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Abstract—One of the principal uses of physical-space sen-
sors in public safety applications is the detection of unsafe
conditions (e.g., release of poisonous gases, weapons in
airports, tainted food). However, current detection methods
in these applications are often costly, slow to use, and can be
inaccurate in complex, changing, or new environments. In this
paper, we explore how machine learning methods used suc-
cessfully in cyber domains, such as malware detection,can be
leveraged to substantially enhance physical space detection.
We focus on one important exemplar application–the detec-
tion and localization of radioactive materials. We show that
the ML-based approaches can significantly exceed traditional
table-based approaches in predicting angular direction. More-
over, the developed models can be expanded to include approximations of the distance to radioactive material (a critical
dimension that reference tables used in practice do not capture). With four and eight detector arrays, we collect counts
of gamma-rays as features for a suite of machine learning models to localize radioactive material. We explore seven
unique scenarios via simulation frameworks frequently used for radiation detection and with physical experiments using
radioactive material in laboratory environments. We observe that our approach can outperform the standard table-based
method, reducing the angular error by 37% and reliably predicting distance within 2.4%. In this way, we show that advances
in cyber-detection provide substantial opportunities for enhancing detection in public safety applications and beyond.

Index Terms— Machine Learning, security, gamma-ray detectors.

I. INTRODUCTION

THE integration of computation and sensing has rev-
olutionized the management of physical spaces [12].

For example, new capabilities enable smart buildings that
reduce energy use and lessen carbon footprints, smart homes
which ease our personal lives, and smart infrastructures which
support semi-autonomously secured spaces. Collectively, these
Cyber-Physical Systems (CPS) are driving massive innovation,
and in particular, advancing public safety in many domains.
Security—the protection of physical spaces from adversaries
who wish to manipulate or harm the space or those who reside
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in it—is one of the important areas being advanced. Specif-
ically, detection of adversarial entities, actions, or dangerous
states is the principal use of physical-space sensors.

One of the most well known detection problems in physical
security is the localization of radioactive materials. The use
of nuclear technology has grown since the discovery of radi-
ation [1] and it is now found in many applications, including
power, medicine, and space. As the use of nuclear technology
increases, so does the potential for misuse of radioactive
materials. The canonical domain for discussing the detection of
rogue radioactive materials is the container shipping industry
(specifically, cargo inspection). Shipping containers are critical
infrastructure, yet represent an ideal mode of transportation
for adversaries due to their low cost [20] and the presence
of large amounts of metal (and other shielding materials)
which attenuates radioactive signals, substantially reducing the
efficacy of radiation detectors to extract relevant signals from
the surrounding noise [10]. As yet another example, urban
search applications during large public gatherings (e.g., the
Super Bowl, or Times Square during New Year’s Eve) face
similar challenges; the surrounding buildings can cause severe
signal attenuation and impede search effectiveness.

Over the past few decades, a conventional technique
for source localization (known as Directional Gamma-ray
Detection) has relied on the use of pre-populated datasets
(i.e., reference tables) calibrated at specific distances in
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Fig. 1. Localizing Radioactive Materials - We apply data curation techniques, shown to be successful in cyber-detection applications, to counts
collected from radioactive signals to predict both the angle to and distance from a radioactive source.

laboratory environments [11], [28]. In a process thematically
similar to collecting malware signatures from known samples,
the table is built using location templates. When a location
needs to be screened, gamma ray detectors, placed in a
fixed geometry, are used to acquire counts. The distribution
of counts across the detectors are compared against these
reference tables to predict if a source is present, and the corre-
sponding detector-to-source angle. Even with these methods,
a secondary phase is often necessary, where responders (paired
with portable detectors) manually search for the radioactive
material on foot [15], [26], [36]. A central limitation to
this process is comparing the readings from the detectors to
the reference tables: in non-trivial cases, attenuation, scat-
tering, shielding, and other naturally occurring phenomena
can significantly deviate the characteristics of the acquired
gamma-ray signals. These factors limit the utility of reference
tables, and are further exacerbated as the true distance to
the radioactive source diverges from the calibration distance
of the reference table. Localization of radioactive materials
has a striking similarity to one of the most fundamental
problems in cyber-security: detection. Similar to malware,
spam, or network intrusion detection, an adversary hides a
malicious artifact, and the challenge falls upon the defender
to use information from the environment (often overburdened
by noise) to detect and locate that artifact. For the past four
decades, the security community has developed techniques
that reveal information-rich artifacts and methods to amplify
desirable signals from the surrounding noise. Our insight
is that the application of techniques from cyber-security to
radioactive material localization has the potential to produce
significant advancements in physical security.

From a computer security perspective, the physical phe-
nomena described earlier (e.g., attenuation, scattering, and
shielding) inject noise into the readings. In fact, the presence
of this noise causes naive application of machine learning
to yield results worse than even the relatively inaccurate
table-based approaches. We posit that applying and adapting
feature scaling techniques used in cyber detection domains
will mitigate the impact of noise and amplify the signal of
interest. Specifically, we apply unit norm scaling (regularly
used in spam detection) & robust feature standardization
(often used in domains that have features with broad scales,
i.e., network intrusion detection) to be able to discern the
signal of interest from the noisy environment. With these
techniques, we significantly improve the ability to localize
radioactive materials. Further, we explore the abilities of
machine learning models to estimate the distance to radioactive
material, thus quantifying both angle and distance.

One of the new opportunities afforded by the novel appli-
cation of cyber-security techniques to this physical domain is

that we are no longer bound to predicting directionality exclu-
sively; we explore the abilities of machine learning models to
estimate the distance to radioactive materials and show that
they are effective in a suite of different environments. The
application and adaptation of these techniques present a new
capability that has not been achieved for radiation detection
applications. This paper represents a significant step forward
in Directional Gamma-ray Detection with the development of
a novel framework to predict distance as well as direction (and
thus location) with a stationary detection system.

In this paper, we present techniques which have the
potential to advance the current capabilities for locating
radioactive materials. We apply and adapt data curation tech-
niques used successfully in cyber detection domains, and
tune machine learning models to localize radioactive sources.
We assess the approach using the Monte-Carlo-based radi-
ation transport framework (Monte Carlo N-Particle
Transport Code [9]) and physical experiments using
radioactive sources in laboratory settings. We design the exper-
iments to include obstructions that affect radioactive signals,
which can serve as a proof-of-concept for cargo inspection
and urban search scenarios. An overview of our approach is
shown in Figure 1.

We evaluate this approach with six different models on
seven datasets, of which five are simulated and two are exper-
imental (collected in a laboratory environment). With the sim-
ulated experiments we find that the cyber-inspired approach
reduces the angular error by 37% (4.9◦, 95% CI ± 0.07 from
the reference table to 3.1◦, 95% CI ± 0.04 with our approach)
and we can predict distance within 2.4%, 95% CI±0.54 of the
source’s location (up to 15 m). For the laboratory experiments,
we reduce the angular error by 26% (8.5◦, 95% CI±0.22 from
the reference table to 6.3◦, 95% CI ± 0.17 with unit norm
scaling) and predict distance within 13.0%, 95% CI ± 3.74
of the radioactive materials (up to 3 m). Our contributions
are:

• We present techniques adapted from cyber-security detec-
tion to exploit the use of gamma-ray signals for accurate
radioactive material localization.

• We demonstrate that our approach surpasses the tradi-
tional table-based approach, incurring an average angular
error of 3.1◦, 95% CI ± 0.04 vs. 4.9◦, 95% CI ± 0.07,
respectively.

• We extend the standard definition of localization to
include distance. Here, the posited approach can predict
distance within 2.4%, 95% CI ± 0.54 of a simulated
radioactive source when the source strength is known.

• We perform experiments with real, radioactive sources
to validate our findings in complex laboratory environ-
ments. Our approaches surpass the table-based method,
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incurring an average angular error of 6.3◦, 95% CI±0.17
vs. 8.5◦, 95% CI ± 0.22, respectively. Moreover, we can
predict distance within 13.0%, 95% CI ± 3.74 of real
radioactive materials.

• We provide seven new datasets (including simulated and
real data) that we make public for future research in this
important domain, curated for use with machine learning.

II. PROBLEM DEFINITION

A. Threat Model
Our problem is essentially a game of hide and seek:

an adversary places a radioactive source and the objective,
as the defender, is to confirm its existence and determine
its location. We assume a complex environment, that is,
it contains obstructions (e.g., buildings) that interfere with
(and thus, obfuscate) the signal produced by the radioactive
source. Further, we assume a stationary environment: the
adversary is non-adaptive and the radioactive source and the
radiation detector are stationary (however, the distance and
angle between the source and the radiation detector can change
across different experimental scenarios), as are the surrounding
obstructions in the environment. We also assume that the
adversary has no ability to intervene with the operation of
the radiation detector and that it is operating optimally (and
therefore trust the produced readings to be as accurate as
physical phenomena permit).

To some extent, we also assume no a priori knowledge of
the radioactive material being used by the adversary (which
we detail in Section IV). While the experiments are done
exclusively with one material (due to availability, safety, and
applicability), the method with which we detect and localize
a radioactive source is agnostic to any gamma ray emitting
isotope used by an adversary. The intuition behind this is
straightforward: while different gamma ray emitting isotopes
exhibit unique radioactive signatures, they all emit quanta
within certain energy regions. Therefore, for this approach,
detecting a particular isotope is simply a function of which
portion of the energy region is scanned. Thus, a takeaway of
this work is that responders can be “blind”, in some sense,
to the specific isotope used by an adversary.

B. Detector Setup
The detection of a radioactive source relies upon the use of a

detector array. The radiation produced by the source interacts
with the detectors to generate a signal. This signal is then
captured and used to produce a histogram corresponding to
the energy deposited via different interactions. The detection
system is comprised of four or eight detectors, each of which
collect individual energy histograms. Here we sub-sample
counts over a range of energies which are the inputs
(i.e., features) to the machine learning models.

As mentioned in Section I, there are a suite of environ-
mental factors that can negatively affect the readings of the
detector (aiding the adversary). Figure 2 highlights some of
the main sources of these environmental factors, and how they
impact the signal. Notably, there are three central phenomena
produced by obstructions: attenuation, scatter, and shielding.
We describe in more detail how these phenomena affect the

Fig. 2. Detection in a complex environment - The principal objective is
to detect and localize radioactive sources in complex environments that
induce undesirable phenomena, e.g., shielding, attenuation, scatter, and
background noise.

readings in Section III, but for the purposes of the problem
definition, these broadly just reduce the signal or amplify
noise.

C. Machine Learning for Security
Machine learning has been successful in computer security

detection applications including network intrusion detection,
malware, and zero-day vulnerabilities [17], [29], [32]. How-
ever, machine learning has not been applied to radioactive
source search scenarios, which shares many parallels with
domains within computer security. A central factor for deploy-
ing machine learning in security-sensitive domains is fea-
ture scaling [23], [30], [31]. In network intrusion detection,
there are many different kinds of features, which can con-
tain outliers that can negatively affect standardization [30].
We find that detecting radioactive materials faces a similar
burden, in that the distributions of gamma-ray counts can
contain strong outliers (i.e., sources of noise). By applying
robust feature standardization techniques that account for
these outliers, we improve the accuracy of many learning
algorithms.

As a second optimization, we take inspiration from tech-
niques used traditionally for spam detection: unit norm scaling.
Specifically, we observe that much like analyzing the relative
frequency of words in emails, learning algorithms are likely
to be more accurate in localizing radioactive materials with
relative detector counts rather than gross signals.

III. RADIOACTIVITY IN THE PHYSICAL WORLD

Radiation, which is energy in transit, can be either elec-
trically charged (e.g., electrons, protons, and alpha particles)
or uncharged (gamma rays, x-rays, and neutrons). Uncharged
radiation poses unique detection challenges, but is not easily
shielded [16]. In this work, gamma-rays are the principal
phenomena of interest as they are not readily shielded by thin
metals (i.e., shipping containers), unlike charged particles [33].
Also, gamma-rays produce unique energy signatures [14]
which can be used to classify the radioactive source, analogous
to signatures produced by malware in intrusion detection
systems. Generally, gamma-rays that pass through a detector
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interact in one of three ways: the photoelectric effect, Compton
scattering, or pair production. These interactions produce
readings that eventually become the features of the approach.

Poisson Statistics: Absent of physical phenomena (and any
detector deficiencies), one of the most fundamental challenges
in interpreting detector readings is that they are burdened
by Poisson statistics. The underlying uncertainty complicates
accurate interpretation of the readings; the stochastic nature
of radioactive decay means that the exact same experiment
repeated twice in a row will yield different results. This
fact gives a fundamental insight into what makes localizing
radioactive sources a challenging problem.

In the simplest scenario (no obstructions, line-of-sight to
the radioactive source, and ideal detector characteristics),
the phenomena above, coupled with Poisson statistics, can
have a notable affect on detector results, which table-based
analysis approaches have difficulty rectifying. Much like net-
work adversaries who obfuscate their signature to frustrate
detection systems by mixing benign requests in the midst of
malicious ones, noise produced by scattering and attenuation
(as well as the fundamental uncertainty) can have a non-trivial
negative effect on this approach with respect to localizing
radioactive sources.

A. Existing Approaches
The two phase search procedure, which relies on detection

and localization, is a demanding process, both in time and
labor, given that responders must triangulate the radioactive
source manually. Currently deployed techniques aim to com-
bine both phases: by analyzing minute differences between
counts received across detectors in an array of fixed geometry,
the angle to the radioactive source can be determined (within
some error). This problem is known as directional gamma-ray
detection. Most conventional techniques use pre-populated
datasets (i.e., reference tables) of known source locations,
calibrated at a specific distance in lab environments [28]
(shown in Figure 4). However, these approaches suffer in
non-trivial cases where attenuation, scattering, shielding, and
other naturally occurring phenomena affect the detected sig-
nals. More, these methods still require responders to manually
search in the suspected direction of the radioactive source.
Thus, they are susceptible to human-error, inaccuracies of the
reference tables, and are bound by the number of responders
that can be equipped with portable detectors to triangulate the
source.

For this work, we measure the net counts for each individual
detector and compute their differences to predict both angle
and distance (which gives us localization). This combines two
previously disjoint stages, enabling responders to quickly iden-
tify the location of the radioactive material. We hypothesize
there is latent information that characterizes the environment
which enables the location of the radioactive material to be
determined. Consider that if one detector receives more counts
than another, it is likely the source is in the direction of the
detector with the highest counts. However, if an obstruction
is directly in front of this detector, then the neighboring
detectors may receive more counts. The challenge here is
to capture these subtle situations–tools used in detection in

computer security environments are effective at pulling out
this embedded information, and we exploit this observation in
our analysis.

IV. APPROACH

Localizing radioactive materials in noisy environments
shares many of the same challenges observed in the
cyber-security detection space. Here, we briefly detail the
radioactive source used, some relevant characteristics of
the detector, the framework used in the simulated experi-
ments, describe the feature scaling adaptations, and present
the machine learning algorithms used.

A. Material Detected
Cobalt-60 (60Co) is the radioactive isotope used in the

simulations and laboratory experiments. Cobalt-60 is a relevant
isotope to study, as it can be found in many domains, including
medicine, industry, food, and nuclear power [13], [18], [34].
The widespread use of 60Co means that, in practice, it is an
isotope responders often wish to locate.. Most importantly,
while we use 60Co in the experiments, we emphasize that these
techniques are not specific to this isotope; many radioactive
isotopes have characteristic peaks similar to 60Co, simply at
different energies [16].

B. The Detectors
In gamma-ray spectroscopy, there are two main detector

types: scintillators and semiconductors. Though most semicon-
ductors offer better resolution and improved intrinsic efficiency
(i.e., a high probability of interaction with gamma-rays), they
are expensive, and some requiring cooling to liquid nitro-
gen temperatures (−196 ◦C) [27]. Such requirements were
impractical for this work.

Thus, we use thallium-doped sodium iodide (NaI(Tl)) scin-
tillation detectors, popular in many field applications [19].
There are a handful of properties that make NaI(Tl) detec-
tors useful for experimentation, namely: room-temperature
operation, high efficiency, and large photofraction (i.e., the
fraction of incident photons fully absorbed). The popularity
and accessibility of the detector makes it an attractive choice
for evaluating the applicability of this approach.

C. Monte Carlo N-Particle Transport Code
MONTE CARLO N-PARTICLE TRANSPORT CODE (MCNP)

is a Monte Carlo method simulator for radiation trans-
port1. It uses Monte Carlo methods to simulate interactions
(i.e., absorption, and scattering) as radiation propagates
through a medium. Monte Carlo methods are considered to
be the de facto standard for applications in radiation analysis
due to their ability to accurately model radiation transport
and interactions [9]. Due to its ability to simulate nearly any
environment, MCNP is used in many fields, including medicine,
detector design, reactor design, radiography, material pene-
tration tests, radiation dosimetry, among others [9]. Figure 3
showcases the capacity of MCNP to model real radioac-
tive phenomena–the simulated detector responses map nearly
1:1 onto the laboratory detector readings. Differences between
simulated and laboratory readings are largely attributed to the
effects of gain-shift [4], [25], stemming from temperature and
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Fig. 3. Detector responses as a function of angle for laboratory
experiments and simulations - MCNP is capable of modeling radioactive
phenomena with striking accuracy and precision. Error bars on response
values are included, but comparable in size to the plot markers. MCNP
is the de facto tool used for radiation analysis, particularly large-scale
experiments that are difficult to safely execute in live laboratory settings.

other environmental influences. Gain shift has the effect of
“shifting” the spectra, which can lead to counts artificially
being added or subtracted to the reading. As each detector
experiences differing amounts of gain shift, these small effects
can propagate to notable differences in the normalized input
features. To partially mitigate this, energy calibrations are
regularly performed.

D. Feature Selection
With a popular isotope and effective detector, we return

to the central goal: localization of radioactive sources in
complex environments. To achieve this goal, we first ask a
basic question: what can we measure? We defer to historically
successful techniques to answer this question.

As described in Section III, prior work has combined
detection and direction (i.e., angle) into a single phase by
analyzing slight variances in the responses of each detector in
a fixed geometry array [6]. Here, we use gamma-ray counts as
features, and extend the analysis to localizing (i.e., predict both
angle and distance) radioactive sources. In this way, we seek
to combine all phases of detection and localization into one
step, averting cost for any special equipment and saving time
by avoiding a manual foot search.

E. Feature Optimization & Cyber-Security
The abundance of research in localizing radioactive sources

has many answers to the question asked above. However, there
is yet another question that we must ask: how do we filter
noise without dampening the signal of interest? To answer
this question, our intuition leads us to our central hypothesis:
techniques used in the cyber-security detection space can be
useful in localizing radioactive materials. We describe the
techniques and relevant adaptations below2.

1“Radiation Transport” software simulates the propagation of radiation
through space and its interactions in media.

2It is worth noting that we tried other data manipulation techniques that
had marginal (or sometimes even negative) effect on the accuracy of the
models, namely: 0-1 rescaling, normalization (i.e., mean centered at 0), and
standardization (i.e., mean centered at 0 and a standard deviation of 1).

1) Robust Feature Standardization: For many learning algo-
rithms, standardizing feature scales is an important prerequi-
site. A common technique is to subtract the mean and scale to
unit variance. However, standard techniques can be negatively
affected by features that have highly skewed distributions,
like those seen in network intrusion detection [30]. Instead,
subtracting the median and scaling features according to some
quantile range has been shown to produce better results for
features with outliers. We standardize the features via:

x̂ = x − x̃

max Q3 − max Q1
(1)

where x is the original feature, x̂ is a standardized feature, x̃
is the median value, and max Qi is the maximum value for
the i th quantile. By scaling based on the maximum value in
some quantile, we mitigate the negative influence outliers may
have on the accuracy of some learning techniques.

2) Unit Norm Scaling: l p normalization is an arguably
uncommon feature scaling technique (l2 regularization on
model parameters is a common use of l p norms in machine
learning). If we represent a dataset as an M × N matrix of M
samples and N features, then most feature scaling techniques
operate across all samples (i.e., M × 1)–that is, one particular
feature for all samples is scaled in some manner. How-
ever, unit norm differs in that it operates across one sample
(i.e., 1 × N). We can formulate unit norm scaling as:

x̂ = x

‖x‖l p

(2)

where x̂ is a l p norm scaled input. Our intuition for using unit
norm scaling follows successful applications of natural lan-
guage processing towards spam detection: a natural objective
for spam detection is to determine the term frequency of words
(or n-grams) in an email. For example, it is difficult to draw
any conclusions if the bigram “free money” appears a handful
of times in email. However, stronger conclusions can be drawn
if “free money” was the most common bigram. We apply this
same reasoning to predicting the angle to a radioactive source:
whether or not a detector receives 10 or 100 counts is hardly
useful; what is more important is that a detector received the
most counts (which is then the most likely direction to the
radioactive source). This insight leads to substantial increases
in angle prediction accuracy.

F. Reference Tables & Machine Learning
Here, we describe the reference tables and learning algo-

rithms used in this work. The techniques presented here were
specifically chosen, as they offer unique advantages over
one another, such as interpretability, scalability, and accuracy.
Further details are presented in Appendix .

1) Reference Tables: As described in Section III, reference
tables are commonly used for directional gamma-ray detection.
To build a reference table: detectors are setup in a fixed
geometry, a known source is selected and placed at a fixed
distance from the detector array, and the relative counts for
each detector are recorded at varying source angles. These
reference tables are ostensibly a closed-form approximation
of the phenomena as they encode the response of a detector
as a function of angle to the source, as shown in Figure 4.
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Fig. 4. MCNP simulated detector responses as a function of source angle
- reference tables are built from these responses and are then used to
approximate unknown sources. Calculated error bars are comparable in
size to line thickness, and are thus excluded.

Once the reference table is calibrated, the responses of the
detectors to an unknown source are compared to the reference
table. Often with a least-squares regression analysis, where the
angle to the unknown source is predicted by:

θγ = arg min
θ

(�(θ) − x)2 (3)

where θγ is the angle predicted by the reference table, �(θ)
are the calibrated detector responses for some angle θ , and x is
a vector of detector counts for a particular observation. Equa-
tion 3 leads us to two observations: 1) differences between the
calibration environment and real world environment (such as
the presence of obstructions) will lead to discrepancies in the
relative detector responses, potentially leading responders in
the wrong direction, and 2) often more severely, slight varia-
tions in distance can produce profoundly different distributions
of counts than any observation for which the reference table
was calibrated.

2) Logistic Regression: Logistic regression (LR), akin to
linear regression, computes a weighted sum of input features
with an additional bias term, and applies the logistic function
to this sum [35]. While more sophisticated techniques have
emerged, each have limitations. We include logistic regression
models in this work to investigate if simpler models suffice to
perform localization tasks accurately and quickly.

3) Support-Vector Machines: Prior to the inception of deep
learning, support-vector machines (SVMs) dominated machine
learning benchmarks across many domains [3]. SVMs are
attractive as they can form non-linear decision boundaries,
which may be necessary given the noisiness of this domain.
k-Nearest

4) k-Nearest Neighbors: Neighbors (kNN) is a
non-parametric approach [2]. As the observed count
distributions in this domain can change rapidly in a variety
of unique environments, kNN is particularly useful as it does
not make any assumptions about the underlying data.

5) Decision Trees: Decision Trees (DT) are flexible machine
learning algorithms that are commonly used today [24].

They require minimal data preparation, have low performance
overheads, and offer intuitive explanations of the formed deci-
sion boundaries. Decision trees are appealing in this domain
not only as another non-parametric technique, but also because
of their white-box design: the learned decisions are easy to
interpret, which can be useful in understanding subtle changes
in the decision process as a function of the environment.

6) Deep Neural Networks: Deep neural networks represent a
state-of-the-art class of learning techniques that have demon-
strated success in the most challenging machine learning
benchmarks [7]. Definitions vary, but generally speaking,
deep neural networks often refer to any class of artifi-
cial neural networks with multiple layers between the input
and output layers. For this work, the “deep neural net-
work” is a fully-connected feedforward network, with some
number of hidden layers, trained with back-propagation,
using the rectifier (colloquially, “ReLU”) as the activation
function.

V. EVALUATION

In this section, we evaluate the approach on seven datasets:
five were simulated and two were measured3. The experiments
were performed on a Dell Precision T7600 with Intel Xeon
E5-2630 and NVIDIA Geforce TITAN X. We used Scikit-
learn [22] for data curation and for instantiating the machine
learning models. We ask:

• Is the naive machine learning solution sufficient for
localizing radioactive sources?

• Can our optimizations approximate or exceed the
performance of existing table-based angle predictions?

• When source strength is known, can distance be predicted
and, if so, how is the accuracy affected as a function of
distance from the radioactive source?

Summary: The simulation and physical laboratory experi-
ments demonstrate that the developed techniques outperform
the reference table for predicting angle by 37% (down from
4.9◦ to 3.1◦) and estimate distance within 2.4% of the distance
to a radioactive source.

A. Experimental Scale & Parameters
The simulated and laboratory datasets contain a radioactive

source that is located 1–15 m and 1–3 m away from the
detector array center, respectively. Simulated acquisitions were
approximated as 14 s counts of a 1 and 10 μ Ci 60Co source,
while laboratory acquisitions were 5 minute counts of an
approximately 1 μ Ci 60Co source. With scaling (discussed
below), these are common parameters in this field, and serve
as a proof-of-concept for this analysis method.

The experiments contain three factors that are scaled in a
manner that makes the datasets especially challenging: atten-
uation, measurement time, and distance. These datasets serve
as benchmarks for evaluating approaches on real radioactive
material subject to all forms of physical phenomena and
environmental factors.

3The radioactive 60Co source used in the laboratory experiments was a
low activity source. At approximately 1 μ Ci, it is safe to handle with the
appropriate safety procedures, which were defined and strictly followed for
all the measurements.
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1) Attenuation: Radioactive sources used by medical or
industrial entities can be on the order of ∼100 Ci (around
eight orders of magnitude stronger than the real source used
in this work) [13], [21]. These sources have the potential to
be used by the adversary, and thus have activities similar to
those which these methods could be used to localize. Separate
simulations were conducted with the four detector array and
60Co sources of various activities to gauge the scaling of
obstruction thickness and attenuation. Results showed that the
attenuation effect of a single cinder block (10 cm of solid
concrete) on a 1 μ Ci source is approximately the same as the
attenuation effect of 150 cm of solid concrete on a 1 Ci source.
Thus, the experiments model a challenging scenario where a
weak radioactive source is in a thick concrete building.

2) Sample Time: We also modeled the measurement time
in the simulated datasets to be comparable to the times used
in realistic search scenarios [16]. Recall, radioactive sources
decay at a particular rate—that is, a 1 Ci source sampled for
5 minutes will produce (theoretically) identical results to a
1
2 Ci source sampled for 10 minutes (assuming a half-life much
greater than the measurement time). Since these sampling
times are comparable to realistic scenarios, but with a source
potentially 8 orders of magnitude weaker than those in real
scenarios, predicting angle and distance is challenging from a
scaling perspective.

3) Distance: Most sources radiate in an isotopic manner, and
thus fall subject to many laws in signal processing, notably the
inverse-square law. This means that the intensity perceived
by a detector decreases squarely with distance. Additional
simulations were conducted to gauge the scaling effects on
distance, to put the laboratory measurements in perspective
to real world expectations. Results isolating the effects of
geometry alone showed that the counts we receive with the
1 μ Ci 60Co source in five minutes at 3 m are comparable
to the counts we would get from a 1 Ci 60Co source in a
single second at 100 m. So while the sources used in the
laboratory experiments are challenging to detect at 0.5 to 3 m
away (with short data acquisition times), they more than scale
to parameters useful for actual source search applications.

B. Datasets
The first task was to create datasets of simulated and

real-world measured gamma-ray counts in various settings to
enable evaluation of the detection algorithm. We generated
seven, which we will refer to as S-Dataset 1, S-Dataset
2 106/7, S-Dataset 3 106/7 for the simulated experiments
(from MCNP), L-Dataset 1, and L-Dataset 2 for the laboratory
experiments. The 106 and 107 variants of S-Dataset 2 and
3 describes the number of simulated gamma-rays per trial.
The different numbers of simulated gamma-rays correspond
to different source strengths or measurements times, and
represent differing levels of statistics. All scenarios use the
same radioactive source (60Co) at varying distances, angles,
and obstruction locations, as described below and summarized
in Table I.

1) Simulated Datasets: The datasets were generated with an
8-detector array and a source at varying distances between 1
and 15 m. S-Datasets 1 & 2 contain 72, 000 samples where

TABLE I
DATASET STATISTICS FOR THE EXPERIMENTS

the source is uniformly rotated a full 360◦ around the detector
array (at roughly 1◦ increments), while S-Dataset 3 contains
27, 000 samples and the radioactive source is only rotated 90◦.
For each trial, either 106 or 107 gamma-rays were simulated,
corresponding to a 14 s count of a 1 μ Ci or a 10 μ Ci 60Co
source. S-Datasets 2 & 3 contained a solid concrete obstruction
that mimics the effects of a concrete building. In S-Dataset 2,
the obstruction was stationary; in S-Dataset 3, the obstruction
was randomly placed between ten locations. Table I provides
experiment details.

While one million gamma-rays may sound significant, recall
the isotropic nature of radiation and the variety of physical
phenomena described in Section III; in reality, less than
0.1% of these gamma-rays will cause some interaction (either
positively or negatively) with the detector array 3 m from the
source.

2) Laboratory Datasets: The two laboratory datasets were
acquired with a 4-detector array setup (shown in Figure 6)
and a radioactive source at varying distances between 0.5 and
3 m. Both datasets contain 125 samples where a 3 μ Ci 60Co
radioactive source is rotated 90◦ at (roughly) 15◦ increments
around the detectors. L-Dataset 1 has no obstructions and
L-Dataset 2 contains concrete obstructions at fixed locations.
A summary of the data is presented in Table I, and a photo-
graph of the detector setup and accompanying block diagram
are shown in Figures 5 & 6.

While 125 samples per dataset may seem small, it is
both significant in this context and sufficient. A single
sample often requires approximately 5 minutes to collect
(i.e., nearly 11 hours of data collection for one dataset). More-
over, throughout this entire process, we regularly performed
energy calibrations on the detector, and periodically acquired
separate background radiation spectra to make the read-
ings as accurate as possible4. Finally, some learning models
(e.g., SVMs) are performant on small datasets. Thus, these
relatively small laboratory datasets represent a challenge in
localizing radioactive sources when data may be severely
limited.

C. Experiment Overview
This section details experiments exploring how the proposed

models predict angle and distance as compared to the reference
tables. In the following figures, the accuracy is the number of
samples where the exact angle (or distance5) was predicted

4Detectors in reality experience what is known as “gain shift”–the energy
spectrum for radiation slowly changes overtime from a variety of environ-
mental factors. Additionally, the background radiation can vary with time
and location. For radioactive source search scenarios, a single calibration is
often sufficient, however, data collection for scientific use, such as this work,
requires recalibrating the detector for gain shift and background radiation
regularly to obtain accurate measurements.
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Fig. 5. Detection in Radioactive Environments - The gamma-rays
from the ��Co source interact with the detector array, consisting of NaI
detectors which emit light upon gamma-ray interactions, photomultiplier
tubes (PMTs) to convert the light into an analog pulse, and a digitizer
to convert the analog pulse into a digital signal. The digital signal is
then processed by spectroscopy software to convert the signals into the
“counts”, which are used as input to the machine learning models.

Fig. 6. Setup of L-Dataset 2 - This is a photograph of the detector array
in the laboratory. The ��Co source is attached to the cardboard tube.
The concrete blocks are the obstructions and cause the behavior of the
gamma-rays produced by the ��Co source to be representative of an
urban environment.

correctly over the total number of samples. We highlight these
results as, in real scenarios, even ±5◦ angular tolerance may be
unacceptable (particularly if the radioactive source is estimated
to be far away).

1) Naive Machine Learning: The naive approach to this prob-
lem is to directly use the raw counts collected by the detector
as inputs to learning models. As shown in Figure 7 (a),
the results are average: the reference table had average angular
error of 4.9◦, 95% CI ± 0.07 while the best model (k-Nearest
Neighbor) had an average angular error of 4.2◦, 95% CI ±
0.11. The logistic regression model and deep neural network
were unable to predict neither angle nor distance correctly.
For the distance at which the reference table was calibrated
(around 200 cm; where the peaks are), the reference table
outperformed all of the models. As the distance increased,
the reference table quickly became inaccurate, unlike Decision
Trees and k-Nearest Neighbors. However, neither of these
algorithms eclipsed the accuracy of the reference table at
any particular distance compared to the maximal accuracy of

5The distances are binned (and approximated) via the Freedman–Diaconis
Estimator, which is an outlier-resilient, optimal binning algorithm [8]. Impor-
tantly, the estimator suggests bin widths so that the difference between
the empirical and theoretical probability distributions are minimal. Reported
accuracy is the number of samples where the bin was predicted over the total
number of samples. For the simulations and laboratory experiments, 42 and
8 bins were created, i.e., 35 and 3.75 cm per bin, respectively.

the reference table (i.e., the distance it was calibrated for).
For the laboratory experiments, the best models performed
worse: the reference table had an average angular error of
8.5◦, 95% CI ± 0.22, while the best model had an average
angular error of 12.9◦, 95% CI ± 0.37. Thus, for predicting
angle, the simple application of machine learning yields results
worse than reference tables at their calibrated distance, mar-
ginally better at other distances for the simulated experiments,
and explicitly worse for the measured datasets.

For predicting distance (Figure 7 (b)), the naive approach
produced impressive results with some of the algorithms for
scenarios in which the source strength is assumed to be
known. The best model (k-Nearest Neighbors) could predict
distance within 2.5%, 95% CI ± 0.55 of the distance to a
source. However, for the simulated data, most of the learning
techniques were not able to predict distance at all, while
decision trees and k-Nearest Neighbor produced a sigmoid-like
curve for the 60Co 106 simulation. Perhaps not surprisingly,
these models can estimate (nearly perfectly) the distance to
sources that are exceedingly close, yet struggle for sources
that are relatively far away.

2) Applying Cyber-Security Detection Techniques: As
detailed in Section IV, the radioactive environment is
inherently burdened by noise, similar to intrusion detection
domains, and thus we suspected that a cyber detection
approach would readily apply in this domain. Figure 8 (a)
demonstrates the results. Immediately, we can see significant
improvements: many of the models now exceed the reference
table accuracy, even at the distance at which the reference table
was calibrated. After applying unit norm scaling, the average
angular error for the best model (k-Nearest Neighbors) is
3.1◦, 95% CI ± 0.04 (down from 4.2◦), an improvement
from the reference table by 37% (down from 4.9◦). For the
laboratory datasets, we also see improvements: we reduce
the angular error to 6.3◦, 95% CI ± 0.17 (down from 12.9◦),
an improvement from the reference table by 26%.

For predicting distance, we applied robust feature stan-
dardization. Like network intrusion detection, this domain is
inherently noisy and contains outliers that may negatively
influence standard feature scaling techniques. Figure 9 shows
a sample distribution of detector counts with the quartile
ranges we scale from in the experiments and Figure 8 (b)
shows the results. A small improvement is made to the overall
accuracy after applying robust feature standardization (from
2.5%, 95% CI ± 0.55 to 2.4%, 95% CI ± 0.54 for the best
models) and substantial gains for the other models (e.g., logis-
tic regression, support vector machines, and deep neural net-
works) as shown in Figure 8. For the laboratory experiments,
robust feature standardization also yielded small improvements
(from 13.5%, 95% CI ± 3.66 to 13.0%, 95% CI ± 3.74).

We highlight key takeaways of this work:
• Our approach can far surpass the capabilities of reference

tables even for the distance at which the table was
calibrated. This demonstrates that: 1) calibrations do not
lend themselves well to the complex nature of problems in
real environments, and 2) model-based approaches, paired
with cyber-security detection techniques, are effective
tools for localizing radioactive sources.
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Fig. 7. Localizing radioactive sources with naive machine learning - Applying machine learning to raw detector counts produced average results
for predicting angle. Estimating distance was acceptable for some learning techniques.

• Our approach accurately estimates distance to a radioac-
tive source. Prior to this work, techniques either required
mobile detectors (either first responders on foot or
vehicles) to triangulate radioactive sources manually;
now, we are void of these limitations. We can localize
a radioactive source simultaneously at the time it is
detected. While initial trials benefited from an apriori
knowledge of the source strength, similar standardiza-
tion and additional cyber-physical security techniques are
being explored to apply distance predictions to sources of
unknown strength.

• Perhaps not surprisingly, obstructions have a tangible
impact on modeling radioactive behavior: most of the
models observed an ∼10% decrease in accuracy in
the most challenging datasets where the locations of
obstructions varied. Radioactive source search scenarios
in reality will likely observe similar challenges given that
no environment is identical.

• An order of magnitude increase in particle counts (106 to
107) was especially helpful to increase model accuracy at
the longest distances (i.e., greater than 8.4 m). In other

words, high activity sources (or longer acquisition times)
can be localized accurately over long distances.

VI. OBSERVATIONS

3) Unit Norm Scaling: One of the most significant improve-
ments we observed for angle prediction was the application of
unit norm scaling. There are multiple reasons why this tech-
nique was so effective: much like detecting spam in emails,
the absolute frequency of words is hardly useful; instead, it is
often more interesting to see how frequent some words are
used relative to one another. The intuition is straightforward:
if the bulk of an email contains words that are commonly
associated with spam, then the email is most likely spam
as well; that is to say, long emails that contain 80% “spam
words,” for example, are fundamentally no different (in terms
of spam or not) than short emails with a similar relative
amount of spam words. We follow this same reasoning for
localizing radioactive materials: when receiving a sum total
of 1000 counts or 100 counts, if a particular detector receives
the majority then, in both cases, the radioactive source is most
likely in front of this particular detector. This has the added
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Fig. 8. Localizing radioactive sources with cyber-security detection techniques - applying unit norm scaling and robust outlier standardization lead
to significant improvements for most of the models.

benefit of augmenting the training set–learning approaches no
longer have to disentangle that 1000 counts or 100 is relatively
meaningless for predicting angle, as those two situations are
being treated identically. These observations give insight into
why this feature scaling technique was so effective.

4) Robust Outlier Standardization: We found that scaling
the features in a manner robust to outliers was effective for
predicting distance. While using the raw counts was acceptable
for sources that were close to the detectors, we noticed that
the accuracy of the models decreased quickly as the distance
linearly increased (i.e., the Inverse-square law in practice).
We observed that robustly scaling features helped maintain the
accuracy of the models over longer distances. Figure 9 led us
to our insight: we aim to emphasize the signal from within
the two dotted lines as the bulk of the counts indicated that
the source was directly behind the detector in this example.
However, due, in part, to the physical phenomena described in
Section III, the detector observed a small increase in counts
directly in front of it (i.e., at 0◦). Thus, we hypothesized
that mitigating the influence of these outliers would aid in

predicting distance. The results demonstrate that this insight
was indeed helpful.

5) Estimating Distance: While these approaches are rela-
tively accurate at predicting distance, estimating distance is
difficult, especially with a stationary system. Today, there is a
focus on using mobile systems to localize radioactive sources
(e.g., Mobile Urban Radiation Search (MURS) [5]). By taking
multiple samples at different locations, mobile systems can
exploit basic triangulation algorithms to estimate the distance
to a source (perhaps with more accuracy than our initial
approaches). A natural limitation of this approach is the cost,
requirement of a mobile environment, and dependency on
multiple samples for triangulation. However, the fact that the
success of our approaches are agnostic to these requirements
yields a unique opportunity; much like how predictions with
the stationary system studied benefited from the application
of cyber techniques, the same is likely true for the techniques
used in systems such as MURS. Broadly speaking, the overlap
between radiation detection and detection in computing envi-
ronments suggests that a large class of approaches are likely
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Fig. 9. Demonstrating Outliers - This figure demonstrates a photocount
distribution for one of the detectors. The dotted lines mark the quantile
ranges of the data that we scale to. This gives intuition into why robust
feature standardization is helpful: in this figure, the radioactive source is
directly behind the detector (as shown by the peak at 180◦), yet there
is a noticeable increase in photocount readings directly in front of the
detector (i.e., 0◦ and 359◦)–these increased counts are manifestations
of noise in part from the physical phenomena.

to benefit from cyber-inspired approaches, as observed with
the system used in this work.

VII. CONCLUSION

In this paper, we investigated new analysis approaches for
radioactive source localization. We explored how techniques
from the cyber-security detection domains can surpass tradi-
tional table-based approaches and extend the standard defini-
tion of localization to include distance. We observed through
both simulated and physical laboratory experiments that our
techniques surpassed the angular accuracy of table-based
approaches, reducing the angular error by 37% and reliably
predicting distance within 2.4%.

Moreover, we observed how naive applications of machine
learning either produced inaccurate predictions or failed to
eclipse the accuracy of table-based approaches at distances
for which the table was calibrated. Yet, curated applications,
such as unit-norm scaling and robust standardization, can pro-
duce results which surpass table-based approaches across all
evaluated distances. This work demonstrates that the complex
signals produced during source localization efforts can benefit
from machine learning approaches with curated application
of signal amplification techniques. Future efforts will focus
on more robust distance prediction techniques and greater
collection of physical measurements in controlled laboratory
settings. Through our application of cyber-security princi-
ples, we introduced a state-of-the-art approach in localizing
radioactive sources in complex physical scenarios.

APPENDIX

We provide a brief summary of the evaluated learning
techniques and show our hyperparameters used in the
evaluation.

Logistic Regression: Logistic regression (LR), akin to linear
regression, computes a weighted sum of input features with

an additional bias term, and applies the logistic function to
this sum [35]. We can define a logistic regression model
as follows:

� = (1 + e(−θ�·x))−1 (4)

where θ represents the weights of the model and x represents
our input vector. While more sophisticated techniques have
emerged, i.e.,deep learning, each have their own limitations.
We include logistic regression models in this work to inves-
tigate if simpler models suffice to perform localization tasks
accurately and quickly

Support-vector Machines: Prior to the inception of deep
learning, support-vector machines (SVMs) dominated machine
learning benchmarks across many domains [3]. For binary
classification, SVMs seek to find two hyper-planes that
satisfy:

θ� · x + b � {−1, 1} (5)

where θ represents the weights of the model, x represents
our input vector, and {−1, 1} encode the two classes. The
algorithm then seeks to maximize the difference between
the two hyperplanes, while satisifying the above constraints.
SVMs are attractive as they can form non-linear decision
boundaries, which may be necessary given the noisiness of
this domain.

k-Nearest Neighbors: The k-nearest neighbors algo-
rithm (kNN) is a non-parametric approach, used ubiquitously
in academia and industry. As the observed count distributions
in our domain can change rapidly in a variety of unique
environments, kNN is particularly useful as it does not make
any assumptions about the underlying data. We can define
the kNN algorithm as follows (using the Euclidean metric for
distance):

ŷ = arg min
y:(x,y)∼D

√
(x̂ − x)2 (6)

where ŷ is predicted class, (x, y) ∼ D represents the
input-class pairs for the observed distribution, and x̂ rep-
resents a new observation at the time of inference. As a
non-parametric model, we expected kNN to exhibit adequate
accuracy, amortized across a variety of unique scenarios.

Decision Trees: Decision Trees (DT) are flexible machine
learning algorithms that are commonly used today [24]. They
require minimal data preparation, have low performance over-
heads, and offer intuitive explanations of the formed decision
boundaries. Decision trees often follow a binary if-then-else
structure whose rules are built by minimizing:

T (i, t) = |x | : xi ≤ t

|DT | · G(i,≤ t) + |x | : xi > t

|DT | · G(i,> t)

(7)

where i a feature, t is the threshold for i , x are input vectors
from distribution DT partitioned at node T , and G(i, t) (i.e.,
the Gini impurity score) is:

G(i,� t) = 1 −
∑

y

( |x | : xi � t, (x, y) ∼ DT

|x | : xi � t

)2
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TABLE II
MODEL HYPERPARAMETERS

where (x, y) ∼ DT represents the input-class pairs for the
observed distribution. Decision trees are appealing in this
domain not only as another non-parametric technique, but
also because of their white-box design: the learned decisions
are easy to interpret, which can be useful in understanding
subtle changes in the decision process as a function of the
environment.

Deep Neural Networks: Deep neural networks represent a
state-of-the-art class of learning techniques that have demon-
strated success in the most challenging machine learning
benchmarks [7]. Definitions vary, but generally speaking, deep
neural networks often refer to any class of artificial neural
networks with multiple layers between the input and output
layers. We can formalize a deep neural network (with ReLU
as the activation function) as:

P(x) = S(P�(max(0, θ�
� · x + b))) (8)

where x is an input vector, P� is the �th iterate of P (i.e.,
function composition) where � is the number of layers in
the network, θ� are the weights for the �th layer, b is a
vector of biases, and S is defined as the softmax layer. Given
the computational complexity required of artificial neural
networks with many hidden layers, we interested if deep neural
networks were expressive enough to be effective in our most
complex scenarios.
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