
Security Policy Reconciliation in
Distributed Computing Environments

H.B. Wang∗ S. Jha∗ P.D. McDaniel† M. Livny∗

Abstract

A major hurdle in sharing resources between orga-
nizations is heterogeneity. Therefore, in order for two
organizations to collaborate their policies have to be
resolved. The process of resolving different policies is
known as policy reconciliation, which in general is an
intractable problem. This paper addresses policy rec-
onciliation in the context of security. We present a for-
mal framework and hierarchical representation for se-
curity policies. Our hierarchical representation exposes
the structure of the policies and leads to an efficient rec-
onciliation algorithm. We also demonstrate that agent
preferences for security mechanisms can be readily in-
corporated into our framework. We have implemented
our reconciliation algorithm in a library called the Pol-
icy Reconciliation Engine or PRE. In order to test the
implementation and measure the overhead of our recon-
ciliation algorithm, we have integrated PRE into a dis-
tributed high-throughput system called Condor.
Keywords: Security policy, reconciliation, and high-
throughput distributed system.

1 Introduction
Security policy bridges the gap between static im-

plementations and the broad and diverse security re-
quirements of user communities. Security policy be-
comes more complicated in heterogeneous environ-
ments. When two or more entities share a security asso-
ciation, they must reach agreement on a governing pol-
icy (e.g., two end-points in an IPsec session). These
entities express their requirements for the association
through a security policy (called a domain policy). A
reconciliation algorithmfinds a policy that is consistent

∗Computer Sciences Department, University of Wiscon-
sin, Madison, WI 53706. E-mails:{ hbwang,jha,miron
}@cs.wisc.edu

†AT&T Labs-Research, Shannon Laboratory, 180 Park
Ave., Rm. A203, Florham Park, NJ 07932. E-mail:
pdmcdan@research.att.com

with all domain policies. Where a consistent policy can
be found, the association is free to proceed. Where one
cannot be found, the participants must alter their require-
ments or abstain from participating.

In the general case, policy reconciliation is in-
tractable [15, 23]. As a result, past investigations have
largely achieved tractability by limiting the policy rep-
resentation or by using heuristic algorithms [11, 24, 26,
33]. Such approaches achieve the stated goals, but fail
to efficiently capture dependencies between different as-
pects of a policy. Moreover, these systems do not con-
siderpreferential policy: it is advantageous (and often
necessary) for policy not only to specify what is legal
and illegal, but to state what is desirable.

This work addresses the limitations of past work by
developing a policy framework based on graphical pol-
icy representations. We exploit the graph representa-
tion to efficiently encode the complex dependencies in-
herent to contemporary policy. We formally define the
representation and specify an efficient preference and
dependency-respecting reconciliation algorithm. Before
introducing our formalism, we present an overview of
security provisioning policy and the intuition behind our
framework in the following section.

1.1 Security Policy

The termsecurity policyhas come to mean different
things to different communities. For example, access
control policy defines who has access to what and under
what circumstances [4, 30, 31]. Other forms of secu-
rity policy specify under what conditions credentials are
accepted [6], or how a firewall is configured [3]. In its
broadest definition, security policy is the specification of
security relevant system behavior. This paper addresses
session-specific configuration of security services. More
commonly known assecurity provisioning policy, these
configurations define the guarantees afforded the gov-
erned environment by explicitly identifying the algo-
rithms, parameters, and protocols used to implement se-
curity.

To illustrate the importance and ubiquity of secu-

1

HMAC

MD5

CBC

Preshare

 IDEA

IKE

CAST 3DES

Encrypt

SHA1Group
 1

Group
 2

 DH

Figure 1. A graphical IPsec key manage-
ment policy

rity provisioning policy, consider an email client (e.g.,
Netscape Communicator, MS Outlook). A user specifies
a provisioning policy every time she adds an account.
For example, the connection method (e.g., IMAP over
SSL) dictates exactly the set of guarantees you will re-
ceive in obtaining and viewing your mail. Note that the
decision to not use any security service is still a speci-
fication of policy. The policies defined for the applica-
tions and services used in an environment prescribe the
security afforded its users.

In practice, provisioning policy is more complicated
than our email example would suggest. It is often impor-
tant that particular organization-wide goals are realized
in the many policies implemented by the environment.
Lower level policies must be constructed such that they
arecompliantwith organizational goals [23]. Moreover,
where an operation spans organizations, the policies of
each organization must bereconciledto form a coherent
and reasonable policy.

We now introduce our graphical provisioning pol-
icy representation. A graphical policy is a series of
policy operations represented by cascading circular or
square nodes in a singularly rooted directed acyclic
graph (DAG) (formally this structure is an and-or graph).
Policy is read from the root node. Each node may be
a decision (circle) or a collection (square). A decision
node requires that exactly one of the sub-graphs ema-
nating from the node be resolved, and a collection node
requires all sub-graphs be resolved. All leaf nodes are
added to the policy. Any configuration derived from a
policy respects these two simple rules.

Figure 1 shows a graphical provisioning policy for

key management used in an IPsec VPN. This policy
would be specified by a user or network administrator
as part of, for example, VPN setup. One reads the ex-
ample policy’s root (decision node) as:

(configure)preshare(ed keys)or IKE
The right hand side of the graph (IKE, from the root) de-
picts a complex series of configurations used to specify
the behavior of the Internet Key Exchange (IKE) pro-
tocol [16]. The IKE sub-policy consists of three inde-
pendent configurations. We read the top IKE (collection
node) as:

(configure)DH groupand HMACand Encryption
The remainder of the policy is read as a selection of a
single DH group, a hashing algorithm, and an encryption
algorithm. Independent of the encryption algorithm, a
mode (e.g., CBC) must be selected. Moreover, this pol-
icy mandates the use of CBC mode.

The example policy is used at the point at which an
end-point (host) is connected to the VPN. The policy is
evaluatedby identifying a subset of nodes and leaves in
graph as defined by the structure of the collection and
decision nodes. The IPsec implementation uses the re-
sulting concrete specification, called anevaluated policy
or instance, to implement the IPsec session. For exam-
ple, one possible evaluated policy contains:IKE, DH
group, Group 2, HMAC, MD5, IDEA, andCBC.

Two important factors are highlighted by this exam-
ple. First, this is one of many possible policies for IPsec
key management. Depending on the goals of the spec-
ified policy, the specifier may structure the policy in a
number of different ways. For example, inasmuch as it
is consistent with the IPsec implementation, the policy
can allow other encryption modes (e.g., ECB) by adding
an additional decision node.

The second factor of note is that unlike our email pol-
icy, this policy specifies arange of behaviors. That is,
the policy states that there are a set of configurations that
are equally acceptable. The structure of the graph di-
rectly mandates which sets of configurations should be
considered acceptable. Having non-prescriptive policies
allow the environment to make performance and secu-
rity trade-offs at run time, and is essential to reconciling
policies from different domains.

Now consider the case where there is not a single
source of policy: for example, where the end-points of
the VPN lie in different administrative domains. Each
domain wishes to exert control over the session as spec-
ified through adomain policy(e.g., similar to Figure 1).
Hence, the two parties must find an evaluated policy that
is consistent with the domain policies supplied by both.
This is performed byreconciling the domain policies.
The session can continue only where a single governing

2

policy can be found. If not, the domain policies are in-
compatible and the end-points must alter their policies
or refrain from participating in the session.

The study of provisioning policy is unlike other pol-
icy efforts in several ways. First and most obviously,
provisioning policy is a planning process. Traditional
authorization policy systems determine whether a par-
ticular access is legal with respect to some larger gov-
erning policy. Conversely, provisioning policy attempts
to find some configuration that is consistent with a gov-
erning provisioning policy.

Provisioning policy also embodies complex depen-
dencies. That is, decisions about particular aspects of
the policy affect subsequent options. Figure 1 illustrates
a very simple dependency: the decision to use IKE over
pre-shared keys has enormous impact on the further de-
velopment of policy. The selection of IKE leads to de-
cisions concerning the kinds of Diffie-Hellman groups
to use, what encryption algorithms are necessary, etc.
However, if pre-shared keys were selected, other config-
uration values (e.g., Diffie-Hellman group) should and
would not be considered.

Provisioning is also subject to preferential behavior.
That is, there is a often a set of configurations that is
most desired among several choices. Again consider
Figure 1. According to the policy, either group 1 or
group 2 is acceptable. In practice, we have found the
vast majority of IPsec configurations use group 2. As
such, we (rightly or wrongly) may decide that group 2
is best for our environment, and is thus preferred. How-
ever, for compatibility reasons, we do not wish to pre-
clude the use of group 1. Note that preferential configu-
rations are more than simple default values, but a partial
ordering of the available options. The existence of pref-
erences is largely ignored by previous work in this area.

As we demonstrate in the following sections, rec-
onciliation is made more complex by the introduc-
tion/appreciation of these deeper aspects of policy.
While this work aspires to provide intuitive policy repre-
sentations, it must do so within the constraints of these
new complex semantics. Hence, our contribution lies
not only in the representation or added semantics, but in
the successful marriage of the two.

1.2 Contributions

This paper addresses the aforementioned deficiencies
of existing systems by modeling dependencies and pref-
erences in a graphical policy framework. The main con-
tributions of this paper are:
•Graph-based provisioning policy (exposes depen-
dencies): We present a model that represents poli-
cies as directed acyclic graphs (DAG). This model cap-

tures dependencies between policy components within a
schema. Hence, because policies adhere to the schema,
it is impossible to define a correctly formed policy that
is not consistent with the dependencies.

•Efficient reconciliation: In general, policy reconcilia-
tion is NP -complete [23]. However, a graphical repre-
sentation of policies expose their structure and present a
basis for an efficient reconciliation algorithm. We pro-
vide an efficient reconciliation algorithm for our graph-
ical model. Our reconciliation algorithm is linear in the
total size of the policies.

•Preferential policy: Participant preferences, such as a
server’s preferences for authentication mechanisms, can
be incorporated into our model. An important problem
that arises in this context, is that of resolving multiple
partial orders on the same set (intuitively, these partial
orders represent preferences of different participants).
We provide an efficient algorithm to resolve multiple
partial orders and extend the reconciliation algorithm to
handle preferences.

•Implementation and deployment: Based on our hi-
erarchical framework, we have implemented a reconcil-
iation module called thePolicy Reconciliation Engine
or PRE, which is available for download. We have
integrated PRE with Condor [21], a high-throughput
scheduling system used to manage resources in a com-
plex distributed environment. We show experimentally
that the cost of reconciliation is negligible.

2 Related Work
Other policy systems. Historically, policy systems
have not addressed reconciliation. For example,
trust management systems, such as KeyNote [5],
SPKI/SDSI [12, 13], Binder [10], and SD3 [18] are con-
cerned with compliance checking rather than reconcil-
iation. In trust management systems, policies, called
credentials, are simply cryptographic proofs that express
authorization delegation. The compliance checker algo-
rithm searches the available credentials for an accepting
delegation chain that satisfies a specific request. Cre-
dentials can state a set of provisioning requirements. An
action is only allowed where the provisioning of the
environment matches the credential. Such approaches
are useful for managing policy in a widely deployed or
loosely organized environments [7]. However, because
credentials mandate provisioning, there is no opportu-
nity to perform reconciliation. Other systems simply as-
sume a singular entity manually performs reconciliation
when issuing policy for a domain [3].

Hardness of reconciliation. While reconciliation has
only recently begun to be explored, the policy commu-

3

nity has already developed a broad characterization of
the problem. Gong and Qian discovered that reconcilia-
tion of authorization policy (in their work, called pol-
icy composition) is NP-complete [15]. Similarly, the
authors of Ismene found that reconciliation of general
purpose provisioning policy is also NP-complete [23].
Such results do not mean that progress cannot be made,
but suggests a required shift in the goals of investigation.
Much of the ongoing work in reconciliation has centered
on techniques that alter the environment or restrict pol-
icy to obtain efficient reconciliation. However, our paper
demonstrates that by using a representation that exposes
structure of the policies, the reconciliation problem be-
comes tractable for a large class of policies.

Other reconciliation approaches. One way to ad-
dress the inherent complexity of reconciliation is by es-
sentially “flattening” the policy representation, i.e., ex-
plicitly enumerating the various choices. For example,
the IPsec Security Policy System (SPS) [33] guarantees
efficient two-party reconciliation by intersecting fixed
and independent sets of policy values. The DCCM sys-
tem extends this approach to the multi-party environ-
ments by providing aChinese menureconciliation al-
gorithm [1, 2, 11]. Each participant chooses values from
a fixed set of policy dimensions (e.g., one from column
A, two from column,B, etc . . .). The policy is recon-
cilable where an intersection of proposals is found for
each dimension. Conflicts (where no such intersection
is found) are resolved by an unspecified algorithm.

A limitation of both SPS and DCCM is that they as-
sume that there are no dependencies between policy val-
ues. For example, in an IPsec policy, an encryption al-
gorithm is needed when the ESP transform is selected.
Therefore, to ensure that the resulting policy is enforce-
able, one must disallow any policy that defines the ESP
transform but no encryption algorithm. In practice, these
systems define policy as an enumeration of legal policy
combinations, such as ESP-3DES-HMAC-SHA. Since
only legal enumerations are available, no dependency
can be violated. However, the number of enumeration
values grows exponentially in the size of the domains,
and therefore the “enumeration approach” is inherently
not scalable.

Ismene policies are defined as expressions of pro-
visioning variables [23]. The reconciliation algorithm
tries to find a satisfying truth assignment for the uni-
verse of provisioning variables. Reconciliation is cast as
an instance of satisfaction (over the conjunction of pol-
icy proposals). Efficiency is guaranteed by using a pair-
wise satisfaction algorithm on restricted policy expres-
sions. The iterative Ismenen-policy reconciliation algo-

rithm is sound but not complete, i.e., some collections
of reconcilable policies may be rejected. Furthermore,
like SPS, the Ismene reconciliation algorithm does not
consider dependencies. Dependencies are addressed in
Ismene by evaluating the reconciliation result with re-
spect to a set of “correctness rules” using ananalysis
algorithm. This approach is limited in that it occurs af-
ter the policy has been identified.1 Hence, reconcilia-
tion must be re-performed after each policy is rejected
by analysis.

A central limitation of the approaches defined above
is that they are not sensitive to the structure of policy.
Dependencies between different aspects of policy are ei-
ther inefficiently encoded or externally evaluated. This
is a prime motivation of the current work. Dependencies
are captured through the graphical structure of the policy
schema, and hence any policy resulting from reconcili-
ation is guaranteed to be consistent with these depen-
dencies. Previous reconciliation algorithms also make
no distinction between reconciliation results. Since no
distinction is made, every possible result is equally de-
sirable. However, environments often desire to specify
default behavior and allow others where the defaults are
inefficient or infeasible. This work allows such desires
to be expressed through preferences.

Other work on representation and analysis of secu-
rity policies. Cholvy and Cuppens consider the com-
plexities of detecting and managing inconsistencies in-
troduced by access control policy specifications [8]. Our
approach differs not only in problem domain (i.e., pro-
visioning), but in that we avoid consistency evalua-
tion by encoding dependencies within the policy struc-
ture. Hence, collections of individual policies cannot
be inconsistent. Cholvy and Cuppens further considered
preference in the context of the ordered application of
access control regulations, but focused on access control
applications.

While it has not been explored for other forms of
policy, graphical representations are well suited to ac-
cess control policy [20, 25]. For example, the LaSCO
language specifies access control policy using graphi-
cal idioms [17]. The developers of LaSCO assert that
the representation allows not only specification a more
intuitive operation, but permits the use of well known
graph algorithms for subsequent enforcement. We em-
brace a similar approach by using structural representa-
tion to enforce dependencies.

1The authors further describe an offline analysis algorithm that de-
termines if a policy could ever be reconciled and violate a correctness
rule. Any algorithm of this sort is shown to be intractable.

4

3 A Formalization of Policy Reconciliation
In this section we provide a precise semantics of pol-

icy reconciliation where the policies are represented hi-
erarchically. Moreover, we describe how preferences
can be incorporated into our framework. Finally, we
present an efficient reconciliation algorithm.
Definition 3.1 A schematais a directed acyclic graph or
DAG S = (N,E, root), whereN is a set of nodes,E ⊆
N×N is a set of edges, androot ∈ N is a distinguished
node. We assume thatroot has no incoming edge. Each
noden has the following attributes associated with it:

• Each node is a∧ or∨ node.

• A tuple of variables (denoted byVarT (n)) 〈V1 :
τ1, · · · , Vk : τk〉 (where τi is the type of vari-
ableVi). Currently, we only allow typesstring,
int, real, and enum. For anenum type τi we
assume that a set of values is given, e.g.,τi =
{DES, 3DES, AES}.

The set of successors of a noden in a schemataS is
denoted bysuccS(n). However, when the schemataS is
clear from the context we simply writesucc(n) instead
of succS(n).

A schemata is shown in Figure 2. The root node
is a∧-node and represented as a square. The left and
right child of the root are∨-nodes and represent various
authentication and encryption mechanisms respectively.
The leaf nodes, such as the ones labeled withnone and
3DES, are∨-nodes with no successors. The special key-
word none signifies the fact that an authentication or
encryption scheme is not required. Moreover, there are
no variables associated with the∨-nodes. However, if
desired, associated attributes, such as key size for en-
cryption schemes, can be associated with the∨-nodes.
Discussion: Our hierarchical model for expressing se-
curity policies opens up the possibility of using for-
malisms such as XML for representing policies. In the
XML parlance, schemata and policies are like XML
schemas, and instances are XML documents that con-
firm to these schemas. We wanted to present an ab-
stract description of policies and not rely on specific
formalisms for representing hierarchical structures, such
as XML. However, in our implementation we use XML
to represent policies. Another intriguing direction is to
view schematas and policies as tree automaton, where
trees can be viewed as instances [14, 32]. We also leave
exploration of this analogy as a future direction.
Definition 3.2 An instance I of a schemataS =
(N,V, root) is a subgraph(N ′, V ′, root), whereN ′ ⊆
N andV ′ ⊆ V . Additionally, following conditions need
to be satisfied:

• For a∧-noden ∈ N ′, succ(n) ⊆ N ′. In other
words, all successors of a∧-node are in the instance
I.

• For a∨-noden ∈ N ′, if succ(n) is non-empty,
then |succ(n) ∩ N ′| = 1. In other words, for a
∨-node with a non-empty set of successors, exactly
one successor is in an instance.

• Consider a noden ∈ N ′ such thatVarT (n) =
〈V1 : τ1, · · · , Vk : τk〉. In this case,I assigns val-
uesvi of type τi to each variableVi in VarT (n).
The tuple of values assigned byI to the noden is
denoted byValI(n).

Definition 3.3 A policy P for a schemataS =
(N,V, root) is a2-tuple(S, C), whereS : N → 2N and
C maps nodes to a tuple of conditions. For each∨-node
n ∈ N , S(n) ⊆ succ(n), andC(n) is ak-tuple of con-
ditions〈c1, · · · , ck〉whereVar(n) = 〈V1 : τ1, · · · , Vk :
τk〉. Moreover, we assume that the conditionci applies
to values of typeτi. Given a valuevi of typeτi, we use
vi |= ci to denote thatvi satisfiesci.

Note: The syntax and semantics of the conditions de-
pends on the types of the corresponding variables. For
example, if a variableVi has typestring, the corre-
sponding conditionci can be a regular expression. For
numeric typesint and real, condition ci might be
range conditionsx ≤ Vi ≤ y, wherex andy are con-
stants. IfVi is an enumerated type, thenci might simply
be a subset of the set of possible values forτi. Details
of semantics and syntax of the conditions are not partic-
ularly important; we simply require that given a valuevi

and conditionci, we should be able to efficiently deter-
mine whethervi satisfies conditionci.

Two policiesP1 andP2 are shown in figures 3 and 4
respectively. Consider the left child of the root. Policy
P1 specifies that onlyX509, Kerberos , andPassword

are allowed successors for the left node. Other edges
and nodes can be interpreted in a similar manner.

Given an instanceI = (N ′, V ′, root) and a policy
P = (S, C), we say thatI satisfiesP (denoted byI |=
P) iff the following two conditions are satisfied:

• For all∨-nodesn ∈ N ′, (succ(n) ∩ N ′) ⊆ S(n).
In other words, instanceI can only choose succes-
sors of a∨-node from the subsetS(n) provided by
the policyP .

• Let ValI(n) = 〈v1, · · · , vk〉 be the values assigned
to the noden in I, andC(n) = 〈c1, · · · , ck〉 be the
conditions assigned to noden by the policyP . In
this case, for1 ≤ i ≤ k, vi |= ci, or each value

5

none X.509 Kerberos Password none 3DES AES IDEA SAFER

Figure 2. Schemata S

X.509 Kerberos Password 3DES AES IDEAnone SAFER

Figure 3. Example policy P1

X.509 Kerberos Password IDEA3DES AES

Figure 4. Example policy P2

X.509 Kerberos Password 3DES AES IDEA

Figure 5. Combined policy P1 ∧ P2

assigned in the instanceI should satisfy the corre-
sponding condition specified by the policyP .

Policy P for a schemataS is calledsatisfiableiff there
existsI such thatI |= P .

Next, we define conjunction of two policies. The
conjunction of two policiesP1 = (S1, C1) andP2 =
(S2, C2) (denoted byP1∧P2) is a policy(S′, C ′), where

• For each∨-noden ∈ N , S′(n) = S1(n) ∩ S2(n)
andC ′(n) = 〈c1

1∧c2
1, · · · , c1

k∧c2
k〉, whereC1(n) =

〈c1
1, · · · , c1

k〉 andC2(n) = 〈c2
1, · · · , c2

k〉.

Conjunction of the two example policiesP1 andP2 is
depicted in Figure 5.
Definition 3.4 A set of n policies P1, · · · , Pn is rec-
oncilable iff there exists an instanceI such thatI |=
(
∧n

i=1 Pi) or in other words
∧n

i=1 Pi is satisfiable.
Remark: We have described the semantics of reconcil-
able policies using the satisfaction relation|=. One can
give an alternative definition in terms of languages. A
schemataS defines a language of instancesL(S), i.e.,
L(S) contains all instancesI of the schemataI. A pol-
icy P for the schemataS also defines a language of in-
stancesL(P) ⊆ L(S), i.e.,L(P) contains all instances
I such thatI |= P . In this context, policiesPi, · · · , Pn

are reconcilable iff
⋂n

i=1 L(Pi) is non-empty.

3.1 Resolving multiple partial orders

Later in this section we discuss policy reconciliation
in presence of preferences. In preparation for that, we
need to develop some theory about resolving multiple
partial orders. Assume that we are given a finite setS.

Supposen agents give their preferences on the setS,
i.e., agenti specifies a partial order�i on the setS. In-
tuitively, an agenti is an organization or process with a
policy, and�i specifies the preference of the organiza-
tion or process. The question is how does one construct
a single partial orderon the setS (denoted by�1,··· ,n)
from then partial orders�1, · · · ,�n?. Precise defini-
tion for combining partial orders is given in appendix A.
We also provide a a linear time algorithm to compute the
combined partial order.
Example 3.1 Consider two partial orders shown in Fig-
ure 6 on the set{ Kerberos, X509, Password }.
Assuming that the agent giving the partial order(a) has
higher preference than the agent with the partial order
(b), the combined partial order is(b). Assuming no or-
der between the agents the combined partial order is(a).

3.2 Reconciliation with preferences

This section describes reconciliation when policies
are allowed to specify preferences. First, we define the
concept of policy with preferences.
Definition 3.5 A policy P for a schemataS =
(N,V, root) is now a3-tuple (S, C, pref), whereS :
N → 2N , C maps nodes to a tuple of conditions, and
pref provides preferences. For each∨-noden ∈ N ,
S(n) ⊆ succ(n), pref (n) is a partial order onS(n),
andC(n) is ak-tuple of conditions〈c1, · · · , ck〉 where
Var(n) = 〈V1 : τ1, · · · , Vk : τk〉. Moreover, we as-
sume that the conditionci applies to values of typeτi.
Given a valuevi of typeτi, we assume thatvi |= ci.

6

A policy P induces a partial order�P on the in-
stances satisfyingP . Given an instanceI, the DAG
rooted at a noden of I is called asub-instance, i.e.,
a sub-instance consists of the noden and all of its de-
scendants. The depth of a sub-instance is the length
of the longest path from the root to one of its leaves.
The partial order�P is defined on sub-instances. Given
two sub-instancesSI1 = (N1, V1, root1) and SI2 =
(N2, V2, root2), we say thatSI1 �P SI2 iff the follow-
ing conditions are satisfied:

• The roots are the same, i.e.,root1 = root2.

• root1 is a∧-node.
Let the set of successors ofroot1 be{n1, · · · , nk}.
Let I1

i andI2
i (for 1 ≤ i ≤ k) be the sub-instances

in SI1 andSI2 that are rooted atni. In this case
the condition is that for all1 ≤ i ≤ k, I1

i �P I2
i .

• root1 is a∨-node.
Let the successors ofroot1 androot2 in SI1 and
SI2 ben1 andn2 respectively, andIn1 andIn2 be
the sub-instances rooted atn1 andn2 respectively.
In this case, the condition is the following:

If n1 = n2, then In1 �P In2 ; oth-
erwise, n1 � n2 in the partial order
pref (root1) given by the policyP .

Notice that�P is inductively defined using the depth
of the sub-instances. Intuitively, the partial order�P

extends the partial orderpref over nodes given by the
policy P to sub-instances.

Next, we extend the definition of conjunction of
two policies to incorporate preferences. The con-
junction of two policiesP1 = (S1, C1, pref 1) and
P2 = (S2, C2, pref 2) (denoted byP1 ∧ P2) is a policy
(S′, C ′, pref ′), where

For each ∨-node n ∈ N , S′(n) =
S1(n) ∩ S2(n), pref ′(n) is equal to�1,2,2

and C ′(n) = 〈c1
1 ∧ c2

1, · · · , c1
k ∧ c2

k〉,
whereC1(n) = 〈c1

1, · · · , c1
k〉 and C2(n) =

〈c2
1, · · · , c2

k〉.

Given n reconcilable policiesP1, · · · , Pn, an in-
stanceI is called amost preferred instanceor MPI if
I |= (

∧n
i=1 Pi) andI is a maximal element in the partial

order induced by the combined policy
∧n

i=1 Pi.

2Note that before the resolving the partial orderspref 1(n) and
pref 2(n) have to be restricted to the setS1(n) ∩ S2(n).

3.3 The Reconciliation Algorithm

Given n policiesP1, P2, · · · , Pn, the reconciliation
algorithm proceeds as follows:

First, we compute the combined policyP =∧n
i=1 Pi.

Next, starting from the root the combined pol-
icy P is traversed recursively to find the most
preferred instance according to partial order
�P induced by the combined policy.

The complexity of reconciliation algorithm is
O(n(|N | + |E|), whereN and E are the nodes and
edges inP . Details of the reconciliation algorithm can
be found in appendix B.

Assume that we are given two policiesP1 and P2

shown in Figures 3 and 4. The combined policyP1 ∧P2

is shown in Figure 5. Suppose that the partial order on
authentication mechanisms corresponding to policiesP1

andP2 is as shown in Figure 6, and the partial order on
the encryption schemes corresponding to the policiesP1

andP2 is as shown in Figure 7. The partial orders are re-
solved so that policyP1 has precedence over policyP2.
In this case, the partial orders on the authentication and
encryption schemes in the combined policyP1 ∧ P2 is
the one corresponding to policyP2, i.e., the partial order
labeled(b) in the two figures. The MPI computed by our
algorithm is shown in Figure 8.

4 Applications of the policy reconciliation
framework

This section illustrates the use of graphical policy in
real application environments. To this end, we show
how our policy reconciliation framework can augment
IPsec’s existing policy negotiation and support the Con-
dor distributed computing system.

4.1 Graphical Policy in IPsec

The IPsec [19] suite of protocols providessource au-
thentication, data integrityand data confidentialityat
the IP layer. These services are implemented by the
Authentication Header (AH) and Encapsulating Secu-
rity Payload (ESP) transforms. Although not a security
service, PCP implements data compression. Each IPsec
node (host or security gateway) maintains a security and
compression policy defined in terms of these transforms.
Communicating peers establish one or more pairs of pol-
icy instances (an instance is represented as asecurity as-
sociation, or SA) by reconciling configured local poli-
cies (called proposals). The Internet Key Exchange pro-
tocol (IKE) [16] is used to, among other things, negoti-
ate this governing policy.

7

(a)

X509Kerberos

Password

Kerberos

X509

Password

(b)

Figure 6. Two partial or-
ders on authentication
schemes.

(a)

AES

3DES IDEA

none

AES

3DES

IDEA

(b)

Figure 7. Two partial
orders on encryption
schemes.

Kerberos AES

Figure 8. The most pre-
ferred instance.

MD5 SHA

MD5 SHA

LZS Deflate

PCP AH ESP

DES 3DES

HMAC

HMAC3IDEA

 Transform 6: DES with HMAC−SHA

a.) IPsec Policy b.) IPsec Policy in Hierarchical Tree Format

Proposal 1: ESP

 Transform 1: 3DES with HMAC−SHA

 Transform 2: HMAC−SHA

 Transform 1: HMAC−MD5

Proposal 1: AH

 Transform 2: 3DES with HMAC−MD5

 Transform 3: 3IDEA with HMAC−MD5

 Transform 4: 3IDEA with HMAC−SHA

 Transform 5: DES with HMAC−MD5

Proposal 1: PCP

 Transform 1: LZS

 Transform 2: Deflate

Figure 9. IPsec Policy Example

8

IKE policy can be modeled using our graphical ap-
proach. To illustrate, suppose that a host desires the fol-
lowing policy:

• All outgoing data must be protected byESPandAH
protocols, and must be compressed using thePCP
protocol.

• ESPcan use3DES, 3IDEAor DESencryption al-
gorithms, and eitherHMAC-MD5 or HMAC-SHA
integrity/authentication algorithms.

• AH can use eitherHMAC-MD5or HMAC-SHA.
• PCPcan use eitherLZSor Deflate.

One (of potentially many) schema for IPsec policy is
shown in Appendix C. This schemata reflects a top-
down structure, i.e., each specification is recursively fine
tuned by identifying the transforms and then the algo-
rithms.

An IPsec proposal and graphical representation (from
the schemata in Appendix C) for the example policy is
depicted in Figure 9. The hierarchical DAG structure
is clearly more expressive and efficient, i.e., one only
needs to understand the difference between∧ (square)
and ∨ (circle) nodes to interpret policy. Conversely,
one needs a great deal of domain knowledge to inter-
pret the proposal/transform structure of IPsec. Such in-
tuitive representation simplifies specification, and ulti-
mately reduces policy errors.

Consider an extension to the above policy that states
that the use of 3IDEA must use either 128-bit or 256-bit
keys. In IPsec, attributes such as key length can be spec-
ified only once with each transform. Hence, a separate
transform is required for each key length. More gener-
ally, the number of transforms grows exponentially in
the number of independent attributes. Conversely, the
graphical representation only needs to introduce a sin-
gle subgraph that is shared by the relevant nodes.

4.2 Hierarchically Policy in the Condor system

The second example of the policy reconciliation
framework is used in the context of Condor [9], a dis-
tributed high-throughput system designed to efficiently
schedule the usage of distributed and heterogeneous re-
sources such as idling CPUs and unused memory. Con-
dor allows resources owners to place various policy re-
quirements on the use of their resources. Our hierarchi-
cal DAG structure can succinctly encode Condor secu-
rity policies. Details of the encoding are very similar
to the one discussed in the previous subsection. Ap-
pendix D provides details about Condor security poli-
cies and their encoding in our framework. The design of
the policy infrastructure and its integration with Condor
are detailed in the following section, where we discuss

how we integrate the policy reconciliation engine into
the Condor system.

5 Implementation

5.1 Policy Reconciliation Engine

We have implemented our hierarchical reconciliation
algorithm in thePolicy Reconciliation Engine (PRE).
PRE reconciles (only) pairs of XML-encoded policies.
The restriction of PRE to two-policy reconciliation is
not a limitation of our approach, but rather an artifact
of the initial target systems’ point-to-point communica-
tion models (IPSec and Condor). We will extend the im-
plementation to allow multi-party policy reconciliation
(e.g., Ismene [23], DCCM [11]) as future needs dictate.

As shown in Figure 10, PRE implements an asym-
metric requester/responder model. In this model, the
requester supplies the relevant policy to the responder.
The responder reconciles the received policy with lo-
cal policies as needed, and thereconciled policyis re-
turned to the requester. Both parties subsequently use
the reconciled policy to control the session. We chose
a requester/responder model because it most faithfully
represents contemporary use of policy (e.g., IKE policy
negotiation [16]). This model is similar to client/server
communication models. Responders, acting as servers,
govern access to the communication resources and re-
questers, acting as clients, submit requests for those re-
sources. In PRE, the responders assert authority over the
resources by placing a higher preference on their own
(local) policy. Note that the requester may (and often
should) validate that the received reconciled policy is
consistent with the originally proposed policy. Policy
validation interfaces are provided by PRE.

PRE is both a library and a command line tool.
Hence, it can be directly integrated into the source code
of an application, or used as an external policy proces-
sor. The three components of PRE implement its main
features: parsing, reconciliation, and validation. The
Parsing Engineparses the security policy into an internal
representation and is used as a preprocessor to the other
features. TheReconciliation Enginereconciles pairs of
hierarchical policies using the algorithms defined in sec-
tion 3.3. Finally, theVerification Engineverifies the cor-
rectness of theReconciled Policywith respect to the lo-
cal security policy (i.e., implements the consistency test
described above).

The current implementation of PRE contains about
1000 lines of C/C++ code. All XML processing meth-
ods use the Apache Project’sXerces-C++ [27] Ver-
sion 2.2.0 library. Internally, each policy is stored as a
DOMobject, and is processed using the standard Xerces

9

Reconciliation
Engine

Policy A

Reconciliation
Engine

Policy B

Reconciled Policy

Peer A Peer B

Figure 10. Architecture of Policy Reconcil-
iation Engine (PRE)

 Tools Services Applications...Policy
Security

Policy
Security

Policy
Security Secure Communication Service

Policy Reconciliation Engine (PRE)

TCP/UDP(GSI, OpenSSL...)
External Libraries

Figure 11. Integrating PRE with Condor

DOM API. Source code and documentation for PRE are
available for download.

5.2 Integrating Policy Reconciliation Engine with
Condor

Much of our work in policy has been motivated by
the requirements of the Condor system. As described
in Section 4.2, Condor schedules resources based on the
client requests and other environmental factors. Every
Condor peer has a local security policy that governs the
services providing the authenticity, confidentiality, and
integrity of the session it supports. We have modified
the Condor system to use PRE-based reconciliation to
construct the security policy used by each session.

Past versions of Condor defined security policy us-
ing flat structures calledClassAds [29]. ClassAds flexi-
bly communicate resource advertisements and client re-
quests. However, we found the structure of ClassAds
inherently limiting, i.e., we could not represent the ap-
propriate range of acceptable or preferential policies be-
cause of their flat structure. Such statements of policy
are, as previously argued, hierarchical in nature. This
need for hierarchical policy drove our efforts, and ulti-
mately lead to the development of PRE.

The architecture of integrated PRE with Condor is
shown in Figure 11. PRE sits below Condor’s Secure
Communication Service layer, and is used during ses-
sion initiation. An in-band PRE protocol is used dur-
ing the initial session handshake to determine the policy.
In this protocol, the client submits the XML policy and
awaits the session defining response. After performing
reconciliation, the server returns the reconciled policy to
the client. Appendix E gives the XML Document Type
Definition (DTD) for the Condor policy.

Currently, Condor does not authenticate the policies
or policy exchanges beyond that supported by the un-
derlying transport layer. In general, how and by whom
policies are issued and authenticated is an environmen-
tal and systems design issue. Environments often re-

quire external services for storing and validation of is-
sued policies (e.g., LDAP collections of signed policies).
These issues are defined by the larger policy architec-
ture, and is beyond the scope of the current work. In-
terested readers are referred to [22] for a taxonomy of
policy architectures addressing these issues.

5.3 Performance

Because of the relatively small policy size and the
restriction to pairwise reconciliation, we did not antici-
pate the introduction of PRE into Condor would signifi-
cantly impact performance. We sought to measure these
costs through several controlled experiments. These ex-
periments measured the total execution time of the pol-
icy negotiation protocol defined in the preceding sec-
tion. All experiments were executed in an environ-
ment consisting of a single Central Managerserver(333
Mhz duo-processor/Linux RedHat 7.2) and eightclients
(three Ultra 10 Sparc Sun/Solaris 2.8 and five 750 MHz
Pentium III/Linux Redhat 7.2).

The experimental results confirmed our intuition: the
average protocol execution (without I/O), for a policy
consisting ofauthentication, integrity andsecrecy, only
uses about5.2% of the total execution time. When in-
cluding I/O overhead, the cost is still small–at about
10% of the overall execution time. Startup cost (i.e. pro-
gram initialization) is the most dominant factor of the
overall execution time, followed closely by overhead in-
curred from Condor’s internal data structures.

5.4 Future work

While the theoretical framework and implementation
of our hierarchical policy model have reached maturity,
we see further exploration of its application to a wide
range of problem domains as essential. Initially, we will
seek to integrate PRE with widely used policy systems.
This will enable us to explore the ways of exploiting
the PRE services in specific and policy reconciliation in
general. One such work will realize our IPsec policy in

10

software. Integration with tools such as FreeSwan [28]
will provide important data-points in the use of extended
policy services, and serve to further demonstrate the
power of our approach.

We also seek to apply our work to domains which
have immediate, but as yet unaddressed, requirements
for policy. For example, reconciliation may play an im-
portant role in defining security for peer-to-peer (P2P)
systems. Currently, there are few coherent security mod-
els for P2P. The egalitarian nature of P2P systems man-
date autonomy. Each end-point must be able to assert
and realize a set of security requirements deemed impor-
tant. However, autonomy must be counter-balanced with
interoperability. The collection of participants must be
able to negotiate a shared view of security. This is pre-
cisely the definition of reconciliation. Hence, we claim
that the fluid and heterogeneous security models of P2P
systems would be well served by our work. Moreover,
the clarity and succinctness of the hierarchical model
may enable more free and open use of security policy
in these large communities.

This paper has discussed reconciliation only in the
context of security policy. However, hierarchical pol-
icy models are applicable to other problem domains. To
illustrate, GRID systems share the resources in hetero-
geneous environments. Participants in the GRID have
diverse policies that govern the resource usage. Agree-
ment is often achieved statically in current GRID sys-
tems by mandating the adoption of a single universal
policy. This mandate is in direct conflict with the needs
of dynamic environments whose resource constraints
and requirements change frequently. Hence, policy rec-
onciliation systems such as PRE can help to bridge such
a gap between dynamicity and the needs for agreement.
Furthermore, there is often a direct dependence between
resource requirements and security settings and dynamic
policy reconciliation can act as the agent between the
two. For example, a system that handles sensitive data
on remote hosts will require some minimum security
policy be enforced.

6 Conclusion
Security policy reconciliation is the process of resolv-

ing different security policies. In this paper, we pre-
sented a formal framework for policy reconciliation. We
also presented an efficient algorithm for reconciling dif-
ferent policies. Two distinguishing features of our work
are hierarchical representation and preferences. We also
implemented a simplified version of our algorithm in
a software module called PRE and incorporated it in
Condor. Experimental results in the context of Condor
clearly demonstrate that for each session the reconcilia-

tion overhead is negligible.

References
[1] D. Balenson, D. Branstad, P. Dinsmore, M. Heyman, and

C. Scace. Cryptographic Context Negotiation Protocol.
Technical report, Network Associates, Inc., 1999.

[2] D. Balenson, D. Branstad, D. McGrew, J. Turner, and
M. Heyman. Cryptographic Context Negotiation Tem-
plate. Technical report, Network Associates, Inc., 1999.

[3] Y. Bartal, A. J. Mayer, K. Nissim, and A. Wool. Firmato:
A novel firewall management toolkit. InIEEE Sympo-
sium on Security and Privacy, pages 17–31, 1999.

[4] D. Bell and L. LaPadula. Secure Computer Systems:
Mathematical Foundations and Model. Technical Report
M74-244, MITRE Corperation, Bedford, MA, 1973.

[5] M. Blaze, J. Feigenbaum, and A. Keromytis. KeyNote:
Trust management for public-key infrastructures.Lec.
Notes in Comp. Sci., 1550:59–63, 1999.

[6] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized
Trust Management. InProceedings of the 1996 IEEE
Symposium on Security and Privacy, pages 164–173,
November 1996. Los Alamitos.

[7] M. Blaze, J. Ioannidis, and A. D. Keromytis. Trust man-
agement for IPsec.Information and System Security,
5(2):95–118, 2002.

[8] L. Cholvy and F. Cuppens. Analyzing Consistency of
Security Policies. In1997 IEEE Symposium on Security
and Privacy, pages 103–112. IEEE, May 1997. Oakland,
CA.

[9] Condor.http://www.cs.wisc.edu/condor/.
[10] J. DeTreville. Binder, a logic-based security language.

In Symp. on Res. in Sec. and Privacy, Oakland, CA, May
2002. IEEE Computer Society Press.

[11] P. Dinsmore, D. Balenson, M. Heyman, P. Kruus,
C. Scace, and A. Sherman. Policy-Based Security Man-
agement for Large Dynamic Groups: An Overview of
the DCCM Project. InDARPA Information Survivability
Conference and Exposition, pages 64–73, 2000.

[12] C. Ellison. SPKI requirements. RFC 2692, Sept. 1999.
[13] C. Ellison, B. Frantz, B. Lampson, R. L. Rivest,

B. Thomas, and T. Ylonen. SPKI certificate theory. RFC
2693, Sept. 1999.

[14] F. Gécseg and M. Steinby.Tree Automata. Akad́emiai
Kiadó, Budapest, 1984.

[15] L. Gong and X. Qian. The Complexity and Composabil-
ity of Secure Interoperation. InProceedings of the IEEE
Symposium on Research in Security and Privacy, pages
190–200, Oakland, California, May 1994. IEEE.

[16] D. Harkins and D. Carrel. The Internet Key Exchange
(IKE). http://www.ietf.org/rfc/rfc2409.txt, 1998.

[17] J. Hoagland, R. Pandey, and K. Levitt. Security Policy
Specification Using a Graphical Approach. Technical
Report CSE-98-3, The University of California, Davis
Department of Computer Science, June 1998.

[18] T. Jim. SD3: A trust management system with certified
evaluation. InProceedings of the 2001 IEEE Symposium
on Security and Privacy, May 2001.

[19] S. Kent and R. Atkinson. Security Architecture for
the Internet Protocol.http://www.ietf.org/rfc/rfc2401.txt,
1998.

11

[20] M. Koch, L. V. Mancini, and F. Parisi-Presicce. A Graph-
Based Formalism for RBAC. Transactions on Infor-
mation and System Security (TISSEC), 5(3):332 – 365,
2002.

[21] M. Litzkow, M. Livny, and M. Mutka. Condor - A Hunter
of Idle Workstations. InProceedings of the 8th Inter-
national Conference of Distributed Computing Systems
(ICDCS), pages 104–111, 1988.

[22] P. McDaniel.Policy Management in Secure Group Com-
munication. PhD thesis, University of Michigan, Ann
Arbor, MI, August 2001.

[23] P. McDaniel and A. Prakash. Methods and limitations of
security policy reconciliation. In2002 IEEE Symposium
on Security and Privacy, pages 73–87, May 2002.

[24] P. McDaniel, A. Prakash, and P. Honeyman. Antigone: A
Flexible Framework for Secure Group Communication.
In Proceedings of the 8th USENIX Security Symposium,
pages 99–114, August 1999.

[25] M. Nyanchama and S. Osborn. The Role Graph Model
and Conflict of Interest.Transactions on Information and
System Security (TISSEC), 2(1):3 – 33, 1999.

[26] L. Pearlman, V. Welch, I. Foster, C. Kesselman, and
S. Tuecke. A Community Authorization Service for
Group Collaboration. InProceedings of the IEEE 3rd
International Workshop on Policies for Distributed Sys-
tems and Networks, 2001.

[27] T. A. X. Project. Xerces C++ Parser.
http://xml.apache.org/xerces-c.

[28] T. F. Project. Linux FreeS/WAN.
http://www.freeswan.org/.

[29] R. Raman, M. Livny, and M. Solomon. Matchmaking:
Distributed Resource Management for High Throughput
Computing. InProceedings of the Seventh IEEE Inter-
national Symposium on High Performance Distributed
Computing (HPDC), 1998.

[30] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.
Youman. Role-Based Access Control Models.IEEE
Computer, 29(2):38–47, 1996.

[31] R. S. Sandhu and P. Samarati. Access Control: Prin-
ciples and Practice.IEEE Communications Magazine,
32(9):40–48, 1994.

[32] W. Thomas. Automata on infinite objects. In J. van
Leeuwen, editor,Handbook of Theoretical Computer
Science, volume B, pages 135–186. Elsevier, 1990.

[33] J. Zao, L. Sanchez, M. Condell, C. Lynn, M. Fre-
dette, P. Helinek, P. Krishnan, A. Jackson, D. Mankins,
M. Shepard, and S. Kent. Domain Based Internet Secu-
rity Policy Management. InDARPA Information Surviv-
ability Conference and Exposition, pages 41–53, 2000.

A Combining Partial Orders
We consider three alternatives for combining partial

orders. The first two alternatives are a special case of the
last alternative, but we present them separately because
these might represent the “common cases”.

• [Case I] Agents totally ordered: In this case, we
assume that there is a total order on agents, i.e.,
agenti is ordered before all agentsj, wherej > i.

Givens ands′ in the setS, we defines �1,··· ,n s′

iff there exists aj such thats �j s′ ands 6�i s′ and
s′ 6�i s for all i < j. In other words, in the “com-
bined” partial order we say thats′ is “preferred”
over s if agentj preferss′ over s and agents that
are ordered before agentj have no preference be-
tweens ands′.

• [Case II] No order between agents:In this case,
we assume no order between agents. Givens and
s′ in the setS, we defines �1,··· ,n s′ iff for all 1 ≤
i ≤ n, s �i s′. In other words, in the “combined”
partial order we say thats′ is “preferred” overs if
all agents prefers′ overs.

• [Case III] Partial-order between agents: This
case is slightly more complicated. First, we explain
the idea using an example. Suppose there are three
agents1, 2, and3. Assume that1 is ordered before
2 and3, but there is no specific order between2
and3. In other words, agent1’s preferences should
supersede those of agents2 and3. In this case,s′ is
preferred overs if one the following two conditions
is satisfied:

– agent1 preferss′ overs, or

– agent1 states no preference betweens ands′,
but both agents2 and3 prefers′ overs.

This case is formalized below.

A partial order� on a finite setS will be represented
as a directed graphG[�] = (S, E), wheres1 � s2 iff
there is a path froms1 to s2 in G[�]. We call the par-
tial order� a strict partial order iff its graph G[�] is
acyclic.

Next we provide a a linear time algorithm to compute
the combined partial order. Assume that we are given a
strict partial order� over the finite set{1, 2, · · · , n}.
Intuitively, i � j means that agenti’s preferences are
given precedence overj’s preferences. Recall that we
are given a finite setS and�i is a partial order onS
given by agenti. We will give an “operational” seman-
tics for the combined partial order�1,2,··· ,n, i.e., we pro-
vide an algorithmA to compute�1,2,··· ,n.

LetG[�] be the directed graph which gives the partial
order over the set of agent indices{1, 2, · · · , n}. Fur-
ther, we assume thatG[�] is a directed acyclic graph or
DAG. Our algorithmA maintains two data structures:
a graphG2 with set of verticesS and a boolean array
mark [·] with n elements. At the end,G2 represents the
combined partial order�1,2,··· ,n.
Initially: G2 has empty set of edges, and we set

12

mark [i] = 0 for all 1 ≤ i ≤ n.
Iteration: Our algorithmA repeats the following steps
until for all 1 ≤ i ≤ n, mark [i] = 1.

• Find all unmarked nodesI of G which do not have
incoming edges from an unmarked vertex, i.e.,I is
defined as

{k | mark [k] = 0, and there does not existj
such thatmark [j] = 0 and
there is an edge fromj to k}

Mark all nodes inI, i.e., for alli ∈ I, mark [i] = 1.

• Add an edge froms → s′ to G2 if the following
two conditions are satisfied:

– edges → s′ does not already exist inG2, and

– for all i ∈ I, s �i s′, i.e., all agents inI
“agree” thats “precedes”s′.

Data structures and computational complexity: We
assume that graphs corresponding to the various partial
orders are stored in a data structure such that it takescon-
stant timeto decide whethers � s′. For example, given
a graphG[�] for the partial order�, we can first com-
pute the transitive closure of the graph and store reach-
ability information in a hash table. Let� be the partial
order over the finite set{1, 2, · · · , n} andG[�] be the
associated graph. We allocate an arraymark with n
elements and initialize all its elements to0. We main-
tain a list sourceList of all elements in{1, 2, · · · , n}
that do not have an incoming edge inG[�] from an un-
marked vertex. Moreover, we maintain an auxiliary ar-
ray inDegree[·] of n elements, whereinDegree[i] is the
number of incoming edges toi from unmarked vertices.
The listsourceList and arrayinDegree[i] can be initial-
ized by inspecting the graphG[�]. The iteration step of
algorithmA specific to the data structures are as follows:

• Add an edge froms → s′ to G2 if the following
two conditions are satisfied:

– edges → s′ does not exist inG2, and

– for all i ∈ sourceList , s �i s′, i.e., all agents
in sourceList “agree” thats “precedes”s′.

• Mark all elements that appear in the listsourceList .
If an elementi is marked, then for all edgesi → j
decrementinDegree[j]. If inDegree[j] becomes0,
addj to a temporary listtmpList .

• CopytmpList to sourceList .

Let the size|G| of a graphG be the sum of the num-
ber of vertices and edges inG. It is easy to see that the
complexity of our algorithm is linear in the sum of the
sizes of the graph or is

O(|G?[�]|+
n∑

i=1

|G[�i]|) .

Note: In the complexity analysis given above, we are
ignoring the cost of computing transitive closure of the
graphs associated with the partial orders. GraphG?[�]
is the transitive closure ofG[�].

B Details of the Reconciliation Algorithm
This section presents the details of the algorithm for

reconcilingn policies briefly described in Section 3.3.
Operations for intersecting two sets, computing the con-
junction of two conditions, and resolving two partial or-
ders are considered primitive operations, i.e.,O(1) op-
erations. This makes the presentation simpler and ab-
stracts away from specific representation issues, e.g.,
any polynomial time algorithm for these operations will
suffice for our discussion.

First, we focus on computing the conjunction of2
policiesP1 andP2 for a schemataS = (N,E, root).
The time complexity for this operation isO(|N |+ |E|),
i.e., for each noden the number of primitive opera-
tions is bounded by a constant and there are at most
N nodes. Now considern policiesP1, · · · , Pn, where
n = 2m. In this case, we first computeP1 ∧ P2 , P3 ∧
P4, · · · , Pn−1∧Pn. After that, we are left withn2 poli-
cies. We again form groups of two and perform the con-
junction, which leaves us withn4 policies. Continuing
this way, we can compute

∧n
i=1 Pi in log2(n) steps. The

number of conjunctions we perform aren
2 + n

4 ++1.
So we performO(n) conjunctions and each conjunction
has time complexityO(|N |+ |E|). Therefore, the time
complexity to compute

∧n
i=1 Pi isO(n(|N |+|E|)). The

general case, wheren is not a power of2, can be solved
in an analogous manner with same asymptotic time com-
plexity.

Assume that we have computed the combined pol-
icy P =

∧n
i=1 Pi. Next we describe an algorithm

findMPI (S, P) to compute an MPI for policyP on a
schemataS = (N,E, root).
Primitives and data structures: The algorithm
maintains a “cache”Results of old results, i.e., if
findMPI (S′, P ′) is called, then the result of the algo-
rithm along with the arguments are stored in the cache
Results. We assume that given ak-tuple of conditions
C = 〈c1, · · · , ck〉, there is a functionpick(C) that re-
turn ak-tuple of values〈v1, · · · , vk〉 suchvi |= ci (for
1 ≤ i ≤ k).

13

Algorithm description: For clarity, we describe a re-
cursive algorithm; however, a non-recursive version of
the algorithm can be easily implemented using work-
lists. If the schemataS is empty, then we simply re-
turn an empty instance. There are two cases based on
whetherroot is a∨ or∧ node. The proof of correctness
is by induction on the depth of the tree schemata and is
interleaved with the description of the algorithm. The
algorithm maintains the invariant thatfindMPI (S, P)
returns an MPI for policyP on schemaS. The com-
plexity of the algorithm given below is easily seen to be
O(|N |+ |E|). Therefore, the entire reconciliation algo-
rithm has time complexityO(n(|N |+ |E|)).

• If findMPI (S, P) is in the cacheResults, return
immediately with the result; otherwise proceed to
the next two steps.

• root is an∧-node.
Let the set of successorssucc(root) of root be
{n1, · · · , nk}, andSi be the tree sub-schemata of
T that is rooted atni (1 ≤ i ≤ k). Similarly,
let Pi be the sub-policy ofP rooted atni. Let
findMPI (Si, Pi) return aMPI Ii. The instance
I for P is constructed by attachingI1, · · · , Ik to
the root . Add the result along with the arguments
to the cacheResults.
Correctness: Let I be the instance returned by
the functionfindMPI (S, P). Let I ′ be another in-
stance of the schemaS. We need to prove that
I 6� I ′. Let Ii (I ′i) be the sub-instance ofI (I ′)
rooted atni (the i-th successor of the root). Us-
ing the induction hypothesis we know thatIi 6� I ′i.
From the definition of MPI it follows thatI 6� I ′.

• root is a∨-node.
The algorithm picks a successorn ∈ S(root)
which is a maximal element in the partial order
pref (n). Let Sn andPn be the sub-schemata and
sub-policy rooted atn. By the induction hypoth-
esis,findMPI (Sn, Pn) returns an MPIIn for Pn.
In this case,findMPI (T, P) returns an instanceI,
which isIn attached toroot . Add the result along
with the arguments to the cacheResults.
Correctness: Let I be the instance returned by
the functionfindMPI (S, P), andI ′ be another in-
stance of the schemaS. We need to prove that
I 6� I ′. Assume the contrary, i.e.,I � I ′. Let
the successor ofroot in I andI ′ ben andn′. From
the definition of the partial order�P there are two
cases:
(Case 1:) In the partial orderpref (root) of policy
P , n � n′. However,findMPI (., .) picks a succes-

sor that is maximal in the setS(root). This contra-
dicts the fact thatn � n′.
(Case 2:) n = n′ andIn � In′ , whereIn andI ′n′

are sub-instances ofI andI ′ rooted atn andn′ re-
spectively. However, this contradicts the induction
hypothesis forfindMPI (Sn, Pn).

C IPsec Graphical Policy Schemata
The following is a simplified IPsec policy schemata

for the IKE example in section 4.

SHA

SHA

LZS Deflate none
3DES

PCP AH ESP

3IDEA DES HMAC

HMAC

MD5

MD5

Figure 12. IPsec Policy Schemata Example

D Details of Policy in the Condor System
Figure 13 shows a two Condor security policies and

their encoding in our framework. Policy 1 indicates
that authentication is required, and acceptable
methods of authenticationare Kerberos and GSS,
in that order. On the other hand,secrecy is only
optional , with 3DESandBLOWFISHas the accept-
able algorithms. Policy 2 is similar to policy 1 except
that GSSis the only acceptable authentication method
andsecrecy is always required. Existing Condor sys-
tem uses the ClassAd structure to represent the policies,
as shown by the two examples on the top of the figure.
In the tree representation, the square node indicates the
cases where both authentication and secrecy need to be
considered for any communication. The policy on the
left uses thenoneoption to represent the fact that se-
crecy, while needs to be considered, is optional. For the
policy on the right, secrecy is always required since it
does not includenoneas one of its children.

In addition, thepreferencefeature of the reconcili-
ation framework is also demonstrated through the ex-
ample shown in Figure 13. In each one of the Condor
policies, an mechanism that appears earlier in the list
has higher preference than the ones that appear later in

14

Corresponding Representations
in Policy Reconciliation Framework

Original Condor Security Policies

AUTH SEC

none

AUTH SEC

AUTH=YES
AUTH_METHODS= GSS
SECRECY=YES
SECRECY_METHODS=3DES, BLOWFISH

AUTH=YES
AUTH_METHODS=Kerberos, GSS
SECRECY=OPTIONAL
SECRECY_METHODS=3DES, BLOWFISH

<Kerberos, 1> <GSS, 2> <3DES, 1><BLOWFISH,2> GSS <BLOWFISH,2><3DES, 1>

Figure 13. Condor Security Policy Example

the list. For example, in the first policy, the authentica-
tion mechanismKerberos has a higher order of pref-
erence thanGSS. This is annotated in the hierarchical
policy through an integerID attribute. The smaller the
ID is, the higher the preference becomes. For exam-
ple, in the corresponding hierarchical policy represen-
tation,Kerberos has ID1, while BLOWFISHhas ID
2 3. The special keywordnonealways has the lowest
preference and therefore does not have an ID associated
with it. For policies that do not need the preference fea-
ture, all mechanisms are annotated with the same ID to
indicate that either one of them can be selected during
reconciliation.

As was the case with IPsec, our framework is appli-
cable to other type of policies. As shown through the
examples in Figure 13, the hierarchical representation
can express Condor’s security policies in a more con-
cise and unambiguous manner. The hierarchical rela-
tionship among various components of the policies can
be expressed clearly using the DAG structure, while the
same cannot be said for the original Condor policy rep-
resentation. Although here we only address how to ap-
ply the framework to Condor’s security policies, we can
also apply the framework to support other types of poli-
cies in Condor. For instance, resource owners in Condor
can use similar policies to described acceptable users for
their resources. Likewise, resource users can use poli-

3The IDs are normalized before reconciliation in order to avoid
inconsistency among different representations.

cies to describe their preferred resources. The process of
matching among the resources and users is calledmatch
makingand it can be also modeled using our framework.

15

E DTD for IPSec and Condor Policies

Condor Security Policy DTD Example
<?xml encoding="iso-8859-1"?>
<!-- @version -->
<!ELEMENT Policy (Authentication, Integrity,

Confidentiality, Duration)>
<!ELEMENT Authentication (Algorithm)+>
<!ELEMENT Integrity (Algorithm)+>
<!ELEMENT Confidentiality (Algorithm)+>
<!ELEMENT Duration (#PCDATA)>
<!ATTLIST Duration unit (minute|second) #REQUIRED>
<!ELEMENT Algorithm (name+, key_length*)>
<!ATTLIST Algorithm id CDATA #REQUIRED>
<!ELEMENT name (#PCDATA)>
<!ELEMENT key_length (#PCDATA)>

IPSec Policy DTD Example
<?xml encoding="iso-8859-1"?>
<!-- @version -->
<!ELEMENT Policy (Proposal)+>
<!ELEMENT Proposal (AH+, ESP+, PCP+)>
<!ATTLIST Proposal id CDATA #REQUIRED>
<!ELEMENT AH (AH_Algorithm)+>
<!ELEMENT ESP (ESP_Algorithm)+>
<!ELEMENT PCP (PCP_Algorithm)+>
<!ELEMENT AH_Algorithm (name)>
<!ATTLIST AH_Algorithm KeyLength CDATA #REQUIRED>
<!ELEMENT ESP_Algorithm (ESP_NAME)>
<!ELEMENT ESP_NAME (name, AH_Algorithm)>
<!ATTLIST ESP_Algorithm KeyLength CDATA #REQUIRED>
<!ELEMENT PCP_Algorithm (name)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT key_length (#PCDATA)>

16

	Introduction
	Security Policy
	Contributions

	Related Work
	A Formalization of Policy Reconciliation
	Resolving multiple partial orders
	Reconciliation with preferences
	The Reconciliation Algorithm

	Applications of the policy reconciliation framework
	Graphical Policy in IPsec
	Hierarchically Policy in the Condor system

	Implementation
	Policy Reconciliation Engine
	Integrating Policy Reconciliation Engine with Condor
	Performance
	Future work

	Conclusion
	Combining Partial Orders
	Details of the Reconciliation Algorithm
	IPsec Graphical Policy Schemata
	Details of Policy in the Condor System
	DTD for IPSec and Condor Policies

