
SoK: Security and Privacy in Machine Learning

Nicolas Papernot∗, Patrick McDaniel∗, Arunesh Sinha†, and Michael P. Wellman†
∗ Pennsylvania State University

† University of Michigan
{ngp5056,mcdaniel}@cse.psu.edu, {arunesh,wellman}@umich.edu

Abstract—Advances in machine learning (ML) in recent years
have enabled a dizzying array of applications such as data
analytics, autonomous systems, and security diagnostics. ML
is now pervasive—new systems and models are being deployed
in every domain imaginable, leading to widespread deployment
of software based inference and decision making. There is
growing recognition that ML exposes new vulnerabilities in
software systems, yet the technical community’s understanding
of the nature and extent of these vulnerabilities remains
limited. We systematize findings on ML security and privacy,
focusing on attacks identified on these systems and defenses
crafted to date. We articulate a comprehensive threat model for
ML, and categorize attacks and defenses within an adversarial
framework. Key insights resulting from works both in the ML
and security communities are identified and the effectiveness of
approaches are related to structural elements of ML algorithms
and the data used to train them. In particular, it is apparent
that constructing a theoretical understanding of the sensitivity
of modern ML algorithms to the data they analyze, à la PAC
theory, will foster a science of security and privacy in ML.

1. Introduction
Advances in the science of machine learning (ML) cou-

pled with growth in computational capacities transformed
the technology landscape, as embodied by the automation
of Machine Learning as a service on commercial cloud plat-
forms. For example, ML-driven data analytics fundamen-
tally altered the practice of health care and finance. Within
the security domain, detection and monitoring systems now
consume vast amounts of data and extract actionable infor-
mation that in the past would have been impossible. In spite
of these spectacular advances, the technical community’s
understanding of the vulnerabilities inherent to the design
of systems built on ML and the means to defend against
them are still in its infancy. There is a broad and pressing
call to advance a science of security and privacy in ML [1].

Such calls have not gone unheeded. Many investigations
have sought to expand our understanding of the threats,
attacks and defenses of systems built on ML. This work,
however, is fragmented across several research communities
including ML, security, statistics, and theory of computation.
As yet there is no unified lexicon or science spanning these
disciplines. The fragmentation presents both a motivation
and challenge for our effort to systematize knowledge about
the myriad of security and privacy issues that involve ML.

In this paper, we develop a unified perspective on this
field, based on a threat model that considers characteristics
of the attack surface, adversarial goals, and possible de-
fense and attack capabilities particular to systems built on
machine learning. This security model serves as a roadmap
for surveying knowledge about attacks and defenses of ML
systems. We distill major themes and highlight results in the
form of take-away messages about this new area of research.

In exploring security and privacy in this domain, it is
instructive to view systems built on ML through the prism
of the classical confidentiality, integrity, and availability
(CIA) model [2]. In this work, confidentiality is defined with
respect to the model or its data. Attacks on confidentiality
attempt to expose the model structure or parameters (which
may be highly valuable intellectual property) or the data
used to train and test it (e.g., patient data). The latter class
of attacks have a potential to impact the privacy of the
data source, especially when model users are not trusted,
which in cases such as patient clinical data used to train
medical diagnostic models may be highly sensitive. We
define attacks on the integrity as those that induce particular
outputs or behaviors of the adversary’s choosing. They are
often conducted through manipulations of the data on which
the ML system trains or predicts. Where those adversarial
behaviors attempt to prevent legitimate users from accessing
meaningful model outputs or the features of the system
itself, such attacks fall within the realm of availability.

A second perspective in evaluating security and privacy
focuses on attacks and defenses with respect to the machine
learning pipeline. Here, we consider the lifecycle of a ML-
based system from training to inference, and identify the
adversarial goals and means at each phase. We observe that
attacks on training generally attempt to influence the model
by altering or injecting training samples—in essence guiding
the learning process towards a vulnerable model. Attacks at
inference time (runtime) are more diverse. Adversaries use
exploratory attacks to induce targeted outputs, and oracle
attacks to extract the model itself.

The science of defenses for machine learning is some-
what less well developed. We consider several defen-
sive goals. The first is robustness to distribution drifts—
maintaining performance as far as possible when the training
and runtime input distributions differ. The second is to pro-
vide formal guarantees of privacy preservation—bounding
the amount of information exposed by a learned model.

399

2018 IEEE European Symposium on Security and Privacy

© 2018, Nicolas Papernot. Under license to IEEE.
DOI 10.1109/EuroSP.2018.00035

���������	
���
�������������
���������	���
	����

��
��������
�����	��������	���

		����
��������
�������������������	�������������

������������������
��
������	���	����	�������������

���������� ��
����
�!�����
��
������	���	����	�������������

��
���������
�������� ����	�������	�������
�����	�����!"

#$

#%

#& #'

#(

Figure 1. Outline for this SoK.

Third, defenses aim to ensure fairness (preventing biased
outputs) and accountability (explanations of why particular
outputs were generated, also known as transparency).

In exploring these facets of machine learning attacks and
defense, we make the following contributions:

• We introduce a unifying threat model to allow struc-
tured reasoning about the security and privacy of
systems that incorporate ML (Section 3). This model
departs from previous efforts by considering the
entire data pipeline, of which ML is a component,
instead of ML algorithms in isolation.

• We taxonomize attacks and defenses identified by
the various technical communities. Section 4 details
the challenges of learning in adversarial settings.
Section 5 considers deployed systems. Beyond previ-
ous surveys of these areas, we cover attacks mounted
with adversarial examples and recent progress to-
wards practical differentially private learning.

• We systematize desirable properties to improve the
security and privacy of machine learning (Section 6).

ML methods take several forms, such as classification, re-
gression, and policy learning. For brevity and ease of expo-
sition, we focus much of the current paper on classification.
We further state that the related study of the implications of
AI on safety in societies is outside the scope of this paper,
and refer interested readers to a review by Amodei et al. [3].

We present a systematization of knowledge about secu-
rity and privacy in ML, focusing on attacks and defenses.
Based on our analysis of the ML threat model, we have
selected seminal and representative works from the litera-
ture. While we attempt to be comprehensive, it is a practical
impossibility to cite all works. For instance, we do not cover
trusted computing platforms for ML [4]. We begin in the
next section by introducing the basic structure and lexicon of
ML systems. The paper’s organization is shown in Figure 1.

2. About Machine Learning
We start with a brief overview of how systems apply

ML. In particular, we compare different kinds of learning
tasks, and some specifics of their practical implementation.

2.1. Overview of Machine Learning Tasks
Machine learning automates the analysis of (typically)

large data sets, producing models or decision procedures
reflecting general relationships found in that data [5]. ML
techniques are commonly divided into three classes, char-
acterized by the nature of the data available for analysis.
Supervised learning: Methods that are given training exam-
ples in the form of inputs labeled with corresponding outputs
are supervised learning techniques. Generally, the objective
is to induce a model mapping inputs (including unseen
inputs) to outputs. If the output domain is categorical, the
task is called classification, and if cardinal the task is regres-
sion. Classic examples of supervised learning tasks include:
object recognition in images [6], machine translation [7],
and spam filtering [8].
Unsupervised learning: When the method is given unlabeled
inputs, its task is unsupervised. This includes problems such
as clustering points according to a similarity metric [9], di-
mensionality reduction to project data in lower dimensional
subspaces [10], and model pre-training [11]. For instance,
clustering may be applied to anomaly detection [12].
Reinforcement learning: Data in the form of sequences of
actions, observations, and rewards (e.g., runs of video game
play) fall in the scope of reinforcement learning (RL) [13],
[14]. The goal of RL is to produce a policy for acting in
the environment, and so it is the subfield of ML concerned
with planning and control. RL agents learn by experience
exploring their environments. It was reinforcement learning
in combination with supervised and unsupervised methods
that recently enabled a computer to defeat a human cham-
pion at the game of Go [15].

Readers interested in surveys of ML are well served by
many books covering this rich topic [5], [16], [17]. Work
on ML security and privacy to date has been primarily
conducted in supervised settings, as reflected by our pre-
sentation in Sections 4 and 5. Since security issues are just
as relevant for unsupervised and reinforcement learning, we
present results in more general settings when meaningful.

2.2. ML Stages: Training and Inference
It is helpful to separate the training stage where a model

is learned from input data, from the inference stage where
the trained model is applied to a task.

Training: Most ML models can be described as functions
hθ(x) taking an input x and parametrized by a vector
θ ∈ Θ.1 The output hθ(x) is the model’s prediction for
x of some property of interest. The input x is typically rep-
resented as a vector of values called features. The space of
functions H = {x �→ hθ(x) | θ ∈ Θ} is the set of candidate
hypotheses. A learning algorithm utilizes the training data to
determine θ. When learning is supervised, the parameters are
adjusted to align model predictions hθ(x) with the expected
output y as indicated by the dataset. This is achieved by
minimizing a loss function that captures the dissimilarity
of hθ(x) and corresponding y. The model performance is

1. Some models (e.g., nearest-neighbor [18]) are non-parametric.

400

Machine Learning
Model

Physical
Domain

Digital
Representation

Physical
Domain

Input features OutputsObject, action Bits Action

Sensors,
camera, I/O
hardware Pre-processing Apply model Output analysis

3D tensor in [0,1] Class probabilitiesTraffic sign JPEG Car brakes

Camera Pre-processing Apply model Output analysis

Packet headers
Flow metadata

Attack probabilityAttack network traffic TCP dump Shutdown
infrastructure

Packet sniffing
on network card Pre-processing Apply model Output analysis

Generic Machine
Learning System

Automotive
Computer Vision

Network Intrusion
Detection

k network Sh td

Figure 2. System’s attack surface. The generic model (top row) is illustrated with two example scenarios (middle and bottom rows): a computer vision
model used by an automotive system to recognize traffic signs on the road and a network intrusion detection system.

then validated on a test dataset, which must be disjoint from
the training dataset in order to measure the model’s gener-
alization (performance on unseen data). For a supervised
problem, we can evaluate model accuracy with respect to
test data: a set of labeled data held distinct from training
data. For example, in malware classification (see above),
accuracy would measure the proportion of predictions hθ(x)
that matched the label y (malware or benign) associated
with the executable x in the test dataset. In reinforcement
learning, hθ encodes a policy, and the aim of training is to
prescribe actions that yield the highest expected reward for
input history x. When learning is done in an online fashion
(supervised, unsupervised, or reinforcement), parameters θ
are updated as new training points become available.

Inference: Once training completes, the model is deployed
to infer predictions on inputs unseen during training. That
is, the value of parameters θ are fixed, and the model com-
putes hθ(x) for new inputs x. In our malware classification
example, the model predicts the label for each executable
x encountered. The model prediction may take different
forms but the most common for classification is a vector
assigning a probability for each class of the problem, which
characterizes how likely the input is to belong to that class.
For our unsupervised network intrusion detection system,
the model would instead return the pattern representation
hθ(x) that corresponds to a new input network traffic x.

3. Threat Model
The security of any system is measured with respect to

the adversarial goals and capabilities that it is designed to
defend against–the system’s threat model. In this section,
we taxonomize the definition and scope of threat models in
ML systems and map the space of security models.

We begin by identifying the attack surface of ML sys-
tems to inform where and how an adversary will attempt to
subvert the system. Our development of the threat model in

following sections builds on previous treatments [19], [20],
[21]. We further draw on insights from recent developments
like adversarial examples and membership inference attacks.

3.1. The ML Attack Surface
The attack surface of a system built with data and

machine learning depends on its purpose. Nevertheless, one
can view such systems within a generalized data processing
pipeline (see Figure 2, top).

At inference, (a) input features are collected from sen-
sors or data repositories, (b) processed in the digital domain,
(c) used by the model to produce an output, and (d) the
output is communicated to an external system or user and
acted upon. Figure 2 illusrates this pipeline generically (top),
and for autonomous vehicle (middle), and network intrusion
detection systems (bottom). The ML systems collect sensor
inputs (video image, network events) from which features
(pixels, flows) are extracted and input to the models. The
meaning of the model output (stop sign, network attack) is
then interpreted and action taken (stopping the car, filtering
future traffic from an IP). Here, the attack surface for the
system can be defined with respect to the data processing
pipeline. Adversaries can attempt to manipulate the collec-
tion of data, corrupt the model, or tamper with the outputs.

Recall that the model is trained using either an offline
or online process. The training data used to learn the model
includes vectors of features used as inputs during inference,
as well as expected outputs for supervised learning or a
reward function for reinforcement learning. As discussed
below, the means of collection and validation processes offer
another attack surface—adversaries who can manipulate the
data collection process can do so to induce targeted model
behaviors. Similar attacks in an online setting can be quite
damaging, where the adversary can slowly alter the model
with crafted inputs submitted at runtime. Such attacks on
anomaly detectors have been observed in domains such as
spam and network intrusion [22].

401

Attacks against ML can have potentially devastating con-
sequences as they become more practical [23]. Defending
against them is necessary to maintain essential properties
for high-stakes ML systems: safety (e.g., for autonomous
vehicles), security (e.g., intrusion detectors), and correctness
(e.g., regulated financial markets).

3.2. Trust Model

The trust model of a any ML-based system is determined
in large part by the context of its deployment as it relates
to the trust placed in the relevant actors. To abstract a bit,
we can think of the several classes of actors relevant to a
deployed ML-based system. First, there are data-owners,
who are the owners or trustees of the data/environment
that the system is deployed within, e.g., an IT organisation
deploying a face recognition authentication service. Second,
there are system providers which construct the system and
algorithms, e.g., the authentication service software vendors.
Third, there may be consumers of the service the system
provides, e.g., the enterprise users. Lastly, there are outsiders
who may have explicit or incidental access to the systems, or
may simply be able to influence the system inputs, e.g., other
users or adversaries within the enterprise. Note that there
may be multiple users, providers, data-owners, or outsiders
involved in a given deployment.

A trust model for the given system assigns a level of
trust to each actor within that deployment. Any actor can
be trusted, untrusted, or partially trusted (trusted to perform
or not perform certain actions). The sum of those trust
assumptions forms the trust model–and therein identifies the
potential ways that bad actors may attack the system. We
do not seek in this paper to identify a specific trust model
or even set of “good” trust models (a likely impossible
endeavour), but to highlight the dangers presented by bad
actors. Here, we explore the space of trust models simply by
viewing them through the prism of the adversarial capability
space (see next Section). In this way, we provide insight into
any trust model appropriate for a given deployment.

3.3. Adversarial Capabilities

A threat model is also defined by the actions and infor-
mation the adversary has at their disposal. The definition
of security is made with respect to stronger or weaker
adversaries who have more or less access to the system
and its data. The term capabilities refers to the whats and
hows of the available attacks, and defines the possible attack
vectors on a threat surface. For instance, in network intrusion
detection, an internal adversary may have access to the
model used to distinguish attacks from normal behavior,
whereas a weaker eavesdropping adversary may have access
only to TCP dumps of the network traffic. Here the attack
surface is constant, but the attacker with more information
is a strictly stronger adversary. We explore the range of at-
tacker capabilities in ML systems as they relate to inference
and training phases (see Figure 3).

Inference

Pipeline
Model
Architecture
Parameters
Arch and Params

black box

white box

(weaker)

(stronger)

Training
Read
Injection
Modificaiton
Logic Corruption

(weaker)

(stronger)

Figure 3. Adversarial Capabilities. Adversaries attack ML systems at
inference time by exploiting model internal information (white box) or
probing the system to infer system vulnerabilities (black box). Adversaries
use read or write access to the training data to mimic or corrupt the model.

Inference Phase: Attacks at inference time—exploratory at-
tacks [19]—do not tamper with the targeted model but
instead either cause it to produce adversary selected outputs
(an example of an Integrity attack in the taxonomy of
adversarial goals below) or collect evidence about the model
characteristics (a Confidentiality attack). As discussed in
Section 5, the effectiveness of such attacks is largely deter-
mined by the information that is available to the adversary
about the model and its use in the target environment.

Inference phase attacks can be classified into either white
box or black box attacks. In white box attacks, the adversary
has some information about the model or its original training
data, possibly due to untrusted actors in the data processing
pipeline. White box attacks may be further distinguished by
the information used: about the model architecture (algo-
rithm and structure of the hypothesis h), model parameters
θ (weights), training data, or combinations of these. The
adversary exploits available information to identify where
a model is vulnerable. For example, an adversary who has
access to the model h and its parameters θ may identify
parts of the feature space for which the model has high
error, and exploit that by altering an input into that space,
as in adversarial example crafting [24].

Conversely black box attacks assume no knowledge
about the model. The adversary in these attacks use in-
formation about the setting or past inputs to infer model
vulnerability. For example, in an oracle attack, the adversary
explores a model by providing a series of carefully crafted
inputs and observing outputs [25]. Oracle attacks work
because a good deal of information about a model can be
extracted from input/output pairs, and relatively little infor-
mation is required because of the transferability property
exhibited by many model architectures (See Section 5.2).

Training Phase: Attacks on training attempt to learn, in-
fluence, or corrupt the model itself. The simplest and ar-
guably weakest attack on training is simply accessing a
summary, a portion, or all of the training data. This could be
through explicit attacks or via an untrusted data collection
component. Depending on the quality and volume of data,
the adversary can create a substitute model (also referred
to as a surrogate or auxiliary model) to mount attacks on

402

the victim system. For example, the adversary can use a
substitute model to test potential inputs before submitting
them to the victim [26]. Note that these attacks are offline
attempts at model reconnaissance, and thus may be used to
undermine privacy (see below).

There are two broad attack strategies for altering the
model. The first alters the training data either by inserting
adversarial inputs into the existing training data (injection),
possibly as a malicious user, or altering the training data
directly (modification) by direct attacks or via an untrusted
data collection component. In the case of reinforcement
learning, the adversary may modify the environment in
which the agent is evolving. Lastly, the adversaries can
tamper with the learning algorithm, sometimes easily by col-
luding with an untrusted ML training component. We refer
to these attacks as logic corruption. Obviously, adversaries
that alter the learning logic (and thus controls the model
itself) are very powerful and difficult to defend against.

3.4. Adversarial Goals

The last piece of a threat model specifies the goals of the
adversary. We model desired ends as impacting confiden-
tiality, integrity, and availability (the CIA triad mentioned
in Section 1), and adding a fourth property, privacy. An
interesting duality emerges when taking a view in this way:
attacks on system integrity and availability are closely re-
lated in goal and method, as are confidentiality and privacy.
Integrity and privacy can both be understood at the level of
the ML model, as well as for the entire system deploying it.
Availability is however ill defined for a model in isolation
but makes sense for the system and environment it operates
in. Desirable security properties may also be defined and
enforced at the level of this environment. The security of
the ML model is a necessary but not sufficient condition for
establishing the security of the environment. For instance,
integrity and availability of a driverless car’s vision model
is needed but not sufficient to guarantee availability of the
road to other vehicles. This aspect falls outside the scope of
our survey, and calls for future treatment similar to the one
of Amodei et al. for safety-related issues [3]. We discuss
below the range of adversarial goals that relate to each risk.

Confidentiality and Privacy: Attacks on confidentiality and
privacy are with respect to the model and data. If the
adversary is an untrusted user of the model, it may attempt to
extract information about the model. These attacks generally
fall under the realm of confidentiality. When the ML model
itself represents intellectual property and its consumers are
not trusted by the model owner, it requires that the model
and its parameters be confidential, e.g., financial market
systems [27]. On the contrary, if the model owner is not
trusted by model users, these users might want to protect
the confidentiality of their data from the model owner or the
privacy of their data from attacks mounted by other model
users. This is a common setting in medical applications [28].
Regardless of the goal, the attacks and defenses for confi-
dentiality and privacy relate to exposing or preventing the

exposure of the model and training data. Distinguishing the
two notions is a result of the trust model.

Machine learning models have enough capacity to cap-
ture and memorize elements of their training data [29]. As
such, it is hard to provide guarantees that participation in a
dataset does not harm the privacy of an individual. Potential
risks are adversaries performing membership test (to know
whether an individual is in a dataset or not) [30], recovering
of partially known inputs (use the model to complete an in-
put vector with the most likely missing bits), and extraction
of the training data using the model’s predictions [29].
Integrity and Availability: Attacks on integrity and avail-
ability are with respect to model outputs. Here the goal
is to induce model behavior as chosen by the adversary.
Attacks attempting to control model outputs are at the heart
of integrity attacks—the integrity of the inference process
is undermined. For example, attacks that attempt to induce
false positives in a face recognition system affect the au-
thentication process’s integrity [23]. Closely related, attacks
on availability attempt to reduce the quality (e.g., confidence
or consistency), performance (e.g., speed), or access (e.g.,
denial of service). Here again, while the goals of these two
classes of attacks may be different, the means by which the
adversary achieves them is often similar.

Integrity is essential in ML, and is the center of attention
for most performance metrics used: e.g., accuracy [31].
However, researchers have shown that the integrity of ML
systems may be compromised by adversaries capable of
manipulating model inputs [24] or its training data [32].
First, the ML model’s confidence may be targeted by an
adversary: reducing this value may change the behavior
of the overall system. For instance, an intrusion detection
system may only raise an alarm when its confidence is over a
specified threshold. Input misprocessing aims at misleading
the model into producing wrong outputs for some inputs,
either modified at the entrance of the pipeline, or at the
input of the model directly. Depending on the task type,
the wrong outputs differ. For a ML classifier, it may assign
the wrong class to a legitimate image, or classify noise
with confidence. For an unsupervised feature extractor, it
may produce a meaningless representation of the input. For
a reinforcement learning agent, it may act unintelligently
given the environment state. However, when the adversary is
capable of subverting the input-output mapping completely,
it can control the model and the system’s behavior. For in-
stance, it may force an automotive’s computer vision system
to misprocess a traffic sign, resulting in the car accelerating.

Availability is somewhat different than integrity, as it is
about the prevention of access to an asset: an output or an
action induced by a model output. Hence, the goal of these
attacks is to make the model inconsistent or unreliable in the
target environment. For example, the goal of the adversary
attacking an autonomous vehicle may be to get it to behave
erratically or non-deterministically in a given environment.
Yet most of the attacks in this space require corrupting the
model through training input poisoning and other confidence
reduction attacks using many of the same methods used for
integrity attacks.

403

If the system depends on the output of the ML model to
take decisions that impact its availability, it may be subject
to attacks falling under the broad category of denial of
service. Continuing with the previous example, an attack
that produces vision inputs that force a autonomous vehicle
to stop immediately may cause a denial of service by pre-
venting its owner from using it. More broadly, ML models
may also not perform correctly when some of their input
features are corrupted or missing [33]. Thus, by denying
access to these features we can subvert the system.

4. Training in Adversarial Settings

As parameters θ of the hypothesis h are fine-tuned
during learning, the training dataset analyzed is potentially
vulnerable to manipulations by adversaries. This scenario
corresponds to a poisoning attack [19], and is an instance
of learning in the presence of non-necessarily adversarial but
nevertheless noisy data [34]. Intrusion detection systems are
a prevalent example of these settings. Poisoning attacks alter
the training dataset by inserting, editing, or removing points
with the intent of modifying the decision boundaries of the
targeted model [32], thus targeting the learning system’s
integrity per our threat model from Section 3. It is somewhat
obvious that an unbounded adversary can cause the learner
to learn any arbitrary function h leading to complete unavail-
ability of the system. Thus, all the attacks below bound the
adversary in their attacks [35]. Modifications of the training
data can be seen as altering the distribution D that generated
the training data, thereby creating a mismatch between the
distributions used for training and inference. In Section 6.1,
we present a line of work that builds on that observation to
propose learning strategies robust to distribution drifts [36].

Upon surveying the field, we note that works almost
exclusively discuss poisoning attacks against classifiers (su-
pervised models trained with labeled data). Yet, as we
strive to generalize our observations to other types of ML
tasks (see Section 2), we note that the strategies described
below may apply, as many RL algorithms employ supervised
components. This is for instance the case for AlphaGo [15].

4.1. Targeting Integrity

Kearns et al. theoretically analyzed the accuracy of
learning classifiers when the adversary is allowed to modify
training samples with probability β [32]. For large datasets,
this adversarial capability can be interpreted as the ability
to modify a fraction β of the training data. One of their
fundamental results states that achieving an error rate of ε at
inference requires β ≤ ε

1+ε for any learning algorithm. For
example, to achieve 90% accuracy (ε = 0.1) the adversary
manipulation rate must be less than 10%. The efforts below
explore this result from a practical standpoint and introduce
poisoning attacks against ML algorithms. We organize our
discussion around the adversarial capabilities highlighted in
the preceding section. Unlike some attacks at inference (see
Section 5.2), training time attacks almost always require

some degree of knowledge about the learning procedure,
in order to disrupt it through manipulations of the data.

Label manipulation: When adversaries are able only to
modify the labeling information contained in the training
dataset, the attack surface is limited: they must find the most
harmful labels to perturb in the data given partial or full
knowledge of the learning algorithm ran by the defender.

The baseline strategy is to perturb the labels (i.e., ran-
domly draw new labels) for a fraction of the training data.
In practice, Biggio et al. showed that this was sufficient to
degrade the inference performance of SVM classifiers [37],
as long as the adversary randomly flips about 40% of
the training labels. It is unclear whether this attack would
generalize to multi-class classifiers, with more than 2 output
classes (they only considered binary tasks, where swapping
the labels is guaranteed to be very harmful to the model).

Heuristics improve the adversary’s chances of success.
Biggio et al. [37] observe that poisoning points classified
with confidence by the model later further degrades the
model’s performance during inference. In fact, they reduce
the ratio of poisoned points needed to reduce accuracy by
about 10 percentage points when compared to random label
flipping. A similar attack approach has been applied in the
context of healthcare [38]. These attacks require that a new
ML model be learned for each new candidate poisoning
point in order to measure the candidate’s impact on the
updated model’s performance during inference. This high
computation cost can be explained by the largely unknown
relationship between performance metrics respectively com-
puted on the training and test data. However, for models
where such a relationship is better understood, it is possible
to find near-optimal sets of labels that need to be flipped—as
demonstrated by Xiao et al. with SVMs [39].

Our take-away 4.1. Bounds on the generalization
error (the difference in performance of a model on
training and testing distributions) are often loose [40],
in which case it is difficult to quantify the impact of
poisoning attacks on inference.

Input manipulation: In this threat model, the adversary
can corrupt the input features of training points processed
by the model, in addition to its labels. These works assume
knowledge of the learning algorithm and training set.

Direct poisoning of the learning inputs: The attack surface
of a ML model is often exacerbated when learning is
performed online, that is, with new training points added
by observing the environment in which the system evolves.
Most efforts in this area focus on clustering models, where
the intuitive strategy for adversaries is to slowly displace the
center of the cluster to have points misclassified at inference.

Kloft et al. insert poisoned points in a training set used
for anomaly detection, and demonstrate how this gradually
shifts the decision boundary of a centroid model, i.e. a model
that classifies a test input as malicious when it is too far from
the empirical mean of the training data [22]. This model is
learned in an online fashion—new training data is collected

404

at regular intervals and the parameter values θ are computed
on a sliding window of that data. Poisoning points are found
by solving a linear programming problem that maximizes
the displacement of the centroid. This formulation exploits
the simplicity of centroid models, which essentially evaluate
Euclidean distances to compute the empirical mean of the
training data. This attack is unlikely to apply when the
relationship between training data and the model is not as
explicit. The approach was later revisited in the context of
malware clustering [41]: malware is modified to include
additional behavioral features that place it between two ex-
isting clusters in the model’s input domain, thus eventually
decreasing the distance between clusters.

In the settings of offline learning, Biggio et al. introduce
an attack that identifies poisoning points by gradient ascent
on the test error of the model [56]. Adding these inputs to
the training set results in a degraded classification accuracy
at inference. Their approach is (at least in theory) specific to
SVMs, because it relies on the existence of a closed-form
formulation of the model’s test error, which in their case
follows from the assumption that support vectors2 do not
change as a result of the insertion of poisoning points. Mei
et al. [57] fall under this class of approaches but derive the
gradient ascent formulation differently, by relaxing a bilevel
optimization problem (similarly to label flipping attacks
like [39]). Later, this same gradient ascent strategy was
adapted to feature selection algorithms like LASSO [58].

Such manipulations of the learning inputs are also effec-
tive ways to target reinforcement learning agents. Behzadan
et al. showed that gradient ascent techniques designed in the
context of adversarial examples (see Section 5 for a detailed
presentation of these techniques) were able to induce the
agent into learning the wrong policy [59].

Indirect poisoning of the learning inputs: Adversaries with
no access to the pre-processed data must instead poison
the model’s training data before its pre-processing (see
Figure 2). For instance, Perdisci et al. prevented Polygraph,
a worm signature generation tool [60], from learning mean-
ingful signatures by inserting perturbations in worm traffic
flows [61]. Polygraph combines a flow tokenizer together
with a classifier that determines whether a flow should be
in the signature. Polymorphic worms are crafted with noisy
traffic flows such that (1) their tokenized representations will
share tokens not representative of the worm’s traffic flow,
and (2) they modify the classifier’s threshold for using a
signature to flag worms. This attack forces Polygraph to
generate signatures with tokens that do not correspond to
invariants of the worm’s behavior.

4.2. Targeting Privacy and Confidentiality
During training, the confidentiality and privacy of the

data and model are not impacted by the fact that ML is
used, but rather the extent of the adversary’s access to the
system hosting them. This is a traditional access control
problem, which falls outside the scope of our discussion.

2. Support vectors are the subset of training points that suffice to define
the decision boundary of a support vector machine.

5. Inferring in Adversarial Settings
Adversaries may also attack ML systems at inference

time, once the deployed model’s parameters have been fixed.
For instance, the attacker may be targeting an intrusion
detection system’s whose rules were learned and fixed. Thus,
the attacker is interested in mounting a variant of its attack
that will instantly evade detection at runtime. Strong white-
box attackers have access to the model internals (e.g., its
architecture and parameters), whereas black-box adversaries
are limited to interacting with the model as an oracle (e.g.,
by submitting inputs and observing the model’s predictions).
In practice, capabilities range on a spectrum between these
two extrema. This perspective is used to structure the present
section, of which Figure 4 provides an overview. Note that
most privacy and confidentiality attacks are motivated in the
black-box setting, and seek to expose respectively properties
of the data or the model itself (see Section 5.2).

5.1. White-box adversaries
White-box adversaries have varying degrees of access

to the model h as well as its parameters θ. This strong
threat model allows the adversary to conduct particularly
devastating attacks. While it is often difficult to obtain,
white-box access is not always unrealistic. For instance, ML
models trained on data centers are compressed and deployed
to smartphones [62], in which case reverse engineering may
enable adversaries to recover the model’s internals (e.g., its
parameter values) and thus obtain white-box access.

Integrity: To target a system’s prediction integrity at infer-
ence, adversaries perturb the inputs of the ML model. This
can be interpreted as modifying the distribution that gener-
ates data at inference. We first describe strategies that require
direct manipulation of model inputs, and then consider
indirect perturbations resilient to the pre-processing stages
of the system’s data pipeline (as illustrated in Figure 2).

Direct manipulation of model inputs: Here, adversaries di-
rectly alter the feature values processed by the model. For
instance, the adversary’s goal may be to have a classifier
assign the wrong class to inputs [19]. Szegedy et al. coined
the term adversarial example to refer to such inputs [24].
Similar to concurrent work [42], they formalize the search
for adversarial examples as a minimization problem:

argmin
r

h(x+ r) = l s.t. x∗ = x+ r ∈ D (1)

The input x, correctly classified by h, is perturbed with r to
produce an adversarial example x∗ that remains in the input
domain D but is assigned the target label l. When the target l
is chosen, the attack is a source-target misclassification [21]
(also referred to as targeted in the literature). When l can
be any label different from h(x), the attack is said to be
a simple misclassification (or sometimes to be untargeted).
Attacks constructing adversarial examples differ from one
another by the approximation they use to solve Equation 1
when the model h is not convex.

The first class of attack techniques applies existing
optimizers. For instance, Szegedy et al. use the L-BFGS

405

Integrity Privacy
Knowledge Access to model input Access to Source-target Training data Model

of model hθ x and output h(x) training data Misprediction misprediction Membership extraction extraction

White-Box
Full No [42], [43], [44] [24], [21], [44], [45], [46] [47] [48]

Through pipeline only No [49], [50], [23] [50], [23]

Black-Box

Yes No [51] [30], [47] [52], [29] [53]

Input x only
Yes [26], [24], [43] [24] [53]
No [25], [54] [55]

Through pipeline only No [50]

Figure 4. Attacks at inference: all of these works are discussed in Section 5 and represent the threat models explored by the research community.

algorithm [63] to solve Equation 1, which handles the input
domain constraint by design. They were the first to find that
a wide range of ML models, including deep neural networks
with state-of-the-art accuracy on vision tasks were misled by
perturbations r imperceptible to humans. Carlini et al. [46]
revisited this approach with a different optimizer, Adam, by
encoding the domain constraint as a change of variable.

Other techniques make assumptions to solve Equation 1
efficiently. This is notably the case of the fast gradient sign
method introduced by Goodfellow et al. [43]. A lineariza-
tion assumption reduces the computation of an adversarial
example x∗ to: x∗ = x + ε · sign(∇�xJh(θ, x, y)), where
Jh is the cost function used to train the model h. Despite
the approximation made, a model with close to state-of-
the-art performance on MNIST, a widely-used corpus of
70,000 handwritten digits used for validating ML systems
for pattern recognition [64], misclassifies 89.4% of this
method’s adversarial examples. This empirically validates
the hypothesis that erroneous model predictions on adversar-
ial examples are likely due to the linear extrapolation made
by components of ML models (e.g., individual neurons of
a DNN) for inputs far from the training data.

In Equation 1, the minimization of perturbation r can be
expressed with different metrics. These formulations all lead
to different attacks [21], [44], [65]. The choice of an appro-
priate metric (often a �p norm) is problem-dependent. For
instance, when crafting malware that evades detection by a
ML system, it is easier to introduce perturbations r that only
modify a limited subset of the features, rather than making
small changes to all features [49]. To this effect, Papernot
et al. introduced a Jacobian-based adversarial example algo-
rithm that minimizes the L0 norm of r [21], i.e. the number
of features perturbed. On average, only 4% of the features
of an MNIST test set input are perturbed to have it classified
in a chosen target class with 97% success—whereas most
of the approaches introduced previously perturbed the entire
input (albeit by smaller changes) to achieve this success rate.

The variety of algorithms that find adversarial directions
suggests that model errors form a continuous space rather
than being scattered in small pockets throughout the mod-
els’ output surface. Warde-Farley and Goodfellow showed
that adversarial examples form a space of dimension at
least two [66]. Later, Tramèr et al. introduced the Gradient
Aligned Adversarial Subspace method, which uses a first-
order approximation similar to the one used to define the fast
gradient sign method to directly estimate the dimensionality
of the dense space formed by adversarial examples [67].

Our take-away 5.1. Models often extrapolate linearly
from the limited subspace covered by the training
data [43]. Algorithms can exploit this regularity in di-
recting search toward prospective adversarial regions.

Indirect manipulation of model inputs: When the adversary
cannot directly modify feature values used as model inputs,
it must find perturbations preserved by the data pipeline
that precedes the classifier in the overall targeted system.
Strategies operating in this threat model construct adversar-
ial examples in the physical domain stage of Figure 2.

Kurakin et al. showed how printouts of adversarial ex-
amples produced by the fast gradient sign algorithm were
still misclassified by an object recognition model [50]. They
fed the model with photographs of the printouts, thus re-
producing the typical pre-processing stage of a computer
vision system’s data pipeline. They also found these physical
adversarial examples to be resilient to pre-processing defor-
mations like contrast modifications or blurring. Sharif et al.
applied the approach introduced in [24] to find adversarial
examples that are printed on glasses frames, which once
worn by an individual result in its face being misclassified
by a face recognition model [23]. Adding penalties to ensure
the perturbations are physically realizable (i.e., printable) in
Equation 1 is sufficient to conduct misclassification attacks
(the face is misclassified in any wrong class), and to a
more limited extent source-target misclassification attacks
(the face is misclassified in a chosen target class).

Our take-away 5.2. To be resilient to the pipeline’s de-
formations, adversarial examples in physical domains
need to introduce adapted, often larger, perturbations.
This suggests that enforcing physical realizability and
domain constraints may reduce a model’s error space.

Beyond classification: Alfeld et al. [45] examine autoregres-
sive models, where the prediction xt of a time series depends

on previous k realizations of x, that is, xt =
∑k

i=1 cixt−i;
such models are prevalent in market prediction. An adver-
sary manipulates the input data with the goal of achiev-
ing their desired prediction, given budget constraints. The
authors formulate the adversary’s manipulation problem as
quadratic optimization and provide efficient solutions.

Adversarial examples also apply to reinforcement learn-
ing. Huang et al. demonstrated that a RL agent is vulnerable
to adversarial perturbations of its environment after it has

406

been trained [68]. Using the fast gradient method (see
above), the adversary induces the agent into misbehaving
immediately or at a later time—effectively creating “sleeper
agents” that behave correctly for several time steps after the
environment was perturbed before taking wrong actions.

Our take-away 5.3. Although research has focused on
classification, adversarial example algorithms extend
to other settings like reinforcement learning: e.g., the
adversary perturbs a frame in a video game to force
an agent to take wrong actions.

Privacy and Confidentiality: Confidentiality attacks in the
white-box threat model are trivial because the adversary
already has access to the model parameters. As discussed
in Section 3, adversaries targeting the privacy of data ma-
nipulated by a ML system are interested in recovering
information about either the training data. The simplest
attack against data consists in performing a membership
test, i.e. determining whether a particular input was used
in the training dataset of a model. Stronger opponents may
seek to extract fully or partially unknown training points.
Few attacks operate in the white-box threat model, as the
black-box model (see below) is more realistic for privacy.

Ateniese et al. infer statistical information about the
training data from a trained model hθ [48], that is, whether
its training data verified a certain statistical property. Their
attack generates several datasets, where some exhibit the
statistical property and others do not. A model is trained
on each dataset independently. The adversary then trains
a meta-classifier: it takes as its inputs these models and
predicts if their dataset verified the statistical property. The
meta-classifier is then applied to the model of interest hθ to
fulfill the initial adversarial goal. One limitation is that all
classifiers must be trained with the same technique than the
model hθ being attacked.

5.2. Black-box adversaries
When attacking black-box systems, adversaries do not

know the model internals. This prohibits the strategies de-
scribed in Section 5.1: for instance, integrity attacks require
that the attacker compute gradients defined using the model
h and its parameters θ. However, black-box access is per-
haps a more realistic threat model, as all it requires is access
to the output responses. For instance, an adversary seeking
to penetrate a computer network rarely has access to the
specifications of its intrusion detection system—but they can
often observe how it responds to network events. Similar
attacks are key to performing reconnaissance in networks
to determine their environmental detection and response
policies. We focus on strategies designed irrespectively of
the domain ML is being applied to, albeit heuristics specific
to certain applications exist, e.g., spam filtering [69], [70].

A common threat model for black-box adversaries is the
one of an oracle, borrowed from the cryptography commu-
nity: the adversary may issue queries to the ML model and
observe its output for any chosen input. This is particularly
relevant in the increasingly popular environment of ML as

a Service cloud platforms, where the model is potentially
accessible through a query interface. Without access to the
training data or ML algorithm, querying the target model and
knowledge of the class of target models allows the adversary
to reconstruct the model with similar amounts of query data
as used in training [71] Thus, a key metric when comparing
different attacks is the wealth of information returned by the
oracle, and the number of oracle queries.

Integrity: Lowd et al. estimate the cost of misclassifica-
tion in terms of the number of queries to the black-box
model [72]. The adversary has oracle access to the model.
A cost function is associated with modifying an input x
to a target instance x∗. The cost function is a weighted
l1difference between x∗ and x. The authors introduce ACRE
learnability, which poses the problem of finding the least
cost modification to have a malicious input classified as
benign using a polynomial number of queries to the ML
oracle. It is shown that continous features allow for ACRE
learnability while discrete features make the problem NP-
hard. Because ACRE learnability also depends on the cost
function, it is a different problem from reverse engineering
the model. Following up on this thread, Nelson et al. [73]
identify the space of convex inducing classifiers—those
where one of the classes is a convex set—that are ACRE
learnable but not necessarily reverse engineerable.

Direct manipulation of model inputs: Adversaries with ac-
cess to class probabilities can recover many details of the
underlying black-box model, as shown by model extraction
attacks (see paragraph below). In these settings, Xu et al.
apply a genetic algorithm. The fitness of genetic variants
obtained by mutation is defined in terms of the oracle’s class
probability predictions [51]. The approach evades a random
forest and SVM used for malware detection. However, com-
puting the genetic variants is a challenge for problems where
the number of input features is larger.

When the adversary cannot access probabilities, it is
more difficult to extract information about the decision
boundary, a pre-requisite to find input perturbations that
result in erroneous predictions. In the following works,
the adversary only observes the first and last stage of the
pipeline from Figure 2: e.g., the input (which they produce)
and the class label in classification tasks. Szegedy et al. first
observed adversarial example transferability [24]: i.e., the
property that adversarial examples crafted to be misclassified
by a model are likely to be misclassified by a different
model. This transferability property holds even when models
are trained on different datasets.

Assuming the availability of surrogate data to the ad-
versary, Laskov et al. explored the strategy of training a
substitute model for the targeted one [26]. They exploit
a semantic gap to evade a malware PDF detector: they
inject additional features that are not interpreted by PDF
renderers. As such, their attack does not generalize well to
other application domains or models.

Papernot et al. used adversarial example transferability
to conduct black-box attacks [25]. They show how attackers
can force a remotely hosted ML model to misclassify inputs

407

without access to its architecture, parameters, or training
data. The attack trains a substitute model using synthetic in-
puts generated by the adversary and labeled by querying the
oracle. The substitute model is then used to craft adversarial
examples that transfer back to (i.e., are misclassified by) the
originally targeted model. They force MetaMind, an online
deep learning API, to misclassify inputs at rates above 84%.
In a follow-up work [54], the attack is generalized to many
ML models. For instance, the attack on a logistic regression
hosted by Amazon has a success rate of 96%.

This strategy is more likely to create adversarial exam-
ples that transfer (i.e., evade the targeted model) in a target
class chosen by the adversary if they simultaneously evade
several substitute models with different architectures [55].

Our take-away 5.4. Adversarial examples transfer
from one model to another because their individual
error spaces are high-dimensional, making it likely
that these error spaces will intersect. In addition, two
models solving the same ML task with comparable per-
formance are likely to have similar decision boundaries

Data pipeline manipulation: Kurakin et al. [50] showed
experimentally that transferability holds in spite of pre-
processing stages of the system’s data pipeline. Indeed, they
evaluated their physical adversarial examples (i.e., printouts
of an adversarial image) both on the model that they were
targeting and a different model used by a smartphone app
to recognize objects. Their results show that the physically
printed perturbations reliably fool both the model they were
originally targeting and the second black-box model.

Privacy and Confidentiality: In black-box settings, adver-
saries targeting privacy may pursue the goals discussed in
white-box settings: membership attacks and training data
extraction. In addition, since the model internals are now
unknown to them, extracting model parameters themselves
is now a valid goal when targeting model confidentiality.

Membership attacks: This type of adversary is looking to
test whether or not a specific point was part of the training
dataset analyzed to learn the model’s parameters. Shokri
et al. show how to conduct this type of attack against
black-box models [30]. Their strategy exploits differences
in the model’s confidence on points that were or were
not seen during training. For each class of the targeted
black-box model, they train several shadow models. Each
shadow model is trained to solve the membership inference
test with synthetic samples of the corresponding class. The
procedure that generates synthetic data is initialized with
a random input and performs hill climbing by querying the
original model to find modifications of the input that yield a
classification with strong confidence in the class of interest.
These synthetic inputs are assumed to be statistically similar
to inputs contained in the black-box model’s training data.

Hayes et al. extend the attack to the unsupervised learn-
ing ofgenerative models [47]. Modern generative approaches
often learn a neural network that models the distribution of
training points. These models are used to generate synthetic

data, with numerous applications such as compression or
learning with little supervision (i.e., few training labels). The
attack of Hayes et al. relies on a specific framework for
generative models named generative adversarial networks
(GAN) [74]. They show that the discriminator model in the
GAN framework (used during training to evaluate the per-
formance of the generative model by comparing its outputs
to samples from the training distribution) can be leveraged
in similar ways to the shadow models of Shokri et al. [30].
Given a set of training points, their attack identifies points
which the generative model is likely to have been trained
on by observing the confidence of the discriminator model.

Training data extraction: Fredrikson et al. present the model
inversion attack [52]. For a medicine dosage prediction task,
they show that given access to the model and auxiliary infor-
mation about the patient’s stable medicine dosage, they can
recover genomic information about the patient. Although the
approach illustrates privacy concerns that may arise from
giving access to ML models trained on sensitive data, it is
unclear whether the genomic information is recovered be-
cause of the ML model or the strong correlation between the
auxiliary information that the adversary also has access to
(the patient’s dosage) [75]. Model inversion enables adver-
saries to extract training data from model predictions [29].
However, the inputs extracted are not specific points of the
training dataset, but rather an average representation of the
inputs that are classified in a class—similar to what is done
by saliency maps [76]. The demonstration is convincing
in [29] because each class corresponds to a single individual.

Model extraction: Among direct confidentiality considera-
tions like intellectual property, extracting ML model also
has privacy implications—as models have been shown to
memorize training data at least partially. Tramer et al. show
how to extract parameters of a model from the observation of
its predictions [53]. Their attack consists in applying equa-
tion solving to recover parameters θ from sets of observed
input-output pairs (x, hθ(x)). While simple, the approach
is difficult to scale to scenarios where the adversary loses
access to the probabilities returned for each class, i.e. when
it can only access the label. This leaves room for future
work to make such extraction techniques more practical.

6. Towards Robust, Private, and Accountable
Machine Learning Models

After presenting attacks conducted at training in Sec-
tion 4 and inference in Section 5, we cover efforts at the
intersection of security, privacy, and ML that are relevant to
their mitigation. We draw parallels between the seemingly
unrelated goals of: (a) robustness to distribution drifts, (b)
learning privacy-preserving models, and (c) fairness and
accountability. Many of these remain largely open problems,
thus we draw insights useful for future work.

6.1. Robustness of models to distribution drifts

To mitigate the integrity attacks presented in Section 5,
ML needs to be robust to distribution drifts: i.e., situa-

408

tions where the training and test distributions differ. In-
deed, adversarial manipulations are instances of such drifts.
During inference, an adversary might introduce positively
connotated words in spam emails to evade detection, thus
creating a test distribution different from the one analyzed
during training [70]. The opposite, modifying the training
distribution, is also possible: the adversary might include an
identical keyword in many spam emails used for training,
and then submit spam ommiting that keyword at test time.

Defending against training-time attacks: Most defense
mechanism at training-time rely on the fact that poisoning
samples are typically out of the expected input distribution.

Rubinstein et al. [77] pull from robust statistics to build
a PCA-based detection model robust to poisoning. To limit
the influence of outliers to the training distribution, they
constrain the PCA algorithm to search for a direction whose
projections maximize a univariate dispersion measure based
on robust projection pursuit estimators instead of the stan-
dard deviation. In a similar approach, Biggio et al. limit
the vulnerability of SVMs to training label manipulations
by adding a regularization term to the loss function, which
in turn reduces the model sensitivity to out-of-diagonal
kernel matrix elements [37]. Their approach does not impact
the convexity of the optimization problem unlike previous
attempts [78], [79], which reduces the impact of the defense
mechanism on performance.

Barreno et al. make proposals to secure learning [19].
These include the use of regularization in the optimization
problems solved to train ML models. This removes some of
the complexity exploitable by an adversary. Alternatively,
they also propose using obfuscation or disinformation: the
defender keeps a holdout set of the data or some details of
the model secret. However, this violates security fundamen-
tals, such as the ones stated by Kerckhoffs [80].

Recently, Steindhardt et al. extended this line of work
by augmenting the defender with a detection model that
attempts to remove data points outside a feasible set (i.e.,
outliers) before the model is learned [81].

Defending against inference-time attacks: The difficulty
in attaining robustness to adversarial manipulations at in-
ference stems from the inherent complexity of ML models’
output surfaces. Yet, a paradox arises from the observation
that this complexity of ML hypotheses is necessary to confer
modeling capacity sufficient to train robust models, which
may indicate a fundamental disadvantage for the defender.
Defending against inference attacks remains largely an open
problem. We explain why mechanisms that smooth model
outputs in infinitesimal neighborhoods of the training data
fail to guarantee integrity. Then, we present defenses effec-
tive against larger perturbations.

Defending by gradient masking: Most integrity attacks in
Section 5 rely on the adversary being able to find small
perturbations that lead to significant changes in the model’s
output. Thus, a natural defense strategy is to reduce the sen-
sitivity of models to small changes made to their inputs. This
sensitivity is estimated by computing first order derivatives

(a) Defended model (b) Substitute model

x x∗x∗ x

r r

h(x∗)

h(x)

Figure 5. Evading infinitesimal defenses using transferability: the de-
fended model is smooth in neighborhoods of training points: i.e., gradients
of the model outputs with respect to its inputs are zero and the adver-
sary does not know in which direction to look for adversarial examples.
However, the adversary can use the substitute model’s gradients to find
adversarial examples that transfer back to the defended model. Note that
this effect would be exacerbated by models with more than one dimension.

of the model h with respect to its inputs. These gradients
are minimized during the learning phase: hence the gradient
masking terminology. We detail why this intuitive strategy
is bound to have limited success.

Gu et al. introduce deep contractive networks, a class of
models trained using a smoothness penalty [82]. The penalty
is defined with the norm of the model’s Jacobian matrix, and
is approximated layer by layer to preserve computational
efficiency. Although contractive models are more robust to
adversaries, the penalty reduces their capacity, with conse-
quences on their performance and applicability.

The approach introduced in [83] does not involve the ex-
pensive computation of gradient-based penalties. The tech-
nique is an adaptation of distillation [62], a mechanism
designed to compress large models into smaller ones while
preserving prediction accuracy. In a nutshell, the large model
labels data with class probabilities, which are then used to
train the small model. Instead of compression, the authors
apply distillation to increase the robustness of DNNs to
adversarial samples. They report that the additional entropy
in probability vectors (compared to labels) yields models
with smoother output surfaces. In experiments with the fast
gradient sign method [84] and the Jacobian attack [83],
larger perturbations are required to achieve misclassification
of adversarial examples by the distilled model. However,
Carlini and Wagner [46] identified a variant of the attack
in [24], which distillation fails to mitigate.

A simpler variant of distillation, called label smooth-
ing [85], improves robustness to adversarial samples crafted
using the fast gradient sign method [86]. It replaces hard
class labels (a vector where the only non-null element is the
correct class index) with soft labels (each class is assigned a
value close to 1/N for a N -class problem). Yet, this variant
was found to not defend against more precise but computa-
tionally expensive Jacobian-based iterative attack [21].

These results suggest limitations of defense strategies
that seek to conceal gradient-based information exploited
by adversaries. In fact, defensive distillation can be evaded
using a black-box attack [25]. We here detail the reason
behind this evasion. When applying defense mechanisms
that smooth a model’s output surface, as illustrated in Fig-
ure 5.(a), the adversary cannot craft adversarial examples
because the gradients it needs to compute (e.g., the deriva-
tive of the model output with respect to its input) have values

409

close to zero. In [25], this is referred to as gradient masking.
The adversary may instead use a substitute model, illustrated
in Figure 5.(b), to craft adversarial examples, since the
substitute is not impacted by the defensive mechanism and
will still have the gradients necessary to find adversarial
directions. Due to the adversarial example transferability
property [24] described in Section 5, the adversarial exam-
ples crafted using the substitute are also misclassified by
the defended model. This attack vector is likely to apply to
any defense performing gradient masking, i.e. any mecha-
nism defending against adversarial examples in infinitesimal
neighborhoods of the training points.

Our take-away 6.1. Any defense that tampers with ad-
versarial example crafting heuristics (e.g., by masking
gradients used by adversaries) but does not mitigate
the underlying erroneous model predictions can be
evaded using a transferability-based black-box attack.

Defending against larger perturbations: Szegedy et al. [24]
first suggested injecting adversarial samples, correctly la-
beled, in the training set as a means to make the model
robust. They showed that models fitted with this mixture
of legitimate and adversarial samples were regularized and
more robust to adversaries using their attack.

This strategy was later made practical by Goodfellow
et al. [43]: the fast gradient sign method defines a dif-
ferentiable and efficiently-computed adversarial objective
during training. The defender minimizes the error between
the model’s predictions on adversarial examples (computed
using the current parameter candidates throughout training)
and the original labels. For instance, the misclassification
rate of a MNIST model is reduced from 89.4% to 17.9% on
adversarial examples [43]. Huang et al. [65] developed the
intuition behind adversarial training. They formulate a min-
max problem between the adversary applying perturbations
to each training point to maximize the model’s classification
error, and the learning procedure attempting to minimize this
error. The performance improvements over previous efforts
are however often statistically non-significant.

Although adversarial training defends against attacks on
which the model is trained, it is weak in the face of adaptive
adversaries. For instance, Moosavi et al. [44] use a different
heuristic to find adversarial examples when training and
attacking. Their evaluation shows that the model is no longer
robust in these settings.

Our take-away 6.2. Even with heuristics like adver-
sarial training, it is impossible to fully cover the ML
task’s data domain. Hence, future proposals for defend-
ing against adversarial examples will almost certainly
need to improve the ability of models to be uncertain
when predicting far from their training subspace [87].

6.2. Learning and Inferring with Privacy

One way of defining privacy-preserving models is that
they do not reveal any additional information about the

subjects involved in their training data. This is captured by
differential privacy [88], a rigorous framework to analyze
the privacy guarantees provided by algorithms. Informally, it
formulates privacy as the property that an algorithm’s output
does not differ significantly statistically for two versions of
the data differing by only one record. In our case, the record
is a training point and the algorithm the ML model.

A randomized algorithm is said to be (ε, δ) differentially
private if for two neighboring training datasets T, T ′, i.e.
which differ by at most one training point, the algorithm A
satisfies for any acceptable set S of algorithm outputs:

Pr[A(T) ∈ S] ≤ eεPr[A(T ′) ∈ S] + δ (2)

The parameters (ε, δ) define an upper bound on the probabil-
ity that the output of A differs between T and T ′. Parameter
ε is a privacy budget: smaller budgets yield stronger privacy
guarantees. The second parameter δ is a failure rate for
which it is tolerated that the ε bound does not hold.

To provide any form of meaningful privacy, such as
differential privacy, it is necessary to randomize part of the
ML system’s pipeline. This may be done either in the pre-
processing stages preceding the model (this falls outside the
scope of this paper), while training the model, or at inference
by randomizing the predictions that the model outputs.

Training: At training, random noise may be injected to the
data, the cost minimized by the learning algorithm, or the
values of parameters learned.

An instance of training data randomization is formalized
by local privacy [89]. In the scenario where users send data
to a centralized server that trains a model with the data col-
lected, randomized response protects privacy: users respond
to server queries with the true answer at a probability q,
and otherwise return a random value with probability 1− q.
Erlingsson et al. showed that this allowed the developers
of a browser to collect meaningful and privacy-preserving
usage statistics from users [90].

Chaudhuri et al. show that objective perturbation, i.e.
introducing random noise in the cost function (that mea-
sures the error between the model predictions and the ex-
pected outputs) minimized during learning can provide ε-
differential privacy [91]. This noise is drawn from an expo-
nential distribution and scaled using the model sensitivity3

Bassily et al. provide improved algorithms and privacy anal-
ysis, along with references to many of the works intervening
in private learning through cost minimization [92]

Our take-away 6.3. Precisely quantifying the learning
algorithm’s sensitivity to training points is necessary
to establish differential privacy guarantees. For non-
convex models (e.g., neural nets), current loose bounds
on sensitivity require that learning be heavily random-
ized to protect data—often at the expense of utility.

3. In differential privacy research, sensitivity denotes the maximum
change in the model output when one of its training points is changed. This
is not identical to the sensitivity of ML models to adversarial perturbations
(see Section 5).

410

Shokri et al. showed that large-capacity models like deep
neural networks trained with multi-party computations from
noisy parameter values provide differential privacy guaran-
tees [93]. In centralized settings (a single entity trains the
model), an approach introduced by Abadi et al. guarantees
stronger differential privacy bounds. It randomly perturbs
gradients computed by the learning algorithm before they
are applied to update parameter values [94]. Under different
assumptions, namely the availability of public and unlabeled
data whose privacy does not need to be protected, it is possi-
ble to further improve the strength of the privacy protection
on sensitive (labeled) data [95], [96]. To begin, an ensemble
of teacher models is learned on (disjoint) partitions of the
training data. These teachers make predictions on the public
unlabeled data, and their outputs are aggregated in a noisy
fashion to produce a single label prediction with differential
privacy guarantee. This newly labeled dataset serves as a
training set for a student model. Given that this model was
trained on private labels, it may be deployed publicly.

Inference: To provide differential privacy, the ML’s behav-
ior may also be randomized at inference by introducing
noise to predictions. Yet, this degrades the accuracy of
predictions, since the amount of noise introduced increases
with the number of inference queries answered by the ML
model. Note that different forms of privacy, that often fall
under the realm of test data confidentiality, can be provided
during inference. For instance, Dowlin et al. use homomor-
phic encryption [97] to encrypt the data in a form that
allows a neural network to process it without decrypting
it [98]. Although, this does not provide differential privacy,
it protects the confidentiality of each individual input when
the model owner is not trusted by a model user. The main
limitations are the performance overhead and the restricted
set of arithmetic operations supported by homomorphic
encryption, which introduce additional constraints in the
architecture design of the ML model.

6.3. Fairness and Accountability in ML

The opaque nature of ML generates concerns regarding
a lack of fairness and accountability of model predictions.
This is key in applications like banking or healthcare [99].
In addition, legal frameworks like the European Data Pro-
tection Regulation require that companies provide an expla-
nation for algorithm predictions if they were made using
data considered sensitive or private [100]. In the interest of
space, we do not provide a comprehensive survey of rapid
technical progress made towards fairness and accountability,
which would necessitate a dedicated SoK. We focus here
on work relevant to previously discussed notions of security
(e.g., data poisoning) and privacy (e.g., differential privacy).

Fairness: In the ML pipeline from Figure 2, fairness is
relevant to the action taken in the physical domain based on
the model prediction. It should not nurture discrimination
against specific individuals [101], [102]. Training data is one
source of bias in ML. For instance, a dishonest data collector
might adversarially attempt to manipulate the learning into

producing a model that discriminates against certain groups.
Historical data also inherently reflects social biases [103].
Another source of bias is the learning algorithm itself,
which can be adapted to provide guarantees for subpopu-
lations of the training data [104]. These guarantees express
a particular definition of fairness: e.g., equal or unbiased
treatment [105]. They however introduce trade-offs between
the performance of a model and its fairness [101], [106].

To learn fair models, Zemel et al. learn an intermediate
representation that encodes a sanitized variant of the data,
as first discussed in [107]. Edwards et al. showed that
fairness could be achieved by learning in competition with
an adversary trying to predict the sensitive variable from
the fair model’s prediction [108]. They find connections
between fairness and privacy, as their approach also applies
to the task of removing sensitive annotations from images.
We expect future work at the intersection of fairness and
topics discussed in this paper to be fruitful. For instance,
connections between fairness and security have recently
been drawn; techniques like adversarial example algorithms
were applied to estimate how representative of a class a
particular input is, which led to the identification of racial
biases in popular image datasets [109].

Accountability: Accountability explains ML predictions
with the model internals hθ. Few models are interpretable by
design, i.e., match human reasoning [110], [111]. Datta et al.
introduced quantitative input influence measures to estimate
the influence of specific inputs on the model output [112].
Later, influence functions were exploited to mount poisoning
attacks against deep learning by introducing ambiguity in the
model’s training data [113]. Another avenue for accountabil-
ity is to compute inputs that the ML model is most sensitive
to. Activation maximization synthesizes inputs that highly
activate specific neurons of a neural network [114]. The
challenge lies in producing human-interpretable synthetic
inputs that faithfully represent the model’s behavior [115].
Activation maximization is also relevant to model failures
like adversarial examples. In fact, salient inputs that maxi-
mally activate particular models are produced with heuristics
similar to those commonly used to identify input directions
that yield adversarial examples misclassified by a model.
On the one hand, techniques used for accountability and
transparency are likely to yield improved attack techniques
because they increase the adversary’s understanding of how
the model’s decisions are made. On the other hand, they also
contribute to building a better understanding of the impact of
training data on the model learned by ML algorithm, which
is beneficial to privacy-preserving ML.

7. Conclusions

The security and privacy of machine learning is an active
yet nascent area. We explored the attack surface of systems
built upon ML. That analysis yields a natural structure for
reasoning about their threat models. In the large, a vast body
of work from diverse scientific communities paints a picture
that many vulnerabilities of ML and the countermeasures

411

used to defend against them are as yet unknown—yet a
science for understanding them is slowly emerging.

Take-aways from this systematization of knowledge
point towards varying—but related—notions of sensitivity.
Characterizing the sensitivity of learning algorithms to their
training data is essential to privacy-preserving ML. Simi-
larly, controlling the sensitivity of deployed models to data
they perform inference on is required for secure ML. Central
to these two notions, the sensitivity of generalization error
(i.e., the gap between performance on training and test
data) remains poorly understood for many models (including
neural nets) and calls for further research.

Acknowledgments

We thank Martı́n Abadi, Z. Berkay Celik, Ian Good-
fellow, Damien Octeau, and Kunal Talwar for feedback
on early versions of this document. We also thank Megan
McDaniel for taking good care of our diet before the
deadline. We would also like to thank Seda Guerses for
shepherding our paper. Nicolas Papernot is supported by a
Google PhD Fellowship in Security. Research was supported
in part by the Army Research Laboratory, under Coopera-
tive Agreement Number W911NF-13-2-0045 (ARL Cyber
Security CRA), and the Army Research Office under grant
W911NF-13-1-0421. The views and conclusions contained
in this document are those of the authors and should not
be interpreted as representing the official policies, either
expressed or implied, of the Army Research Laboratory or
the U.S. Government. The U.S. Government is authorized
to reproduce and distribute reprints for government purposes
notwithstanding any copyright notation hereon.

References
[1] W. House, “Preparing for the future of artificial intelligence,” Ex-

ecutive Office of the President, National Science and Technology
Council, Committee on Technology, 2016.

[2] C. P. Pfleeger and S. L. Pfleeger, Analyzing Computer Security:
A Threat/Vulnerability/Countermeasure Approach. Prentice Hall,
2012.

[3] D. Amodei, C. Olah, J. Steinhardt, P. Christiano, J. Schulman,
and D. Mané, “Concrete problems in AI safety,” arXiv preprint
arXiv:1606.06565, 2016.

[4] O. Ohrimenko, F. Schuster, C. Fournet, A. Mehta, S. Nowozin,
K. Vaswani, and M. Costa, “Oblivious multi-party machine learning
on trusted processors,” in 25th USENIX Security Symposium, 2016.

[5] K. P. Murphy, Machine Learning: A Probabilistic Perspective. MIT
Press, 2012.

[6] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classi-
fication with deep convolutional neural networks,” in Advances in
Neural Information Processing Systems, 2012, pp. 1097–1105.

[7] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence
learning with neural networks,” in Advances in Neural Information
Processing Systems, 2014, pp. 3104–3112.

[8] H. Drucker, D. Wu, and V. N. Vapnik, “Support vector machines
for spam categorization,” IEEE Transactions on Neural Networks,
vol. 10, no. 5, pp. 1048–1054, 1999.

[9] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: A review,”
ACM Computing Surveys, vol. 31, no. 3, pp. 264–323, 1999.

[10] A. Krizhevsky and G. Hinton, “Learning multiple layers of features
from tiny images,” 2009.

[11] D. Erhan, Y. Bengio, A. Courville, P.-A. Manzagol, P. Vincent,
and S. Bengio, “Why does unsupervised pre-training help deep
learning?” Journal of Machine Learning Research, vol. 11, pp. 625–
660, 2010.

[12] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A
survey,” ACM Computing Surveys, vol. 41, no. 3, pp. 15:1–15:58,
2009.

[13] J. Hu and M. P. Wellman, “Nash Q-learning for general-sum stochas-
tic games,” Journal of Machine Learning Research, vol. 4, pp. 1039–
1069, 2003.

[14] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Intro-
duction. MIT Press, 1998.

[15] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre et al.,
“Mastering the game of Go with deep neural networks and tree
search,” Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[16] C. M. Bishop, “Pattern recognition,” Machine Learning, 2006.

[17] I. Goodfellow, Y. Bengio, and A. Courville, “Deep learning,” 2016,
Book in preparation for MIT Press (www.deeplearningbook.org).

[18] N. S. Altman, “An introduction to kernel and nearest-neighbor
nonparametric regression,” The American Statistician, vol. 46, no. 3,
pp. 175–185, 1992.

[19] M. Barreno, B. Nelson, R. Sears, A. D. Joseph, and J. D. Tygar, “Can
machine learning be secure?” in ACM Symposium on Information,
Computer and Communications Security, 2006, pp. 16–25.

[20] L. Huang, A. D. Joseph, B. Nelson, B. I. Rubinstein, and J. Tygar,
“Adversarial machine learning,” in 4th ACM Workshop on Security
and Artificial Intelligence, 2011, pp. 43–58.

[21] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami, “The limitations of deep learning in adversarial settings,”
in 1st IEEE European Symposium on Security and Privacy, 2016.

[22] M. Kloft and P. Laskov, “Online anomaly detection under adversarial
impact,” in 13th International Conference on Artificial Intelligence
and Statistics, 2010, pp. 405–412.

[23] M. Sharif, S. Bhagavatula, L. Bauer, and M. K. Reiter, “Acces-
sorize to a crime: Real and stealthy attacks on state-of-the-art face
recognition,” in 23rd ACM SIGSAC Conference on Computer and
Communications Security, 2016, pp. 1528–1540.

[24] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Good-
fellow, and R. Fergus, “Intriguing properties of neural networks,” in
International Conference on Learning Representations, 2014.

[25] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and
A. Swami, “Practical black-box attacks against deep learning sys-
tems using adversarial examples,” arXiv preprint arXiv:1602.02697,
2016.

[26] N. Šrndić and P. Laskov, “Practical evasion of a learning-based
classifier: A case study,” in IEEE Symposium on Security and
Privacy, 2014, pp. 197–211.

[27] R. J. Bolton and D. J. Hand, “Statistical fraud detection: A review,”
Statistical Science, vol. 17, pp. 235–249, 2002.

[28] T. C. Rindfleisch, “Privacy, information technology, and health care,”
Communications of the ACM, vol. 40, no. 8, pp. 92–100, 1997.

[29] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks
that exploit confidence information and basic countermeasures,” in
22nd ACM SIGSAC Conference on Computer and Communications
Security, 2015, pp. 1322–1333.

[30] R. Shokri, M. Stronati, and V. Shmatikov, “Membership infer-
ence attacks against machine learning models,” arXiv preprint
arXiv:1610.05820, 2016.

[31] D. M. Powers, “Evaluation: From precision, recall and F-measure
to ROC, informedness, markedness and correlation,” Journal of
Machine Learning Technologies, vol. 2, pp. 37–63, 2011.

[32] M. Kearns and M. Li, “Learning in the presence of malicious errors,”
SIAM Journal on Computing, vol. 22, no. 4, pp. 807–837, 1993.

[33] A. Globerson and S. Roweis, “Nightmare at test time: Robust
learning by feature deletion,” in 23rd International Conference on
Machine Learning, 2006, pp. 353–360.

[34] N. Manwani and P. S. Sastry, “Noise tolerance under risk mini-
mization,” IEEE Transactions on Cybernetics, vol. 43, no. 3, pp.
1146–1151, 2013.

412

[35] B. Nelson and A. D. Joseph, “Bounding an attack’s complexity for
a simple learning model,” in First Workshop on Tackling Computer
Systems Problems with Machine Learning Techniques, 2006.

[36] G. Hulten, L. Spencer, and P. Domingos, “Mining time-changing
data streams,” in 7th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2001, pp. 97–106.

[37] B. Biggio, B. Nelson, and P. Laskov, “Support vector machines under
adversarial label noise,” in Asian Conference on Machine Learning,
2011, pp. 97–112.

[38] M. Mozaffari-Kermani, S. Sur-Kolay, A. Raghunathan, and N. K.
Jha, “Systematic poisoning attacks on and defenses for machine
learning in healthcare,” IEEE Journal of Biomedical and Health
Informatics, vol. 19, no. 6, pp. 1893–1905, 2015.

[39] H. Xiao, H. Xiao, and C. Eckert, “Adversarial label flips attack on
support vector machines,” in 20th European Conference on Artificial
Intelligence, 2012, pp. 870–875.

[40] V. N. Vapnik, Statistical Learning Theory. Wiley, 1998.

[41] B. Biggio, K. Rieck, D. Ariu, C. Wressnegger, I. Corona, G. Gi-
acinto, and F. Roli, “Poisoning behavioral malware clustering,” in
Workshop on Artificial Intelligence and Security, 2014, pp. 27–36.

[42] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić, P. Laskov,
G. Giacinto, and F. Roli, “Evasion attacks against machine learning
at test time,” in Machine Learning and Knowledge Discovery in
Databases. Springer, 2013, pp. 387–402.

[43] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and har-
nessing adversarial examples,” in 3d International Conference on
Learning Representations, 2015.

[44] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: A
simple and accurate method to fool deep neural networks,” in IEEE
Conference on Computer Vision and Pattern Recognition, 2016, pp.
2574–2582.

[45] S. Alfeld, X. Zhu, and P. Barford, “Data poisoning attacks against
autoregressive models,” in 30th AAAI Conference on Artificial In-
telligence, 2016, pp. 1452–1458.

[46] N. Carlini and D. Wagner, “Towards evaluating the robustness of
neural networks,” in IEEE Symposium on Security and Privacy,
2017, pp. 39–57.

[47] J. Hayes, L. Melis, G. Danezis, and E. De Cristofaro, “Logan:
Evaluating privacy leakage of generative models using generative
adversarial networks,” arXiv preprint arXiv:1705.07663, 2017.

[48] G. Ateniese, L. V. Mancini, A. Spognardi, A. Villani, D. Vitali,
and G. Felici, “Hacking smart machines with smarter ones: How to
extract meaningful data from machine learning classifiers,” Interna-
tional Journal of Security and Networks, vol. 10, no. 3, pp. 137–150,
2015.

[49] K. Grosse, N. Papernot, P. Manoharan, M. Backes, and P. McDaniel,
“Adversarial perturbations against deep neural networks for malware
classification,” in 22nd European Symposium on Research in Com-
puter Security, 2017.

[50] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial examples in
the physical world,” arXiv preprint arXiv:1607.02533, 2016.

[51] W. Xu, Y. Qi, and D. Evans, “Automatically evading classifiers: A
case study on PDF malware classifiers,” in Network and Distributed
Systems Symposium, 2016.

[52] M. Fredrikson, E. Lantz, S. Jha, S. Lin, D. Page, and T. Ristenpart,
“Privacy in pharmacogenetics: An end-to-end case study of person-
alized warfarin dosing,” in 23rd USENIX Security Symposium, 2014,
pp. 17–32.

[53] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart,
“Stealing machine learning models via prediction APIs,” in 25th
USENIX Security Symposium, 2016, pp. 601–618.

[54] N. Papernot, P. McDaniel, and I. Goodfellow, “Transferability in
machine learning: From phenomena to black-box attacks using
adversarial samples,” arXiv preprint arXiv:1605.07277, 2016.

[55] Y. Liu, X. Chen, C. Liu, and D. Song, “Delving into transfer-
able adversarial examples and black-box attacks,” arXiv preprint
arXiv:1611.02770, 2016.

[56] B. Biggio, B. Nelson, and L. Pavel, “Poisoning attacks against sup-
port vector machines,” in 29th International Conference on Machine
Learning, 2012.

[57] S. Mei and X. Zhu, “Using machine teaching to identify optimal
training-set attacks on machine learners,” in AAAI, 2015, pp. 2871–
2877.

[58] H. Xiao, B. Biggio, G. Brown, G. Fumera, C. Eckert, and F. Roli,
“Is feature selection secure against training data poisoning?” in Pro-
ceedings of the 32nd International Conference on Machine Learning
(ICML-15), 2015, pp. 1689–1698.

[59] V. Behzadan and A. Munir, “Vulnerability of deep reinforce-
ment learning to policy induction attacks,” arXiv preprint
arXiv:1701.04143, 2017.

[60] J. Newsome, B. Karp, and D. Song, “Polygraph: Automatically
generating signatures for polymorphic worms,” in Security and
Privacy, 2005 IEEE Symposium on. IEEE, 2005, pp. 226–241.

[61] R. Perdisci, D. Dagon, W. Lee, P. Fogla, and M. Sharif, “Mislead-
ing worm signature generators using deliberate noise injection,” in
Security and Privacy, 2006 IEEE Symposium on. IEEE, 2006, pp.
15–pp.

[62] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in
a neural network,” in NIPS-14 Workshop on Deep Learning and
Representation Learning. arXiv:1503.02531, 2014.

[63] D. C. Liu and J. Nocedal, “On the limited memory bfgs method for
large scale optimization,” Mathematical programming, vol. 45, no.
1-3, pp. 503–528, 1989.

[64] Y. LeCun and C. Cortes, “The mnist database of handwritten digits,”
1998.

[65] R. Huang, B. Xu, D. Schuurmans, and C. Szepesvari, “Learning
with a strong adversary,” arXiv preprint arXiv:1511.03034, 2015.

[66] D. Warde-Farley and I. Goodfellow, “Adversarial perturbations of
deep neural networks,” Advanced Structured Prediction, T. Hazan,
G. Papandreou, and D. Tarlow, Eds, 2016.

[67] F. Tramèr, N. Papernot, I. Goodfellow, D. Boneh, and P. McDaniel,
“The space of transferable adversarial examples,” arXiv preprint
arXiv:1704.03453, 2017.

[68] S. Huang, N. Papernot, I. Goodfellow, Y. Duan, and P. Abbeel,
“Adversarial attacks on neural network policies,” arXiv preprint
arXiv:1702.02284, 2017.

[69] G. L. Wittel and S. F. Wu, “On attacking statistical spam filters.” in
CEAS, 2004.

[70] D. Lowd and C. Meek, “Good word attacks on statistical spam
filters.” in CEAS, 2005.

[71] Y. Vorobeychik and B. Li, “Optimal randomized classification in ad-
versarial settings,” in 13th International Conference on Autonomous
Agents and Multi-Agent Systems, 2014, pp. 485–492.

[72] D. Lowd and C. Meek, “Adversarial learning,” in Proceedings of
the eleventh ACM SIGKDD international conference on Knowledge
discovery in data mining. ACM, 2005, pp. 641–647.

[73] B. Nelson, B. I. Rubinstein, L. Huang, A. D. Joseph, S. J. Lee,
S. Rao, and J. Tygar, “Query strategies for evading convex-inducing
classifiers,” Journal of Machine Learning Research, vol. 13, pp.
1293–1332, 2012.

[74] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,”
in Advances in Neural Information Processing Systems, 2014, pp.
2672–2680.

[75] F. McSherry, “Statistical inference considered harmful,” 2016.
[Online]. Available: https://github.com/frankmcsherry/blog/blob/
master/posts/2016-06-14.md

[76] M. D. Zeiler and R. Fergus, “Visualizing and understanding con-
volutional networks,” in Computer vision–ECCV 2014. Springer,
2014, pp. 818–833.

[77] B. I. P. Rubinstein, B. Nelson, L. Huang, A. D. Joseph, S.-h. Lau,
S. Rao, N. Taft, and J. D. Tygar, “Antidote: Understanding and
defending against poisoning of anomaly detectors,” in 9th ACM
SIGCOMM Conference on Internet measurement, 2009, pp. 1–14.

[78] G. Stempfel and L. Ralaivola, “Learning SVMs from sloppily la-
beled data,” in International Conference on Artificial Neural Net-
works. Springer, 2009, pp. 884–893.

[79] L. Xu, K. Crammer, and D. Schuurmans, “Robust support vector
machine training via convex outlier ablation,” in Twenty-First AAAI
National Conference on Artificial Intelligence, vol. 6, 2006, pp. 536–
542.

413

[80] A. Kerckhoffs, “La cryptographie militaire,” Journal des sciences
militaires, pp. 5–83, 1883.

[81] J. Steinhardt, P. W. Koh, and P. Liang, “Certified defenses for data
poisoning attacks,” arXiv preprint arXiv:1706.03691, 2017.

[82] S. Gu and L. Rigazio, “Towards deep neural network architectures
robust to adversarial examples,” in Proceedings of the 2015 Inter-
national Conference on Learning Representations. Computational
and Biological Learning Society, 2015.

[83] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, “Distil-
lation as a defense to adversarial perturbations against deep neural
networks,” in Proceedings of the 37th IEEE Symposium on Security
and Privacy. IEEE, 2016.

[84] N. Papernot and P. McDaniel, “On the effectiveness of defensive
distillation,” arXiv preprint arXiv:1607.05113, 2016.

[85] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna,
“Rethinking the inception architecture for computer vision,” arXiv
preprint arXiv:1512.00567, 2015.

[86] D. Warde-Farley and I. Goodfellow, “Adversarial perturbations of
deep neural networks,” in Advanced Structured Prediction, T. Hazan,
G. Papandreou, and D. Tarlow, Eds., 2016.

[87] Y. Li and Y. Gal, “Dropout inference in bayesian neural networks
with alpha-divergences,” arXiv preprint arXiv:1703.02914, 2017.

[88] C. Dwork, A. Roth et al., “The algorithmic foundations of differ-
ential privacy,” Foundations and Trends in Theoretical Computer
Science, vol. 9, no. 3-4, pp. 211–407, 2014.

[89] S. P. Kasiviswanathan, H. K. Lee, K. Nissim, S. Raskhodnikova,
and A. Smith, “What can we learn privately?” SIAM Journal on
Computing, vol. 40, no. 3, pp. 793–826, 2011.

[90] Ú. Erlingsson, V. Pihur, and A. Korolova, “Rappor: Randomized
aggregatable privacy-preserving ordinal response,” in 21st ACM
SIGSAC Conference on Computer and Communications Security,
2014, pp. 1054–1067.

[91] K. Chaudhuri, C. Monteleoni, and A. D. Sarwate, “Differentially
private empirical risk minimization,” Journal of Machine Learning
Research, vol. 12, no. Mar, pp. 1069–1109, 2011.

[92] R. Bassily, A. Smith, and A. Thakurta, “Differentially private empir-
ical risk minimization: Efficient algorithms and tight error bounds,”
arXiv preprint arXiv:1405.7085, 2014.

[93] R. Shokri and V. Shmatikov, “Privacy-preserving deep learning,” in
22nd ACM SIGSAC Conference on Computer and Communications
Security, 2015, pp. 1310–1321.

[94] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov,
K. Talwar, and L. Zhang, “Deep learning with differential privacy,”
in 23rd ACM SIGSAC Conference on Computer and Communica-
tions Security, 2016, pp. 308–318.

[95] J. Hamm, P. Cao, and M. Belkin, “Learning privately from multi-
party data,” arXiv preprint arXiv:1602.03552, 2016.

[96] N. Papernot, M. Abadi, Ú. Erlingsson, I. Goodfellow, and K. Talwar,
“Semi-supervised knowledge transfer for deep learning from private
training data,” arXiv preprint arXiv:1610.05755, 2016.

[97] R. L. Rivest, L. Adleman, and M. L. Dertouzos, “On data banks
and privacy homomorphisms,” Foundations of secure computation,
vol. 4, no. 11, pp. 169–180, 1978.

[98] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig, and
J. Wernsing, “Cryptonets: Applying neural networks to encrypted
data with high throughput and accuracy,” in Proceedings of The 33rd
International Conference on Machine Learning, 2016, pp. 201–210.

[99] I. W. P. Consortium et al., “Estimation of the warfarin dose with
clinical and pharmacogenetic data,” N Engl J Med, vol. 2009, no.
360, pp. 753–764, 2009.

[100] B. Goodman and S. Flaxman, “European union regulations on
algorithmic decision-making and a” right to explanation”,” arXiv
preprint arXiv:1606.08813, 2016.

[101] J. Kleinberg, S. Mullainathan, and M. Raghavan, “Inherent trade-
offs in the fair determination of risk scores,” arXiv preprint
arXiv:1609.05807, 2016.

[102] M. J. Kusner, J. R. Loftus, C. Russell, and R. Silva, “Counterfactual
fairness,” arXiv preprint arXiv:1703.06856, 2017.

[103] S. Barocas and A. D. Selbst, “Big data’s disparate impact,” Califor-
nia Law Review, vol. 104, 2016.

[104] M. B. Zafar, I. Valera, M. Gomez Rodriguez, and K. P. Gummadi,
“Fairness constraints: Mechanisms for fair classification,” arXiv
preprint arXiv:1507.05259, 2017.

[105] M. Kearns, “Fair algorithms for machine learning,” in Proceedings of
the 2017 ACM Conference on Economics and Computation. ACM,
2017, pp. 1–1.

[106] S. Corbett-Davies, E. Pierson, A. Feller, S. Goel, and A. Huq, “Al-
gorithmic decision making and the cost of fairness,” in Proceedings
of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM, 2017, pp. 797–806.

[107] C. Dwork, M. Hardt, T. Pitassi, O. Reingold, and R. Zemel, “Fair-
ness through awareness,” in Proceedings of the 3rd Innovations in
Theoretical Computer Science Conference. ACM, 2012, pp. 214–
226.

[108] H. Edwards and A. Storkey, “Censoring representations with an
adversary,” arXiv preprint arXiv:1511.05897, 2015.

[109] P. Stock and M. Cisse, “Convnets and imagenet beyond accuracy:
Explanations, bias detection, adversarial examples and model criti-
cism,” arXiv preprint arXiv:1711.11443, 2017.

[110] B. Letham, C. Rudin, T. H. McCormick, D. Madigan et al., “In-
terpretable classifiers using rules and bayesian analysis: Building a
better stroke prediction model,” The Annals of Applied Statistics,
vol. 9, no. 3, pp. 1350–1371, 2015.

[111] M. T. Ribeiro, S. Singh, and C. Guestrin, “Why should i trust
you?: Explaining the predictions of any classifier,” in Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM, 2016, pp. 1135–1144.

[112] A. Datta, S. Sen, and Y. Zick, “Algorithmic transparency via quanti-
tative input influence,” in Proceedings of 37th IEEE Symposium on
Security and Privacy, 2016.

[113] P. W. Koh and P. Liang, “Understanding black-box predictions via
influence functions,” arXiv preprint arXiv:1703.04730, 2017.

[114] D. Erhan, Y. Bengio, A. Courville, and P. Vincent, “Visualizing
higher-layer features of a deep network,” University of Montreal,
vol. 1341, 2009.

[115] A. Mahendran and A. Vedaldi, “Visualizing deep convolutional
neural networks using natural pre-images,” International Journal of
Computer Vision, pp. 1–23, 2016.

414

