraint theories that generalize

well on unseen data, and, more importantly, (2) constraint viola-

tions can serve as an indicator of concept drift. For example, in a

practical setting, network operators could use constraint violations

as a “filter” for traffic flows that deserve attention and if the viola-

tion rate were to exceed some threshold, an indicator of concept

drift through changes in the underlying traffic patterns.

Once concept drift has been identified, rectifying its effects can

be challenging. Under the framework evaluated in this work, there

are two facts on the effects of concept drift to a learned constraint

theory: (1) new observations remove clauses that encode dated

constraints, and (2) old observations could have removed clauses

that encode constraints irrelevant at that time, but could be appli-

cable at present (for example, a service could drop support for a

particular protocol in future versions). In our setting, addressing

dated constraints is straightforward: new observations could be

used to remove the irrelevant constraints in a linear pass. However,

re-adding constraints that were irrelevant in the past requires a

more nuanced approach.

The naive approach would simply be to re-generate the universe

of constraints and repeat the learning process in its entirety. How-

ever, this can be time-prohibitive for some domains, and so we are

keen to use an approach were complete re-learning is not necessary.

To this end, we are inspired by specific approach used in [69] to

mitigate the effects of concept drift. Specifically, [69] stores concept

descriptions and reuses them when a particular context appears.

Thematically similar, we could first record the clauses removed for

all observations in a training set. Then, if an observation is consid-

ered to be a dated representation of the domain (we could leverage

domain expertise to identify such observations), we could simply

re-add the removed clauses (insofar as no other observations would

also remove those clauses). In this way, we can trade off repeating

the learning process versus maintaining a record for the clauses

removed for all samples.

The Quality of Learned Constraints. Ultimately the goal of this

work is to develop constraints that reflect the true limitations of the

domain. Historically, this has been the purview of domain experts.

For example, Stolfo et al. developed a comprehensive constraints for

network traffic [60]. Below, we show that by example the constraint

theory learns constraints identified by humans (including those by

Stolfo et al. and a number developed from our own experience with

IP network protocols). We are exploring a more exhaustive analysis

that systematically compares the specifications of IP protocols to

the learned constraints.

To compare learned and human cultivated constraints, we for-

mulate queries in the form of inputs that demonstrate constraints

we would expect the constraint theory to learn. From our queries,

we verified both obvious and subtle constraints, namely (1) if a TCP

flow was terminated with REJ flag (i.e., through the source sending

an initial SYN packet with the RST bit set), then the number of bytes

sent in the flow must be 0 as, for the NSL-KDD, bytes measured in

a flow was done post-handshake), and (2) SYN packets that have

the same IP and port numbers for the source and destination fields,

flagged as “land” in the NSL-KDD, are never responded to. While

the two above serve as examples of constraints from the TCP/IP
protocol and domain experts respectively, the constraint theory

also learned some attack-specific constraints, such as flows that had

errors at some stage of the TCP handshake towards a specific ser-

vice were distributed across destinations. After analyzing the kinds

of flows that exhibited this property in the dataset, we observed

that this was almost exclusively associated with probe attacks—this

agrees with our understanding of probe attacks in that an adversary

seeks to collect information of the services available in a network

across destination hosts through a “heartbeat” mechanism, such as

initiating connections to observe any form of response.

7 RELATEDWORK

Learning in the Presence of Adversaries. The origins of ad-

versarial machine learning are not explicitly known and are often

disputed [7]. From our perspective, exploring the degree to which

adversaries can influence learning algorithms begins in 1993 with

Kearns et al. who formalize a worst-case data poisoning attack for

any learning algorithm [32]. In 1997, [66] explores the efficacy of re-

inforcement algorithms in adversarial environments, withMinimax

tables driving agent (and adversary) decisions.

The Rise of Deep Learning.With the rise in popularity in deep

learning, adversarial scenarios were revisited [12, 26, 48, 62]. Many

earlyworks exploredwhite-box, inference-time attacks via gradient-

based algorithms. Shortly after, adversarial methods were trans-

lated from conceptual to practical, as works demonstrated how to

produce adversarial examples in physical spaces, using stickers,

glasses, and graffiti [9, 20, 36, 57]. Subsequently, adversarial ma-

chine learning was no longer exclusive to academia; it began to

enter popular culture with discussions of fooling AI in magazine

articles [24, 33, 43], demonstrating “DeepFakes” on television [38],

and even displaying adversarial examples in museums [30].

In 2017 and 2018, there was a burst of adversarial machine learn-

ing research; transfer attacks (i.e., grey-box) [18, 37], black-box at-

tacks on machine-learning-as-a-service platforms [8, 31, 46, 47], at-

tacks by altering a single feature [61], data poisoning attacks (i.e., at

training time) [2, 15], adversarial example detectors [11, 21, 27, 72],

adversarially robust models through adversarial training [42], lin-

ear programming [71], and semidefinite relaxations [53, 59], among

many other works. Seemingly every corner of machine learning

involving some form of an adversary was explored.

Images and Beyond. As we motivated in Section 1, the major-

ity of applications in adversarial machine learning have been in

images. Recently, we have started to see applications in security

domains, including malware [3, 28, 35], and network intrusion de-

tection [40, 54, 58, 73]. These works all describe similar motivations:

domains concerned with adversarial machine learning will likely

not be exclusive to images. As canonical representatives of security,

malicious software and network traffic are relevant phenomena to

study. However, there are commonalities among the works that

limit the applicability of the findings to practical deployments.

When perturbing inputs, theseworks exploit domain “safe-spaces”.
For malware applications, the authors acknowledge that perturb-

ing malware directly is incredibly challenging (without breaking

it or removing its malicious purpose), therefore, perturbations are
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limited to either appending bytes at the end of the binary [35] or

only adding permissions to the list of required permissions for an

application, in the context of Android malware [28]. These are two

examples of “safe-space” perturbations: such manipulations guar-

antee that malicious behavior is preserved (and that the malware is

still functional) by identifying regions that explicitly avoid domain

constraints. This effectively reduces to manipulating image-like

inputs, in that perturbations can be applied arbitrarily and indepen-

dently.

For the works in network intrusion detection, some either ignore

domain constraints [54, 73], or rely on domain expertise to identify

what can and what cannot be perturbed [40, 58]. Specifically, [40]

argues that insofar as the identified features are not perturbed, then

the malicious behavior is preserved. Not unlike the malware sce-

narios, this models adversaries as being able to perturb arbitrarily

and independently (just with a reduction to the allowable perturba-

tion space, much like the one-pixel attack in [61]). However, [58]

provides a method where all features can be perturbed with a sub-

routine to enforce the domain constraints. The approach suffers

from relying on expertise to identify the constraints correctly and

is largely formulated for network intrusion detection systems.

While in this work we use images as a motivating example of an

unconstrained domain, domain constraints can exist in images, de-

pending on the subject of the image. Specifically, Chandrasekaran

et al. identify domain constraints in images with domain expertise

(as well as a data-driven approach via embeddings at intermediary

layers of the model) [14]. They perform a complementary observa-

tion that adversarial crafting algorithms violate domain constraints,

and, when domain constraints are enforced, model robustness is

improved.

Where To? While we are moving closer to accurate threat models

for diverse domains, we may ask, “What if such safe-spaces do not

exist? What if the adversary is required to perturb in regions that

may have effects on other features? Can such adversarial examples

be realized?” We argue that these are fundamental questions for

any domain that is keen to deploy machine learning.

8 CONCLUSION

This paper explored adversarial examples with domain constraints:
relationships between features that encode the rules or structures

of the underlying phenomena. We develop algorithms to learn con-

straint theories for given data distributions and integrate domain

constraints into adversarial crafting processes. By representing do-

main constraints as logic clauses, we design a data-driven approach

to learn the domain constraints across network intrusion detection

and phishing datasets. We find that: (1) crafting adversarial exam-

ples in constrained domains is a necessarily different process than

unconstrained domains; up to 82% of adversarial examples produced

by PGD violated domain constraints, and (2) constrained domains

are inherently more robust against adversarial examples; in one

domain, 34% of model accuracy was restored after projecting adver-

sarial examples onto the learned constraint theory. These findings

suggest that the exploitable threat surface of models in constrained

domains is likely narrower than previously understood.
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A THEWORST-CASE ADVERSARY

We call a constraint theory 𝑇 strict when 𝑇 only certifies the obser-

vations 𝐸 from which 𝑇 was learned; any other observation 𝑒∗ that
is not a member of 𝐸 is rejected. Secondly, we call 𝑇 general when
it certifies a maximum number of observations (while containing a

non-zero number of clauses).

We will now show that, in the setting described in this paper,

the most strict constraint theories are those whose clauses have
literals of cardinality 𝑛 − 1 (recall, literals in our setting are sets),

where 𝑛 describes the number of unique values observed for a given

attribute in the set of collected observations 𝐸. Such constraint

theories describe the best-case adversary, as the adversary must

produce adversarial examples that are precise copies of collected

observations 𝐸.

Conversely, themost general constraint theories are those whose
clauses have literals of cardinality 1. These constraint theories

characterize the worst-case adversary, as such constraint theories

certify the maximum number of observations among all constraint

theories learned by considering literals with cardinalities from 1

to 𝑛 − 1. Let 𝜓𝑘 be the set of observations rejected by constraint

theories 𝑇𝑘 whose clauses contain literals with cardinality 𝑘 . We

will now show:𝜓1 ⊆ · · · ⊆ 𝜓𝑘 ⊆ · · ·𝜓𝑛−1
An Illustrative Domain. Consider the visualization in Figure 6 of

some set of collected observations 𝐸 (shaded in gray).
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Figure 6: Domain and collected observations 𝐸—In the con-

sidered domain, there are two features 𝑥1 and 𝑥2 whose obser-

vations can take values {𝐴, 𝐵,𝐶, 𝐷} and {1, 2, 3, 4}, respectively.
The grey circles represent the set of collected observations 𝐸.

In this domain, there are two features: 𝑥1, which can take values

{𝐴, 𝐵,𝐶, 𝐷}, and 𝑥2, which can take values {1, 2, 3, 4}. From 𝐸, we

observe that if some observation 𝑒 has value 𝑥1 = 𝐷 , then 𝑥2 = 1,

otherwise if 𝑥1 ≠ 𝐷 , then 𝑥2 = 4.

Next, we will consider the output of Algorithm 2, generating

the space of possible of constraints, for literals of cardinality 𝑘 =

1, 2, and 𝑛 − 1 = 3. For clarity, a single clause will be written as

({𝛼} ∨ {𝛽}), where 𝛼 represents at least one and at most three

elements from 𝑥1 (i.e., {𝐴, 𝐵,𝐶, 𝐷}), and 𝛽 represents at least one

and at most three elements from 𝑥2 (i.e., {1, 2, 3, 4}).

𝒌 = 1. Let us consider the space of possible constraints for clauses
generated with literals of cardinality 𝑘 = 1:

({𝐴} ∨ {1}) ∧ ({𝐴} ∨ {2}) ∧ ({𝐴} ∨ {3}) ∧ ({𝐴} ∨ {4})∧
({𝐵} ∨ {1}) ∧ ({𝐵} ∨ {2}) ∧ ({𝐵} ∨ {3}) ∧ ({𝐵} ∨ {4})∧
({𝐶} ∨ {1}) ∧ ({𝐶} ∨ {2}) ∧ ({𝐶} ∨ {3}) ∧ ({𝐶} ∨ {4})∧
({𝐷} ∨ {1}) ∧ ({𝐷} ∨ {2}) ∧ ({𝐷} ∨ {3}) ∧ ({𝐷} ∨ {4})

After applying Valiant’s algorithm to these constraints with our

set of collected observations 𝐸, the resultant learned constraint

theory is then:

𝑇 = ({𝐷} ∨ {4})
As we described above, our worst-case adversary is one who

crafts adversarial examples for a constraint theory that is most
general, among all possible learned constraint theories in our set-

ting. Consider the learned constraint theory 𝑇 = ({𝐷} ∨ {4}); this
constraint theory will certify any observation 𝑒 whose values are

either (𝐷, ·) or (·, 4) (where · denotes any value from the domain of

the respective attribute). From Figure 6, we can see that, out of the

16 possible instances in our exemplar domain, seven are accepted

and nine are rejected, that is, |𝜓1 | = 9. Now, we draw a “reject” box

in red, respectively, shown in Figure 7.
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Figure 7: Reject space for 𝑘 = 1—For literals whose cardinality

𝑘 is 1, the learned constraint theory 𝑇 = ({𝐷} ∨ {4}) rejects
any observation from the red box.

Reject boxes can be derived by inverting each individual clause

and applying De Morgan’s law. For example, the reject box associ-

ated with clause ({𝐷}∨{4}) would be ({𝐷} ∨ {4}) = ({𝐷}∧{4}) =
({𝐴, 𝐵,𝐶} ∧ {1, 2, 3}). We can interpret this reject box as: 𝑇 will re-
ject any observation with 𝑥1 ∈ {𝐴, 𝐵,𝐶} and 𝑥2 ∈ {1, 2, 3}; otherwise,
𝑇 will certify it.

As another important remark, beyond the observations in 𝐸 used

to learn 𝑇 , 𝑇 will also certify the unseen observations (𝐷, 2), (𝐷, 3)
and (𝐷, 4). This is an example of the generalization provided by

encoding constraints of cardinality 𝑘 = 1.

𝒌 = 2. We now continue with learning a constraint theory with

cardinality 𝑘 = 2. Again, consider the space of possible constraints

whose literals have cardinalities 𝑘 = 2:
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({𝐴, 𝐵} ∨ {1, 2}) ∧ ({𝐴, 𝐵} ∨ {1, 3}) ∧ ({𝐴, 𝐵} ∨ {1, 4})∧
({𝐴, 𝐵} ∨ {2, 3}) ∧ ({𝐴, 𝐵} ∨ {2, 4}) ∧ ({𝐴, 𝐵} ∨ {3, 4})∧
({𝐴,𝐶} ∨ {1, 2}) ∧ ({𝐴,𝐶} ∨ {1, 3}) ∧ ({𝐴,𝐶} ∨ {1, 4})∧
({𝐴,𝐶} ∨ {2, 3}) ∧ ({𝐴,𝐶} ∨ {2, 4}) ∧ ({𝐴,𝐶} ∨ {3, 4})∧
({𝐴, 𝐷} ∨ {1, 2}) ∧ ({𝐴, 𝐷} ∨ {1, 3}) ∧ ({𝐴, 𝐷} ∨ {1, 4})∧
({𝐴, 𝐷} ∨ {2, 3}) ∧ ({𝐴, 𝐷} ∨ {2, 4}) ∧ ({𝐴, 𝐷} ∨ {3, 4})∧
({𝐵,𝐶} ∨ {1, 2}) ∧ ({𝐵,𝐶} ∨ {1, 3}) ∧ ({𝐵,𝐶} ∨ {1, 4})∧
({𝐵,𝐶} ∨ {2, 3}) ∧ ({𝐵,𝐶} ∨ {2, 4}) ∧ ({𝐵,𝐶} ∨ {3, 4})∧
({𝐵, 𝐷} ∨ {1, 2}) ∧ ({𝐵, 𝐷} ∨ {1, 3}) ∧ ({𝐵, 𝐷} ∨ {1, 4})∧
({𝐵, 𝐷} ∨ {2, 3}) ∧ ({𝐵, 𝐷} ∨ {2, 4}) ∧ ({𝐵, 𝐷} ∨ {3, 4})∧
({𝐶, 𝐷} ∨ {1, 2}) ∧ ({𝐶, 𝐷} ∨ {1, 3}) ∧ ({𝐶, 𝐷} ∨ {1, 4})∧
({𝐶, 𝐷} ∨ {2, 3}) ∧ ({𝐶, 𝐷} ∨ {2, 4}) ∧ ({𝐶, 𝐷} ∨ {3, 4})

After applying Valiant’s algorithm to this batch of clauses with

𝐸, the learned constraint theory is then:

𝑇 = ({𝐴, 𝐵} ∨ {1, 4}) ∧ ({𝐴,𝐶} ∨ {1, 4}) ∧ ({𝐴, 𝐷} ∨ {1, 4})∧
({𝐴, 𝐷} ∨ {2, 4}) ∧ ({𝐴, 𝐷} ∨ {3, 4}) ∧ ({𝐵,𝐶} ∨ {1, 4})∧
({𝐵, 𝐷} ∨ {1, 4}) ∧ ({𝐵, 𝐷} ∨ {2, 4}) ∧ ({𝐵, 𝐷} ∨ {3, 4})∧
({𝐶, 𝐷} ∨ {1, 4}) ∧ ({𝐶, 𝐷} ∨ {2, 4}) ∧ ({𝐶, 𝐷} ∨ {3, 4})

Here, we observe that the union of the reject boxes produced by

clauses that contain𝐷 is exactly identical to the reject box produced by
clause ({𝐷} ∨ {4}). Any observation will only satisfy those clauses

in 𝑇 if the observation has 𝑥1 = 𝐷 or 𝑥2 = 4. However, we do note

that there are some unique clauses that produce reject boxes that are

not a direct subset of the reject box produced by clause ({𝐷} ∨ {4}).
Namely, ({𝐴, 𝐵} ∨ {1, 4}), ({𝐴,𝐶} ∨ {1, 4}), and ({𝐵,𝐶} ∨ {1, 4}).
Of these unique clauses, without loss of generality, consider the

reject box produced by ({𝐴, 𝐵} ∨ {1, 4}), that is: ({𝐶, 𝐷} ∧ {2, 3}).
Now, we draw a reject box for this clause in orange and the

union of the reject boxes for clauses containing 𝐷 in red, shown

in Figure 8. In this setting, we can see that the learned constraint

theory is less general:𝑇 certifies five observations and rejects eleven

(i.e., |𝜓2 | = 11). Thus far, we have shown |𝜓1 | < |𝜓2 |.

1 2 3 4

D

C

B

A

Figure 8: Reject space for 𝑘 = 2—In addition to the observa-

tions rejected for 𝑘 = 1 (shown in red), observations (𝐷, 2)
and (𝐷, 3) are also rejected when 𝑘 = 2 (shown in orange).

From this, we make two important observations: (1) the size of

the reject boxes are inversely proportional to the cardinality of

the literals (i.e., the constraints are becoming more granular and
less general), and (2) in addition to the observations rejected when

𝑘 = 1, observations (𝐷, 2) and (𝐷, 3) are now also rejected by 𝑇 .

In the context of generalization, beyond the observations used to

learn 𝑇 , only the unseen observation (𝐷, 4) will be certified by 𝑇

when 𝑘 = 2.

𝒌 = 𝒏 − 1 = 3. We now finish with learning a constraint theory

with cardinality 𝑘 = 3 (note that, for this domain, 𝑛 = 4, and thus,

any clause with literals of cardinality four will be axiomatically

satisfied, and so the maximum cardinality we consider is 𝑛 − 1 = 3).

We compute the last batch of the space of possible of constraints

for 𝑘 = 3:

({𝐴, 𝐵,𝐶} ∨ {1, 2, 3}) ∧ ({𝐴, 𝐵,𝐶} ∨ {1, 2, 4}) ∧ ({𝐴, 𝐵,𝐶} ∨ {1, 3, 4})∧
({𝐴, 𝐵,𝐶} ∨ {2, 3, 4}) ∧ ({𝐴, 𝐵, 𝐷} ∨ {1, 2, 3}) ∧ ({𝐴, 𝐵, 𝐷} ∨ {1, 2, 4})∧
({𝐴, 𝐵, 𝐷} ∨ {1, 3, 4}) ∧ ({𝐴, 𝐵, 𝐷} ∨ {2, 3, 4}) ∧ ({𝐴,𝐶, 𝐷} ∨ {1, 2, 3})∧
({𝐴,𝐶, 𝐷} ∨ {1, 2, 4}) ∧ ({𝐴,𝐶, 𝐷} ∨ {1, 3, 4}) ∧ ({𝐴,𝐶, 𝐷} ∨ {2, 3, 4})∧
({𝐵,𝐶, 𝐷} ∨ {1, 2, 3}) ∧ ({𝐵,𝐶, 𝐷} ∨ {1, 2, 4}) ∧ ({𝐵,𝐶, 𝐷} ∨ {1, 3, 4})∧

({𝐵,𝐶, 𝐷} ∨ {2, 3, 4})
Here, it is worth noting an important observation: each of these

clauses will fail to be satisfied by one and only one observation (i.e.,

the size of the reject boxes for each clause at 𝑘 = 3 is one-by-one).

After applying Valiant’s algorithm with 𝐸, the following constraint

theory is learned:

𝑇 = ({𝐴, 𝐵,𝐶} ∨ {1, 2, 3}) ∧ ({𝐴, 𝐵,𝐶} ∨ {1, 2, 4})∧
({𝐴, 𝐵,𝐶} ∨ {1, 3, 4}) ∧ ({𝐴, 𝐵, 𝐷} ∨ {1, 2, 4})∧
({𝐴, 𝐵, 𝐷} ∨ {1, 3, 4}) ∧ ({𝐴, 𝐵, 𝐷} ∨ {2, 3, 4})∧
({𝐴,𝐶, 𝐷} ∨ {1, 2, 4}) ∧ ({𝐴,𝐶, 𝐷} ∨ {1, 3, 4})∧
({𝐴,𝐶, 𝐷} ∨ {2, 3, 4}) ∧ ({𝐵,𝐶, 𝐷} ∨ {1, 2, 4})∧
({𝐵,𝐶, 𝐷} ∨ {1, 3, 4}) ∧ ({𝐵,𝐶, 𝐷} ∨ {2, 3, 4})

Our observation that the reject boxes for 𝑘 = 3 is one-by-one is

further evidence by the fact that the learned constrained theory 𝑇 is
missing exactly four clauses, one clause for each observation in 𝐸.
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Figure 9: Reject space for 𝑘 = 3—In addition to the obser-

vations rejected for 𝑘 = 1 (shown in red) and 𝑘 = 2 (shown

in orange), observations (𝐷, 4) is also rejected when 𝑘 = 3

(shown in yellow).

In this setting, only one clause produces a reject box for a new

observation beyond the reject boxes produced by clauses at 𝑘 = 2:

({𝐴, 𝐵,𝐶} ∨ {1, 2, 3}), with inverse ({𝐷} ∧ {4}), as shown in yellow

in Figure 9. In this setting, 𝑘 = 𝑛 − 1 results in a learned theory that
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“overfits” to the training set 𝐸: 𝑇 certifies only observations from

𝐸 an rejects all other observations. Thus, 𝑇 is rigid, i.e., it is least
general. Finally, we observe that𝑇 certifies four samples and rejects

twelve, i.e., |𝜓3 | = 12.

Given a domain 𝑋 , which contains 𝑋𝑖 , the set containing all

possible values for feature 𝑖 , and a set of observations 𝜓𝑘 that

are rejected by a constraint theory 𝑇𝑘 , which is a conjunction of

clauses 𝑡 , where 𝑡 is a disjunction of literals 𝑙𝑘,𝑖 , which contain 𝑘

values of feature 𝑖 , we provide a general proof that𝜓𝑘 ⊆ 𝜓𝑘+1 (i.e.,
∀𝑒, 𝑒 ∈ 𝜓𝑘 =⇒ 𝑒 ∈ 𝜓𝑘+1).

Proof. Consider any 𝑒 ∈ 𝜓𝑘 , 1 ≤ 𝑘 < 𝑛 − 1, 𝑛 ≥ 3. Without

loss of generality we assume that every feature space 𝑋𝑖 is of size

𝑛. There must be some clause 𝑡 ∈ 𝑇𝑘 that 𝑒 does not satisfy of the

form:

𝑡 =
∨
𝑖

𝑙𝑘,𝑖

With

𝑙𝑘,𝑖 ⊂ 𝑋𝑖 ∧ |𝑙𝑘,𝑖 | = 𝑘 ∧ 𝑒𝑖 ∉ 𝑙𝑘,𝑖

Where 𝑡 describes the disjunction of literals 𝑙𝑘,𝑖 of size 𝑘 that, for

every feature 𝑖 , contain a set of values that are within 𝑋𝑖 , but do

not contain the value 𝑒𝑖 . Now, we can build 𝑡 ′, which is the clause

𝑡 with an additional value, 𝑣𝑘,𝑖 , in each literal:

𝑡 ′ =
∨
𝑖

𝑙𝑘,𝑖 ∪ {𝑣𝑘,𝑖 }

With

𝑣𝑘,𝑖 ∉ 𝑙𝑘,𝑖 ∧ 𝑣𝑘,𝑖 ⊂ 𝑋𝑖 ∧ 𝑒𝑖 ≠ 𝑣𝑘,𝑖

Where 𝑡 ′ is now clause 𝑡 with an additional value 𝑣𝑘,𝑖 in each

literal, where 𝑣𝑘,𝑖 is within the set of all values for the feature 𝑖 , but

is not equal to 𝑒𝑖 .

Now, by construction, we have 𝑡 ′ ∈ 𝑇𝑘+1, because literals are of
size 𝑘 + 1 and the clause is strictly less constrained than 𝑡 , since the

literals of 𝑡 ′ can be satisfied by more samples than the literals of 𝑡 .

Since 𝑡 ′ ∈ 𝑇𝑘+1, and we know that 𝑡 ′ rejects 𝑒 because ∀𝑖, 𝑒𝑖 ∉ 𝑙𝑘,𝑖
(i.e., 𝑡 rejects 𝑒) and ∀𝑖, 𝑒𝑖 ≠ 𝑣𝑘,𝑖 , which gives us ∀𝑖, 𝑒𝑖 ∉ 𝑙𝑘+1,𝑖 where
𝑙𝑘+1,𝑖 = 𝑙𝑘,𝑖 ∪ {𝑣𝑘,𝑖 }. Therefore, we have that 𝑒 ∈ 𝜓𝑘+1. By induction,
it can then be shown that:

𝜓1 ⊆ · · · ⊆ 𝜓𝑘 ⊆ 𝜓𝑘+1 ⊆ · · · ⊆ 𝜓𝑛−1
□
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Exclusive

𝑥1

𝑥2

Inclusive

𝑥3

𝑥4

Prohibitive

𝑥5

𝑥6

𝑥𝑎 𝑥𝑏 𝑥𝑐

Valid Invalid

Figure 10: Constraint Types — An example visualization of

three kinds of learned constraints between network proto-

cols (e.g., 𝑥1, 𝑥2, . . . , 𝑥6) and services (e.g., 𝑥𝑎, 𝑥𝑏 , & 𝑥𝑐 )

B RATIONALIZING DOMAIN CONSTRAINTS

Here, we provide supplementary material on a conceptual model

characterizing the learned constraints by Valiant’s algorithm into

one of three types, as shown in Figure 10. Valiant’s algorithm learns

these three types of constraints simultaneously; we found this

conceptual model helping in rationalizing the learned constraints.

Exclusive Constraints. Exclusive constraints are perhaps themost

intuitive types of relationships; they describe one-to-one mappings

between two variables. A constraint 𝒞 between 𝑋𝛼 and 𝑋𝛽 is said

to be exclusive, if:
∃𝑥𝑎 ∈ 𝑋𝛽 ,∀(𝑥1, 𝑥2) ∈ 𝑋 2

𝛼 ,𝒞(𝑥1, 𝑥𝑎) ∧𝒞(𝑥2, 𝑥𝑎) =⇒ 𝑥1 = 𝑥2

where 𝒞(𝑥,𝑦) is an indicator function that a constraint exists be-

tween two variables 𝑥 and 𝑦. Thematically similar to definitions for

injective functions, exclusive constraints encode that if a constraint

exists between variables 𝑥𝑎 and 𝑥1, then 𝑥𝑎 does not have a con-

straint for any other variable in the domain for which 𝑥1 belongs to.

Conceptually, we can imagine such constraints between network

services and protocols. As an example, we can expect that some

services, such as SSH, can only be used with TCP.

Inclusive Constraints. Unlike exclusive, inclusive constraints

describe one-to-many mappings. Again, a constraint 𝒞 between

𝑋𝛼 and 𝑋𝛽 is said to be inclusive, if:
∃𝑥𝑎 ∈ 𝑋𝛽 ,∀(𝑥1, 𝑥2) ∈ 𝑋 2

𝛼 ,𝒞(𝑥1, 𝑥𝑎) ∧𝒞(𝑥2, 𝑥𝑎) ≠⇒ 𝑥1 = 𝑥2

In other words, it is not necessary for 𝑥1 and 𝑥2 to be the same

variable if there exists constraints𝒞(𝑥1, 𝑥𝑎) and𝒞(𝑥2, 𝑥𝑎). We can

again imagine a scenario where a service, for example NTP, can be

used with multiple protocols, such as TCP and UDP.

Prohibitive Constraints. We call the final constraint type pro-

hibitive constraints. These constraints describe regions for which

no observation can exist
5
. We formalize a prohibitive constraint 𝒞

between 𝑋𝛼 and 𝑋𝛽 as:

5
There are constraint learning approaches that leverage negative examples, which are

realizations of inputs that cannot exist. Practical datasets used for machine learning

∀𝑥1 ∈ 𝑋𝛼 , �𝑥𝑎 ∈ 𝑋𝛽 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝒞(𝑥1, 𝑥𝑎) = 1

Prohibitive constraints are especially interesting. At first, they seem

redundant (one could consider invalid regions to simply be the dual

of valid regions) or non-informative (a variable in a dataset that has

no observation surely cannot be useful to any learning algorithm).

The necessity of prohibitive constraints is rooted in learning rela-

tionshipswith variables that live in a continuous domain.While such

variables can take any real value in theory, there exists real-world

phenomena for which continuous variables instead take values

that can be approximated as discrete clusters of values. Prohibitive

constraints grant us the flexibility to learn such phenomena.

As an example from networks, consider packet sizes; it is a well-

known phenomena that packet sizes on the Internet closely follow a

bimodal distribution [64, 70] (i.e., packet lengths are either small or

large). Consider this observation at the extreme, that is, let the two

modes be non-overlapping. In a practical setting, this means that

the largest packet from the “small” distribution is smaller than the

smallest packet from the “large” distribution. Variables that describe

continuous phenomena can exhibit these regions and prohibitive

constraints are necessary to model these contexts.

do not provide such examples, and thus prohibitive constraints give us the flexibility

to infer negative examples from gaps between values in positive examples.
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Symbol Meaning

Universal
𝑒 sample or observation

𝐸 dataset or collection of observations

Machine Learning
𝑒∗ adversarial example

𝑦 sample label

\ model parameters

𝑓\ model with parameters \

J Jacobian of a model

S Saliency Map

𝑦 model prediction

𝛼 perturbation magnitude

𝓅 parameter for some ℓ𝓅-norm

𝜙 budget (measured as a distance)

B𝜙 norm-ball of radius 𝜙

Formal Logic
⊢ logical entailment

∈ set membership

𝑋 domain

𝑋𝑖 𝑖th feature (or variable) space

𝑥𝑖 some value for feature 𝑖

𝐶 possible constraints from a domain

𝑡 a clause in a constraint theory

𝑇 a constraint theory

𝐻 a constraint theory with partial assignments

𝜓 set of observations rejected by a constraint theory

𝑃 Pseudo-power set

𝑝 set within some pseudo-power set

Ξ space of possible observations

Λ constraint-compliant set of observations

Ψ constraint-noncompliant set of observations

Table 6: Symbols used in this paper

C MISCELLANY

Dataset Features

NSL-KDD 1.Flag
2.Src Bytes
3.Dst Bytes
4.Land
5.Num Compromised
6.Srv Serror Rate
7.Rerror Rate
8.Diff Srv Rate
9.Srv Diff Host Rate
10.Dst Host Srv Serror Rate
11.Dst Host Rerror Rate

Phishing 1.UrlLength

2.NumNumericChars
3.NumSensitiveWords
4.PctExtHyperlinks
5.PctNullSelfRedirectHyperlinks
6.FrequentDomainNameMismatch
7.SubmitInfoToEmail
8.PctExtResourceUrlsRT
9.ExtMetaScriptLinkRT
10.PctExtNullSelfRedirectHyperlinksRT

Table 4: Features

C.1 Hyperparameters

Dataset # Neurons per Hidden Layer Learning Rate Iterations

NSL-KDD 60, 32 10
−3

16

Phishing 20 10
−2

15

Table 5: Hyperparameters

For our models, we use multilayer-perceptrons using ADAM

optimizer. Hyperparameters are shown in Table 5.

C.2 Table of Symbols

C.3 Dataset Details

Table 4 shows the features used in our datasets after feature re-

duction. Details on the meaning behind the features can be found

in [63] for the NSL-KDD and in [16] for Phishing.

C.4 DPLL

Constraint learning is a historical problem in computer science and

shares many parallels with satisfiability problems. While constraint

learning tries to learn what the constraints are, satisfiability at-

tempts, as the name suggests, to return an assignment that satisfies

a set of boolean expressions.

For constraint satisfaction, we use Davis-Putnam-Logeman-

Loveland (DPLL) [17], shown in Algorithm 3. DPLL has some char-

acteristics that make it ideal for our task, namely: (1) it accepts

boolean formulae in CNF, which is the native form of the constraint

theories learned by Valiant’s Algorithm, and (2) it is a backtracking-
based search algorithm. DPLL iteratively builds candidate solutions

for a given expression, which is a property we exploit, detailed in

Section 4.5.

DPLL frames constraint satisfaction as a search problem; first ini-

tialized with a set of boolean clauses 𝐻 containing unassigned liter-

als, the algorithm first assigns a literal 𝑙 to either True or False, and

recursively calls itself with the new assignment for 𝑙 . DPLL returns

False if a contradiction is reached or True if all literals are assigned.

DPLL has a runtime advantage over other backtracking algorithms

as it performs two simplifications to𝐻 at each call: UnitPropagate
and PureLiteralElimination. UnitPropagate assigns values to

literals who are the only members of their clauses (as only one

assignment makes such clauses true). PureLiteralElimination
assigns the necessary value to literals who are pure, that is, a literal
𝑙 is either 𝑙 or ¬𝑙 for all clauses in 𝐻 . Therefore, such literals can be

assigned so that all clauses containing them are true.
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Input: set of boolean clauses 𝐻

Output: a truth value

1 if 𝐻 contains a contradiction then

2 return False

3 end

4 if 𝐻 contains an assignment for every variable then

5 return True

6 end

7 for 𝐶∗ ∈ {𝐶 | 𝐶 ∈ 𝐻 ∧ |𝐶 | = 1} do
8 𝐻 ← UnitPropagate(𝐶,𝐻 )
9 end

10 for 𝑙∗ ∈ {𝑙 | 𝑙 ∈ 𝐻 ∧ Pure(𝑙)} do
11 𝐻 ← PureLiteralElimination(𝑙∗, 𝐻 )
12 end

13 𝑙 ← arbitrarily select an unassigned literal

14 if DPLL(𝐻 ∪ {𝑙 ← True}) = True then

15 return True

16 end

17 else

18 return DPLL(𝐻 ∪ {𝑙 ← False})
19 end

Algorithm 3: Davis-Putnam-Logemann-Loveland

C.5 Constraint Representation

Recall Valiant’s algorithm; it determines if an observation 𝑒 com-

plies with a constraint theory 𝑇 by iterating over all clauses 𝑡 ∈ 𝑇
and evaluating if at least one literal in 𝑡 is satisfied by the feature val-

ues of 𝑒 . Depending on the cardinality of each literal, determining

if a clause is satisfied through a linear search could be intractable.

Instead, we use a set-based representation for literals as this reduces

clause satisfaction to be on the order of the number of literals in

the clause (since set-membership queries can be done in constant

time).

While this optimization is appropriate for boolean and cate-

gorical features, continuous features require a different represen-

tation to be efficient. Recall that we leverage OPTICS to cluster

feature values into discrete bins representing sets of ranges (e.g.,

{𝑥 | (0.25 ≤ 𝑥 < 0.50) ∨ (0.75 ≤ 𝑥 < 1.00)}). Thus, checking
if clauses are satisfied with continuous features can be done in

O(log(𝑛)) time with binary search, where 𝑛 describes the number

of bins.

In practice these optimizations yielded a tractable constraint

learning process. The NSL-KDD constraint generation process ex-

ecuted in just over 3 days, and the phishing dataset completed in

about 1 day (with OPTICS consuming the vast majority of time,

detailed in Section 5.5). Note that learning need only be executed

once for a set of training data. Moreover, there are algorithmic

optimizations that could enable the integration of new data in an

incremental way [44]. We will explore these techniques in future

work.
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