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Abstract 

The search for rouge radioactive materials can be accomplished through directional 

detection, but success is often burdened by scatter, attenuation, and Poisson statistics. Thus, it is 

necessary to utilize algorithms that can maximize the confidence of conclusions drawn from data 

associated with high noise and variability. A typical method of directional detection data 

processing is to use a prepopulated database of detector responses with known source locations. 

An unknown detector response is then compared to this database by preforming a least squares 

assessment to estimate the angle. While this method is effective when the prepopulated database 

is representative of the environment of the unknown measurements, it is limited when searching 

for sources at distances or in environments considerably different than those available in the 

database. Thus, a method capable of analyzing data with large amounts of variability will advance 

directional detection capabilities. To that end, various machine learning algorithms were 

implemented on a series of simulated unknown source location scenarios to develop an algorithm 

for search applications less dependent on pre-generated data. Monte Carlo Neutral Particle 

(MCNP6) was used to simulate detector responses for an array of eight 5 cm x 10 cm x 41 cm NaI 

detectors in a cylindrical configuration. A large dataset was simulated with distances ranging from 

1-15 meters at random angles on a plane. Simulated source settings were selected to represent a 

10 second count of a 1.4 micro-Curie 60Co source. These conditions yielded various uncertainties, 

some over 10%, emulating the limited statistics of real-world scenarios and greatly complicating 

the task at hand. Initial studies using a k-Nearest Neighbors algorithm have yielded a correct 

location within 2 degrees for approximately 49% of trials with an overall average angular error of 

4.3 degrees, compared to the least squared method which yielded a correct location within 2 

degrees for approximately 34% of trials with an overall average angular error of 4.7 degrees. This 

work serves to investigate various machine learning architectures for the use of directional 

detection problems, in order to create an algorithm effective over a reasonably large search area. 

Various algorithms are explored to investigate their differences in performance while computing 

an increasingly complicated source search problem.  Presented here are results obtained with 

simulations that include different scenarios of scatter and obstructions as well as investigations of 

various algorithm implementations. 



I. Introduction  

 The possibility of rogue or illicit radioactive material in the public sphere poses a threat to 

international security and public safety. This is especially the case for large gatherings such as the 

Superbowl or the New York City New Year’s Eve ball drop, and for densely populated urban 

areas. Currently deployed methods to locate these sources typically involve two phases of 

detection [1, 2]. The first phase utilizes a number of large volume detectors to determine if 

radioactive material is present in a general area based on elevated count rates but provides no 

directional information. The second phase tends to rely on personal manually searching for the 

source on foot, utilizing handheld or portable detectors to determine the source location. This two-

phase method is time intensive, and the lack of localization in the first phase can cause the overall 

method to be inefficient. 

Directional gamma ray detection attempts to improve the overall efficiency of the source 

search scenario, by extracting the source’s angular location based on small differences in the 

counts received in individual detectors within an array of a fixed geometry. Traditional algorithms 

to process the detector array data for these purposes employ prepopulated databases, or reference 

tables of known source locations [3]. This method breaks down over large distances, or when the 

database is not representative of the new measurement’s environment. A more robust algorithm, 

capable of better determining the angular component of a source location in various environments, 

would improve directional gamma ray detection capabilities. A method which has shown promise 

in various detection applications, including isotope identification [4] and radon mapping [5] is the 

use of machine learning algorithms. In these cases, and others, the machine learning algorithms 

are able to draw more accurate conclusions given statistically burdened data compared to analytical 

methods. To investigate the potential of machine learning algorithms for directional gamma ray 

detection purposes, this work tests the performance of various machine learning architectures 

compared to the traditional analytical method on datasets of source search scenarios. Datasets are 

simulated using the radiation transport code Monte Carlo N-Particle (MCNP) to model a detector 

array of eight 5 cm x 10 cm x 41 cm NaI detectors and a 60Co point source at various angles and 

distances up to 15 m on a plane from the center of the detector array [6]. Three datasets were used, 

which included trials with no obstruction, trials with an obstruction of fixed location, and trials 

where the location of an obstruction randomly varies. For each dataset, algorithms were assessed 

in terms of average angular error, the percent of trials within a specific degree of accuracy, and 

performance as a function of detector array to source distance.  

II.  Directional Gamma Ray Detection  

 For a source incident on an array of detectors in a set geometry, a different solid angle will 

be subtended by each detector to the source. In addition, the radiation from a source will have a 

different path to each detector, which may include another detector partially blocking the source’s 

line of sight. These factors will lead to slight differences in each detectors’ response, from which 



the angular component of a source’s location should be abstractable. The eight NaI detectors used 

in this work are arranged in a cylindrical configuration, as shown in Figure 1. 

 Traditional reference table algorithms essentially encode the detectors’ response as a 

function of angle, typically for a circle of fixed radius. In this work, a reference table taken at a 

distance of 3 m is used.  The detector array response to an unknown source location is compared 

against each point in the database, typically using a least squares scheme, and the angular 

prediction is made by assigning the angle to the point within the database that produces the 

minimum of the least squares. Given the change in solid angle and corresponding decrease in 

statistics with increased source to detector array distance, this method breaks down when there are 

large discrepancies between the reference table and measured distance. With increased distance, 

the differences in detector response will reduce, and statistical noise will become increasingly 

dominant. These issues degrade the angular uniqueness [7], making an accurate angular prediction 

harder as the distances get larger. In addition to distance, the traditional algorithms will break down 

when the environment of the database is no long representative of the environment of the unknown 

source measurement. Environmental factors that contribute to this break down include scatter and 

attenuation associated with obstructions, as well as changing background radiation. For all 

environments and distances, detection data will be burdened by statistical noise given the limited 

count times of these applications. The machine learning algorithms were investigated to determine 

their robustness to distance and various sources of noise in the search source scenario, in hopes of 

improving overall accuracy and sensitivity of directional detection.  

III.  Machine Learning Algorithms  

 Machine learning refers to a class of algorithms that compute a task for which they have 

not been explicitly programed. This is typically done by exposing the algorithm to a large set of 

training examples consisting of inputs and corresponding outputs. Upon training, the algorithm 

updates itself to provide a mapping function that best correlates the training inputs to the correct 

Figure 1. Detector array of eight NaI detectors in a cylindrical geometry. 



outputs. Performance is measured by exposing the algorithm to a new set of testing example inputs 

and determining the accuracy in predicting the correct output. For this work, the counts received 

in each detector serve as an input, and the angle of the source with respect to the detector array 

serves as the output. Various machine learning architectures are used in this work, utilizing the 

python library Sci-Kit Learn[8]. Algorithms used include Logistic Regression, Decision trees, k-

Nearest Neighbors, and a simple Neural Network briefly described below.  

 Logistic Regression (also called Logit Regression) stems from one of the most common 

machine learning algorithms used for regression-based problems (that is, instead of mapping inputs 

to classes, regression problems are those that call for mappings between inputs and continuous 

values; for example, predicting housing prices), namely Linear Regression. The main difference 

is that Logistic Regression is designed for classification problems by estimating the probability 

that a particular input belongs to a particular class. Like Linear Regression, Logistic Regression 

also computes a weighted sum of input features (with a bias). However, as opposed to outputting 

this weighted sum directly, Logistic Regression outputs the logistic of the result: a sigmoid 

function that maps any arbitrary input to a number between 0 and 1 (i.e., a probability). Then, it is 

simple to establish rules for class predictions based on the probability that an input belongs in a 

given class. 

Decision Trees create, as the name implies, a tree-like model of decisions. In general, these 

models are trained with the Classification and Regression Tree (CART) algorithm. Conceptually, 

the algorithm iterates through each feature k with a threshold tk. The pair (k, tk) which minimizes 

the cost (i.e., the branches produce groups with labels that are homogenous) is chosen. Decision 

Trees are often favorable in classification problems due to their simplicity, indifference towards 

nonlinear relationships between features (a common hurdle for many machine learning 

algorithms), and applicability to many problem domains.  

 k-Nearest Neighbors (kNN) assigns a class to a point based on the class of the majority of 

that point’s “nearest neighbors.” The neighbors are the training data points and are considered 

nearest based on the Euclidean distance between the training point and the testing point in the 

feature space defined by the inputs. Among the simplest of machine learning algorithms, kNN is 

unlike other machine learning algorithms in that it does not explicitly attempt to generalize from 

seen data. Instead, it compares new inputs with all other inputs used for training. This style of 

learning (often called instance-based learning) adapts particularly well to unseen data, as 

hypotheses are generated on each new input individually, as opposed to building a static hypothesis 

from training data.  

Neural networks map the inputs to the output through a series of hidden layers, consisting 

of neurons. Each neuron takes an input vector consisting of either the initial inputs, or the outputs 

of the previous layer. The input vector is multiplied by a weight vector, and a bias vector is added 

to compute an output. The outputs of each layer are then fed into the inputs of the next layer, until 

the final output is reached. Through training, these weights are iteratively updated until the best 

mapping is achieved.  The neural network in this work is called a multi-layer perceptron, which is 

one of the earliest forms of the neural network. The algorithm is set up as a classification problem, 

with each class corresponding to an angle. All of these algorithms, including the reference table 



analytical method, were investigated for use in directional detection. The performance parameters 

considered with the average angular error, percent of trials within a certain degree of accuracy, 

and accuracy as a function of distance.  

IV.  Simulations and Datasets  

 MCNP simulations were utilized to create three datasets to test the performance of the 

various algorithms at determining the angle of an incident source. The detector array of Figure 1 

was modeled and run with a 60Co point source located on a two dimensional plane orthogonal to 

the long axis of the detectors, intersecting at the crystal center. Figure 2 shows an example of these 

simulations.  

 Dataset-1 had no obstructions and consisted of 72,000 individual MCNP runs such that 

each angle between 0° and 360° had 200 trials. Exact angles were continuous, but assigned labels 

corresponding to integer values. Distances between the source and array were randomly varied 

from 1-15 meters for each trial. A million particles per run were simulated, corresponding to a 14 

second count of a 1 µCi 60Co point source. Parameters were set in this way for simulation 

efficiency and feasibility of future experimental works. An F8 pulse height tally was collected for 

each of the eight detectors, serving as the eight inputs for the various algorithms.  

Dataset-2 was identical to Dataset-1, but with the introduction of a solid concrete 

obstruction with a density of 2.3 g/cm3 7.5 m away from the array an angle of 90°. The obstruction 

was investigated to mimic the effects of a concrete building in an urban environment. The 

geometry of Dataset-2 is shown in Figure 3. For Dataset-3, trials were run with source angles 

ranging from 0° to 90°, to reduce the number of simulations which needed to be performed, over 

the same 1-15 meter range. A smaller concrete obstruction with the same density was used to 

increase the number of unattenuated particles and was randomly varied between ten locations on 

the quarter plane. Each location was run with 30 trials for each angle, for a total of 27,000 trials. 

In addition to one million particle runs for all datasets, the obstruction datasets trials were also run 

with ten million particles, corresponding to a 14 second count of a 10 µCi 60Co point source. A 

summary of the datasets is provided in Table 1 

Figure 2. MCNP simulated run of a 60Co point source and detector array.  



 

 

 

Dataset 
Obstruction 

Size (m) 

Obstruction 

Location 
Angle (°) 

Distance 

(m) 

Number of 

Trails 

Particles 

per Run 

Dataset-1 - - 0-360 1-15 72,000 1x106 

Dataset-2 1x2x5 Fixed 0-360 1-15 72,000 
1x106, 

1x107 

Dataset-3 0.5x1x5 Varied 0-90 1-15 27,000 
1x106, 

1x107 

 

 For all datasets, the data was split into 80% training and 20% testing. This is done so that 

the algorithm is not tested over data it has already been exposed to. The same split of each dataset 

was used for all algorithms, including the reference table, for consistency in comparison. In 

addition, a stratified shuffle was used to ensure that each angle was equally represented for both 

the training and testing sets.  

V.  Results 

 The average angular error for each of the investigated algorithms is shown in Table 2 for 

all trials. It is shown that machine learning can produce a smaller average angular error than the 

reference table for all the tested datasets. For Dataset-1 and 2, the k-Nearest neighbor algorithm 

performed the best out of all algorithms, including the reference table. While the introduction of a 

fixed obstruction reduced the reference table performance by approximately 15%, the k-Nearest 

Neighbors saw no notable difference. For Dataset-3, the decision trees algorithm performed the 

best, and was the only algorithm to experience a decrease in error when moving from a fixed 

obstruction to a random obstruction. Figure 4 shows the accuracy within different degrees of 

Figure 3. Dataset-2 geometry with concrete obstruction (red) and detector array (blue).  

Table 1. Descriptions of Datasets 



tolerance for all datasets, and Figure 5 shows these metrics as a function of source to detector 

distance. 

 

  

Learning 

Technique 
Dataset-1 Dataset-2 106 Dataset-2 107 Dataset-3 106 Dataset-3 107 

Reference 

Table 
4.74° 5.43° 2.88° 5.79° 3.37° 

Logistic 

Regression 
5.73° 7.11° 4.56° 10.61° 9.95° 

Decision 

Trees 
5.90° 5.92° 2.76° 5.07° 2.05° 

k-Nearest 

Neighbors 
4.31° 4.26° 1.69° 6.83° 3.55° 

Multi-layer 

Perceptron 
35.22° 35.92° 35.22° 38.96° 38.96° 

Table 2. Average Angular Error of for all Algorithms 

Figure 4. Algorithm accuracy within different tolerances for all datasets. 



  

 In addition to a decreased average angular error, Figure 4 shows how machine learning can 

also greatly improve the accuracy of directional detection. For Dataset-1 and 2, the accuracy 

(meaning percent of trials in which the predicted angle matched the true angle) of the reference 

table method was approximately 12%, while the k-nearest neighbor has an accuracy of close to a 

factor of three higher at 35%. Within the various degrees of tolerance, a machine learning 

algorithm was the highest performer across the board for all datasets. In regard to accuracy, the 

Decision Trees algorithm performed the best for dataset-3. As expected, all algorithms improved 

performance when exposed to a dataset consisting of a larger number of simulated particles per 

trial, due to the associated increase of statistics. In addition to the overall performance, a machine 

learning algorithm was the highest performer for all datasets over the largest range of distances. In 

many of the subfigures of Figure 5, it is seen that the refence table peaks at around 3 m, which was 

the distance at which the reference table was created. Other distances were investigated for this 

method, but the 3 m distance yielded the best results [7]. Unlike the reference table method, the 

machine learning algorithms do not experience this peak. They have reasonably consistent 

performance across distances, with some slight dropping with distance due to the associated 

decreases in statistics. This suggests that while reference table methods will do best when the 

environments of the measurements match those of the table, machine learning is able to better 

generalize the relationship between detector response and source angle over a larger range of 

distances and environments. For the Decision Trees algorithm, there is a dip in accuracy in dataset-

2 at around 750 cm. This distance corresponds to the distance the obstruction is located at and may 

have experienced this dip due to an unlucky shuffle of the training and testing data, that only 

affected this algorithm type. To mitigate effects like these, future works will include a larger 

Figure 5. Algorithm accuracy within different tolerances for all datasets as a function of source to detector distance. 



dataset, and will include a stratified shuffle on distance as well as angle. This will ensure that there 

is equal representation of all distances, in addition to angles, in the training and testing data set.  

These results demonstrate that machine learning has the potential to be beneficial for 

directional detection. Decision Trees and kNN produced the best results, even in the presence of 

fixed and randomly located obstructions. kNN’s success may be in part due to the similarities 

between how the algorithm operates (measuring “points” that are close together) and the problem 

domain (measuring particle concentrations that collide with certain points, i.e. detectors). Given 

how Decision Trees optimize branches by maximizing the number of homogeneous classes on 

either branch, these algorithms are robust to errors in the training data. Conceptually, the advantage 

of Decision Trees can be related to the alterations of the physical phenomena that obstructions 

induce – even though obstructions can drastically change paths of certain particles or photons (thus 

taking paths unexpected of other particles or photons who did not collide with the obstruction), 

Decision Trees are capable of largely ignoring such alterations. Recall, however, that Decision 

Trees are a greedy algorithm: as the impact of obstructions on the path of the radiation increases, 

the likelihood that the algorithm performs an incorrect split also increases. Thus, while Decision 

Trees demonstrated impressive results for some of the initial experiments, it is hypothesized that 

they may struggle as the complexity of the experiments increase future works. Logistic regression, 

while producing reasonable results for some datasets, may largely be unsuitable for this task. There 

is a difficulty converging given the lack of good data separation, likely related to the non-linearity 

of the problem. The multi-layer perceptron gave the poorest results. Attempts to manipulate 

various hyperparameters (e.g., number of hidden layers, number of neurons per layer, learning 

rate, etc.) did not have significant impacts of accuracy. While multi-layer perceptrons are a form 

of neural networks, they are one of the simplest, and lack some of the generalization capabilities 

often seen in state-of-the-art deep neural networks. To this end, it is expected migration of the 

neural network architecture to deep neural networks may result in improved performance. Thus, 

the use of deep neural networks is differed to future work. From the experiments studied in this 

paper, the results suggest that machine learning is an attractive approach for this problem domain.  

VI.  Conclusions 

 This work investigated the use of various machine learning algorithms for directional 

detection. Datasets consisted of MCNP simulated point source search scenarios on a two 

dimensional plane, and included a dataset with no obstructions, an obstruction with a fixed 

location, and an obstruction with a randomly varied location. For each of the tested datasets, a 

machine learning algorithm outperformed the traditional reference table analytical algorithm in 

terms of average angular error and accuracy over the range of tested distances. In particular, a k-

nearest neighbor algorithm was more accurate than the reference table algorithm by a factor of 3 

for the no obstruction and fixed obstruction data set, and the Decision Trees algorithm yielded a 

similar increase in accuracy for the obstruction with randomly varied location dataset. These 

results suggest that even with the attenuation and scatter associated with obstructions, machine 

learning algorithms can outperform reference table methods regarding both error and accuracy 

over a large range of distances. In addition, with an increasingly complex problem (i.e. 

obstructions with random locations), different machine learning algorithms can yield the best 



results. Future works will largely focus on including more complex obstructions more 

representative of urban environments, incorporating background radiation into measurements, and 

optimizing a machine learning algorithm to handle the noise associated with both sources of noise. 

In addition, experimental measurements will be conducted to validate these methods on real world 

data.  
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