THE ANALYSIS OF D,, A DETAILED DESIGN METRIC,
ON LARGE SCALE SOFTWARE

A THESIS
SUBMITTED TO THE GRADUATE SCHOOL
OF BALL STATE UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
OF MASTER OF SCIENCES
BY
PATRICK DREW MCDANIEL

ADVISOR - WAYNE M. ZAGE

Committee Approval:

b /1?1,\.._ T *'f',/ 5“’,-’/ 5/
Committee Chair;nan Date
Wt F Fadds /30 =7/
Committee Member / Date
O&ﬂ/&w;? 7.8 2&(.«4?&/ y" 5 - é//
Committee Member 7 lDate
Department Head Approval:
Gl btk
Head of Department Date

Graduate Office Approval:

Dean of Graduate School Date

THE ANALYSIS OF D, A DETAILED DESIGN METRIC,
ON LARGE-SCALE SOFTWARE

A THESIS
SUBMITTED TO THE GRADUATE SCHOOL
OF BALL STATE UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
MASTER OF SCIENCES
BY
PATRICK DREW MCDANIEL
ADVISOR - WAYNE M. ZAGE

BALL STATE UNIVERSITY
MUNCIE, INDIANA
MAY 1991

Acknowledgements

I wish to thank first and foremost the members of my thesis committee,
Dr. Wayne Zage, Chairman, Dr. Clinton Fuelling, and Profesor Dolores
Zage.

I also would like to thank Mary Meadows for her help in acquiring the
resources needed to complete this thesis as well in keeping my
perspective, the members of the Ball State Design Metrics team for their
suggestions, and John Cassidy for his advice and help.

I would like to thank my family for their support throughout my
education.

[would like give a special thanks to my father, without whose help this
thesis would not have been possible.

11

Table of Contents

Item Page

Title Page e i

Acknowledgements i

Table of Contents i iii

List of Tables e e iv

List of FIZUTES it ren s v

Introduction e e css e e 1

Chapter 1 4
D. Definition and Background

Chpater 2 20
Other Detailed Design Metrics

Chapter 3 e 43
Pilot Study - CS680 Projects

Chapter 4 53
The Data Collection Process

Chapter 5 63
Results of STANFINS Data

Bibliography = 83

Appedices
Appendix A e 85
Appendix B e 89
Appendix C e 92
Appendix D e, 93
Appendix E e 96

iil

=]
v
=3
e
O

[}

o b=t O 00 3O T OB b O GO 00 = O U QO BD =t

CJO[\UHMN’_‘O

00 0B 1 91 0T 91 0T T G QT 1 00 61 G 9 60 69 69 69 80 89 19 B9 1O B9 e

13

List of Tables

Table Name

Sample Population

Volume Metrics

Software Science Metrics

Flow Control Metrics

Reachability and Minimum Number of Paths
Data Control and Nesting Level Metrics
Di Metric Counts

Pilot Study Projects

LOC as a Predictor

V(G) as a Predictor

D, (Unit Weights) as a Predictor
D, (W, = 2.5) as a Predictor

Easy Group Statistics 1

Easy Group Statistics 2

Medium Group Statistics 1
Medium Group Statistics 2

Hard Group Statistics 1

Hard Group Statistics 2

All Group Statistics 1

All Group Statistics 2

The "X-Less” Algorithim

"X-Less" Algorithim Results

Total Module Analysis

Regression Analysis of Coefficients
Flow Graph Line Numbers

MP-1 Statistics

MP-2 Statistics

MP-3 Statistics

iv

Page

18
22
26
29
33
36
42
47
48
49
49
50
66
67
68
68
70
70
71
72
74
75
78
79
91
93
94
95

e

i i]

o e
A Co Ly e b= bt GO DD

wsBveRushuvivs)

o) I JVI ST

List of Figures

Figure Name

D, in Software Development

Sample Structure Chart

Example Detailed Design

SDDA Pipeline

The "X-Less" Alogorithm

THESIS.C Structure Chart

MAIN Flow Graph Chart
LOAD_RECORDS Flow Graph Chart
PRINT_RECORDS Flow Graph Chart
FREE_RECORDS Flow Graph Chart

Page

i1
14
56
73
89
90
90
90
90

Introduction

Counter to the beliefs of computer users today, most software being
developed today contains many errors. The reasons for this predicament
is in the failure of software developers to use standard practices that
one would find in other industries. Quality assurance is just one area
where these developers fall short. The software engineering sciences are
aimed at giving the same level of productivity and quality that one
might find in other technologies. Design metrics are intended to be
used by the project managers to make sure that quality of product is
maintained, whereas models of software development are used to plan
and track a project.

As any new technology is used, methodologies, standards, and efficiency
measures are developed. The software engineering sciences are intended
to develop these standards for software development and maintenance.
Specifically, metrics are intended to be wused as professional
measurements for software. Technologies that do- not allow the
comparison of dissimilar objects by common attributes cannot fully be

understood, resulting in suspect methodologies and inconsistent

2
standards. Software engineering is no acceptation. In software
engineering projects can be easily compared by size or functionality, but
nothing meaningful can be said about the relative quality of the two
projects without further investigation. Design metrics were researched
with the intention of finding a yardstick for software quality.

The central problem cited by people that do not believe in the quality
metrics, is not the need but validity of the metrics. In the article
"Complete Solution to Measurement Problem”, Michael Evangelist argues
that the metrics being developed today are bankrupt. He feels that the
researchers are not interested in theoretical bases of these metrics, but
of only the results. It the intention of this thesis to give the theoretical
bases for the D, metric as well as give empirical evidence for the
support of the D, metric as a quality measure. Projects taken from the
software engineering class at ball state university were analyzed. These
projects provide strong evidence that these measures actually indicate
software quality by highlighting error-prone modules. The success of the
metric warrants further study, specifically on large-scale software.

Having obtained a sample portion of a large-scale syétém, the research

team sought to prove or disprove D's viability as a quality metric. A

3
system for collecting metrics on existing ADA code was developed. This
system was verified and used collect the metric counts, which were in
turn compared to the error reports supplied by the Computer Science
Corporation, the author company of the system.

Due to circumstances beyond the control of the researchers, the amount
of information about the project being analyzed was minimal. This
problem led to irreconcilable elements within the system. This not
withstanding, the data collected supported the use of the D; metric,
however, due to the extenuating circumstances, I feel that this study
should be replicated on a separate set of data.

In the end analysis, the D, metric was found to be good indicator of
software error, and these results warrants further study. In the pages
that follow, the background, analysis techniques, and results will be

outlined.

Chapter 1
D, Definition and Background

Why Design Metrics?

Large-scale software has been developed since the introduction of high
powered computers into the workplace. As these systems grow larger,
the ability of the designer to manage and understand the amount of
information encompassed within will decrease. In response to this
problem computer scientists have begun research in a field known as
software engineering. In this new field, standard ways of analyzing
requirements, testing, designing, and other tasks of project development
have been studied.

In addressing the inherent problems with software development,
statistical models and software metrics have been researched. With
these models the developers can obtain information about a developing
system and make managerial or technical decisions about the project.
The design metrics that are being developed at Ball State University are
intended to estimate the quality of a given design. This quality can be
determined at the design phase, giving the developers an early
indication of project status. The metrics also can help in the making
of decisions about the design, limit complexity, and identify potential

problem areas in the design.

D(G) Definition
Software metrics can be used to quantify some characteristic of the
software development process or product. The Ball State Design Metrics
Research Team has been investigating a design quality metric. This
metric will determine the quality of a system design by taking
measurements from architectural and detailed design artifacts. This
metric will highlight "stress point" modules, where it is determined that
pockets of errors may occur. After collecting these counts, the
developers can redesign or make allowances for these problem areas.
The D(G) metric contains one external and one internal metric
component. The external metric, D,, explained in detail later, measures
the stability of an architectural design. The internal metric, D,
measures the quality of the detailed, design of a module. The two
metrics, D, and D, are used in a linear equation to calculate D(G), a
measurement of total design quality.
For a structured design G, the design quality metric D(G) has the form
D(G) = k,(D,) + k(D).
In this equation k, and k, are constants and D, and D, are the external
and the internal design quality metric counts for the design G. All
module counts are collected similarly, and the average and standard

deviation of the counts are calculated. Any module whose count is one

6

standard deviation above the mean is determined to be an "outlier". It
is these outliers that we suggest may contain errors.

It is not necessary for the designers to wait until the entire design
process is over. Qutliers can be determined at the end the architectural
and detailed design phases by identifying outliers with the D, or D,
counts alone. This process of design-calculate-redesign can continue
until the project team is satisfied with the system design.

Figure 1-1 shows how this iterative process is executed within the

software design waterfall model.

The Calculation of D, and D; in
Software Development Life Cycle

Architectural Calculate Detailed Calculate Code
Design De Design D;
— . > > , > >
< ’ 4 <
Figure 1-1
D, History

Dr. Wayne Zage and Professor Dolores Zage began research in the Fall
of 1989 on the D, metric by analyzing standard desigﬁ notations. This

analysis led to the use of a graph theoretic approach to analyze the

7
attributes of software designs. The metric measures these attributes of
design notations relating these metrics to the design principles of
complexity, coupling, modularity, and size. The thesis of the research
is that the combination of these attribute measurements will determine

the quality of design by predicting error-prone modules.

D, History

In January of 1990 the design metrics research team began researching
the detailed design metric D,. After reviewing the D(G) metric and its
relation to D, members of the team reviewed books and periodicals on
detailed design and code metrics. From these resources, the team
selected McCabe’s cyclometric complexity measure (V(G)) and source
lines of code (SLOC) to evaluate. After exchanging information and
observations, I selected the preliminary D, for testing. A set of projects
from the software engineering class at Ball State University was
selected for the analysis of the metrics. During this pilot study the
team calibrated the weights of the components, which resulted in the
metrics used on a large-scale software project from Computer Science
Corporation called STANFINS. These tests resulted in the pilot study

listed in chapter 3.

D, Definition

8
The calculation of D, is the sum of two components. The first
component measures the amount of data flowing through the modules,
whereas the second measures the number of paths through the module.
More precisely,

D, = (weighted-inflows * weighted-outflows) +
(fan-in * fan-out)

where:
Weighted Inflows
are the actual number of data items flowing into the module. This is
the number of parameters passed to the module plus the number of
global data items being accessed by the module.
Weighted Qutflows
are the number of data items that the module passes to other modules.
Note that this component is tied closely to the central calls component
of the D, metric.
Fan In
is the number of superordinate modules of the module. This is equal
to the number of modules that make calls to this module within the
system.
Fan Out
This is the number of subordinate modules of the module. This is equal

to the number of unique modules called by the module.

9
The results of the pilot study, outlined in chapter 3, support the claim
that this metric is a good predictor of architectural design quality by

highlighting the error-prone modules in a system.

D, Definition
During the pilot study performed on the CS680 projects, a preliminary
D, metric was selected. After reviewing other related research in the
field, we felt that the traditional metrics could not capture the full
complexity of the detailed design.
It was the observation of the team that a metric that measured the
possible locations for errors in a software project might adequately
capture detailed design quality. Informal interviews were conducted
with various members of the Integrated Technologies Research and
Development Department. When asked where software errors occur,
these developers responded with three distinct categories. These
categories include, input and output sections, complex data structure
manipulation sections, and calls to other modules. It was then deemed
reasonable that the measurement of these occurrences might successfully
capture the complexity of the modules. This line of reasoning led us
to the following preliminary D, definition.
D, = w,(CC) + w,(DSM) + w,(l/O)
Where:

10
Central Calls (CC)
are procedure or function invocations. These are calls to non-library
modules.
Data Structure Manipulations (DSM)
are references to complex data types. In this definition, a complex data
type is one that uses indirect addressing. (e.g. pointer, array, record,
typedef, ...)
Input/Output (I/O)
are external device accesses. This can be any read/write operation to
a device (e.g. read file, stdin, stdout, port, device, ...)
and w, = w, = w; =1.
The unit weighting scheme was selected at first for simplicity, but the

calibration of these factors will affect the metric counts dramatically.

D(G) Example

The following paragraphs outline the D(G) metric analysis process. Note
that this example uses a selected segment of a system, and is meant to
illustrate the collection of the design metrics on a given module, The
post-collection statistical analysis is outlined later in this chapter.
After the architectural design phase of a system, the developers will
have obtained the system specifications, a structure chart, data flows,

functional descriptions of modules, interface descriptions, and the data

11

Example Structure Chart

Data Dictionary
| filename - String [14]
filename | | | return._code Error_table - string [80]60]

Fiie_handie - Integer dev_num
integer status

Perform _word_count

File_poi n{er‘//mn words

- |
| word_count | 1 Reset files |

[I D

Figure 1-2

definitions. It is from these items that the external D, metric is
calculated. Figure 1-2 shows the structure chart for the module

perform_word_count.

Recall:
D, = (weighted-inflows * weighted-outflows) +

(fan-in * fan-out)

12
The weighted-inflows component of the D, metric measures the amount
of data passing into a module. The weighting of a inflow is determined
by the number of atomic elements contained in a passed data item. A
structure or record may contain many atomic elements, each of which
is given a value of one. A determination of the number of atomic
elements a data item contains may be obtained from the data dictionary.
In our example, the inflowing data items filename and num_words are
both atomic elements, so the value of weighted-inflows is 2.
The weighted-outflows count for a module is the sum of data-items
exiting the module, weighted by the number of atomic data items
contained in their definitions. A determination of the weight of a given
weighted-outflow may be obtained in the same way as a weighted-
inflow. The example module contains two outflows. The return_code
outflow is a single integer and is weighted 1. The file_pointer outflow
definition contains two integers and is weighted 2. Adding these two
weights results in a outflow count of 3.
The third component, fan-in, is the sum of the superordinate modules
of the module. In our example, there is only one superordinate module
of the module, so the fan-in count is 1.
The fan-out component of the D, metric measures the subordinate
modules of the module. Two modules, reset_files and word_count,

are subordinates to the module, thus giving us a fan-out count of 2.

13
With all of these counts collected, we can now calculate the D, count for

this module. We plug these counts into the equation,

D, = (weighted-inflows * weighted-outflows) + (fan-in * fan-out)
D,=(2*3)+(2*1)
D, = 8

giving a D, value of 8 for this module. Repeating this process for all
modules in the system gives us a count population to analyze.
At the detailed design phase, the designers will have all resources
obtained on or before architectural design plus algorithms selected, a
complete data dictionary, and some detailed design documents. From
these documents and the previous D, counts we can calculate the D, and
D(G) metrics.
In Figure 1-3, a detailed design document for the D, example module is
presented. Recall that

D, = w(CC) + wy(DSM) + w,(I/O)
where

W, = Wy = Wy = L,
To calculate the D, metric, we count the number of occurrences of each

component. These counts can be collected manually or by an automated

‘

14

Example Detailed Design
1 Gobal Error_table
2 Procedure Integer Perform_word_count (filename)
3 Begin
4 local file_handle file_pointer,
5 local integer Number _words
) if (not file_pointer = open (filsiame))
7 Begin
B Error_table [1] = "File Open Error
9 End
10 else
11 Begin
12 it (Number _words = word_count(file_pointer) = 0)
13 Begin
14 Error_table [2] = "File Read Error ~
15 Ciose (File_pointer)
16 End
17 else
18 Begin
19 Print (" %d Number Words .", Number_words)
20 Print (" Successfut Termination.”)
21 Close (File_pointer)
22 Reset_files (void)
23 Return (Number_words)
24 End
23 End
2b Return (0)
27 £nd
Figure 1-3

tool'. By locating the occurrences and applying the D, equation to the
resulting counts, one can obtain the count for the module. The central

call (CC) count for a given module is acquired by counting the number

! As of February 1991, a design tool to collect the D, metric has not been
completed, but is the subject of research within the design metrics research
team.

15
of calls to non-library modules. A non-library module is defined as a
module that has not been designed specifically for the system under
development. This determination is made, for the libraries have their
own development and testing schedules, which may or may not be
related to the current system. In our example there are two such
central calls, one to word_count (located on line 12) and ancther to
reset_files (located on line 21). This module thus has a central call
count of 2.
A data structure manipulation is defined as any indirect access to a
data item. An indirect access is any access to a data item that requires
some addressing calculation. Examples of data structure manipulations
are an access to array, structure, or record element, a pointer, or any
inheritance class elements of a data item. The scope of a data item has
no bearing on the ability of a data item being a data structure
manipulation. The detailed design of our example contains two DSMs,
both being accesses to the global error_table (lines 8 and 14). These
accesses give this module a data structure manipulation count of 2.
The input/output count for a given module is the number of external
device accesses within that module. A external device is defined as
any resource which requires a device driver. Examples of external
devices are printers, modems, keyboards, disks, monitors, and sound

boards. Note that these accesses need not be reads or writes, they may

16
include utility interrupts or device status changes. The example
includes two writes to standard out (print located on lines 18 and 19),
and three utility calls, one to open (located on line 6) and two file
closures (located on lines 15 and 20). This gives us a input/output count
of 5 for this module,

Having collected these counts, we can now use them in the D, equation
as follows :

D, = w(CC) + w,(DSM) + w,(I/O)

where

W, = Wy = Wy =1

1*%(2) + 1%2) + 1%(5)

jw
i

D=9
With the D, and D, counts we can calculate the D(G) metric. The
resulting value will give the relative design quality of this module. The

calculations are as follows :

DG = k(D) + k(D)

where

k =k, =1

DG) = 1%8) + 1%9)

DG) = 17 '

Note that this count has no significant meaning without the counts of

the other modules in the system. The value is the design quality

17
relative to the other modules. The statistical analysis of this population

will highlight the "stress points" within the system.

Statistical Analysis Example

Once the counts for the modules have been calculated, it is necessary
to analyze the data to detefmine the outlier modules. Note that all the
counts need not be collected to determine outlier modules. After the
architectural design phase, the D, counts are collected and outliers are
highlighted. These highlighted modules can be redesigned and the
counts recalculated. This process is repeated until the design team is
satisfied with the architectural design.

In the example population, listed in Table 1-1, two modules would be
deemed as outliers, that is, the D, module values are greater than or
equal to one standard deviation dbove the mean. The designs for
perform_word_count and create_log would be reviewed and possible
action may be taken. The design team would then move to the detailed
design phase, where the internal workings of the modules would be
designed. After completing the tasks involved with this design, the D
counts would be collected. Once again modules having D, counts greater
than or equal to one standard deviation above the mean would be
highlighted. Using the statistics from the above example, only one

module would be highlighted. The module message is highlighted by

18

sSample Population
Mcdule Name D D, D(G)
Main 4 5 9
Select file 7 3 10
Perform _word_count 9 8 17
wor ount 6 2 8
Reget files 2 2 4
Mégssage 11 b 17
Create_log B 10 16
tandard Deviation 2.77 2.84 4.74
Mean 6.42 5.14 11.57
Quttier Cutoff 9.19 7.99 16.31

Table 1-1

bD,, but not by D, This suggests to the developers that while the

external design is acceptable, the internal design may be too complicated

or poorly constructed. The modules highlighted by D; are often

complicated or the exact function has become vague, and redesigning of

the architectural and/or detailed design may be warranted.

When the design team is satisfied with the detailed design, they will

combine the metric counts to compute D(G).

The example above

highlights all three modules that were highlighted by the D, and D,

19
metrics. The research team has found that many times D{G) will
highlight modules that are not highlighted by the external or internal
metrics. This indicates to the developers that the while the modules

internal and external designs are borderline, the combination may

induce errors later.

What Next

After highlighting the "stress points” in a design, one might ask, "what
do I do next?" A review of each such module design is suggested. If
after such a review the development team believe a redesign is
warranted, the module is redesigned and the metrics recalculated. If a
redesign is not necessary, or budget and/or development schedule does
not permit it, the team can take actions later in the life-cycle to
recognize the potential for problems in these modules. The actions may
include assigning the modules to the more skilled members of the
implementation team or increasing the amount of testing for these

modules.

Chapter 2 |

Other Detailed Design Metrics

Detailed Design Metrics

Unlike the architectural design metrics, detailed design metrics are not
concerned with the context of a module, but only measure the
characteristics of the internal design. Such characteristics as size and
complexity are the fundamental basis for these metrics. The term
"detailed” is used, for the function of the module is not measured, but

the details or mechanics of the module are scrutinized.

The History of Detailed Design Metrics

In the early eighties architectural metrics had not been the object of
much research, as the process of architectural design development was
not fully understood. After the completion of a software project the
only tangible item the researchers had to analyze was the code itself.
The analysis of this code led to code-level metrics. The development of
.a methodology for analyzing code was needed, for all other product
analyses of a project were subjective. The methodology developed
consisted of a post-implementation analysis of the code. The detailed
design metrics were used to analyze this code, and after statistical

analysis of the measurements, some action was taken.

21

Detailed Design Metrics
In their article, An Empirical Study of Software Metrics Li and Cheung

outlined four types of detailed design metrics. The four groups
consisted of 1) volume metrics, 2) control flow metrics, 3) data control
metrics, and 4) hybrid metrics. The pages that follow will outline and

give the standard metrics for these types.

Detailed Design Metric Example Program

In Appendix A, code for the example program THESIS.C is listed. This
program, written in Microseft C Version 6.0, creates a linked list of
employee records read from a file, prints them to standard output, and
frees the memory used by the list. Appendix B contains a structure
chart and flow graphs for the program and modules. From these items
counts for selected metrics presented in this chapter are generated. In

the pages that follow, these counts and observations about them will be

given.

Volume Metrics
The one attribute that all programs share, regardless of implementation,
is size. It is useful to measure the size, for it allows us to characterize

the software, without respect to it's application. Volume metrics are

22
valuable as calculating these metrics is easy after the program is
completed. It is the driving force behind many models of software
development, and productivity is normally based on size measures (Conte
56).

Volume metrics measure the amount of control flow, data and
operational objects, functional units, and/or size of the design. These
measurements, in coordination with other resources, can be used to fully
understand the scope of a project or module. Table 2-1 contains counts
for the volume metrics defined below on the THESIS example program

(see above).

Volume Metrics

Metric Main Load_records Print_Records Free records Program
SLOC 16 42 17 11

Statement Count 8 19 11 4

Funetion Count 2 4 2 1

Unit Count N/A N/A N/A N/A 4

Table 2-1

SLOC

The SLOC (source lines of code) (S) metric count is calculated by
counting the number of source lines including comments, executable
statements, input/output formats, and compiler directives. There has
been some debate on whether the comment lines should be added to the

total count, but the most traditional use has been to count every non-

23
blank line in the code. This metric is not directly applicable in our
research, for the development team will not have the finished code until
after the implementation phase. A preliminary measure of finished lines
of code can be approximated by counting the number of lines in the
detailed design.

Note that the professional standard productivity metric KLOC\PM
(thousands of lines of code per person/month) is derived from this
measure. This measurement is also used in many project schedule

approximation models.

Statement Count

A statement count metric (S,) for a module is generated by counting the
number of executable statements in the finished code. The type of
statement is not important, be it loop, conditional, assignment, function,
procedure, or subroutine call, or any other type of atomic operation.
This count achieves a better assessment of the actual activity of the
module than the SLOC metric. As with the SLOC count, accurate
counts cannot be collected until late in the development life-cycle, but
approximations can be generated using the detailed design documents.

¢

Unit Count

A unit count (U,) is the sum of the number of modules in a program.

24
The definition of a module has not been completely agreed upon, so the
counts may differ from person to person. The definition most used when
counting this metric is that each function / procedure / subroutine is
an individual module. Obviously, this metric says little about the
complexity or size of the program, but, is computationally inexpensive.
This measure can give a feel for the size of a program, but does not

seem to have any other significant value.

Halstead’s Software Science Metrics
In the late seventies, Halstead noted that some lines of code were
harder to implement than others, so the SLOC metric was not always
consistent. He felt that another view of programming must be taken to
get an accurate account of the volume of a program. With this
knowledge he began his research on the Software Science Metrics.
In Halstead’s research, he noted that all programs consist of operators
and operands, each of which was called a "token". He felt that if the
amount and frequency of these tokens could be measured, those counts
could give an accurate indication of the volume of the program. These
measurements are known as the Software Science Metrics.
The software science metrics consists of the four atomic elements:

n, = number of unique operators

Iy = number of unique operands

25
N,

total occurrences of operators

N, = total occurrences of operands
An operator is any token that can be used as a relation between two
operands. In a programming sense, an operator is any symbol that
specifies an action. An operator can be an arithmetic symbol (e.g. +, -
./ * %, ..), command names (e.g. FOR, WHILE, NEXT, ...), special
symbols, (e.g. :=, ==, !=, ..), or some macro or function names (e.g.
feof, open, ...).
An operand is any token which is used to represent a data item. All
declared data and constants in a program are classified as operands.
Functions used as parameters would also be classified as operands.
After collecting these counts, we can determine that volume of a
program by the total number of tokens

n = N, + Ny |
and the total implementation length

N = N, + N,.
Using these metrics, we can find the volume (V) of the program, which
is the size of implementation. This can be seen as the number of bytes
that the code will need for the implementation. The volume is defined
as

V = N Log n.

Note that this metric was not aimed at the module, or detailed design

26

level, but to be calculated on whole programs as individual entities.

An example calculation will be given at the end of this chapter. In

Table 2-2 the Software Science Metric counts for the thesis program are

given.
Halstead’s Software Science Metrics
Operators
Number Type Number Type
4 l= 2 char
30 " 1 define
4 # 5 else
6& , 12 employee_record
44 (2 employee_type
44 } 1 FILE
38 * 1 fopen
18 , 1 free
10 -> 2 free_records
5 . 1 fscanf
26 / 3 height
6 if 2 struct
3 include 1 typedef
3 int 17 i
3 load_file 17 {
43 ; 1 main
3 < 1 malloc
14 = 1 memcpy
4] == 2 name
3 > 5 next
3 address 7 void
3 age 3 weight
14 printf 3 while
3 print_records 2 [
92 return 2]
2 sizeof

Total Number
Total Number

Operands
Number

Co =3 W b BN

of Unique Cperators = n1 = 55

of Occurrences = N1 = 459

Type
cournter
FILENAME
fp

list_ptr
NULL

temp
temp_ptr

27

top

t_ptr
7 x_ptr

1

20

30

5

[el e

Tota]l Number of Operands = n2 = 14
Total Number of Occurrences = N2 = 70

Tokens = nl + n2 = 69
Implementation Length = N1 + N2 = 529
Volume = N1 log nl = 529 log 69

Potential Vocabulary = n* = nl + n2 >= 2 + n2 = 69 >= 16

Table 2-2

Function Count

According to the widely accepted structured programming methodology,
programmers should think of programs as functions, not as modules or
groupings of code. A function is defined as a collection of executable
statements that performs a certain task. (Conte 43) This Idea of
"chunking” (Coulson 43) is the division of modules into one or more
functions. The function count metric F is calculated by taking the count
of these "chunks" or functions within a given design. The count is
algorithm-dependant, so the counts for different implementations of the

same task will have different function count values.

28
Flow Control Metrics
Flow control metrics measure the attributes of the logical flow through
a module or program. The flow control metrics view code as directed
graphs. The counts are collected through the analysis of the graph,
characterizing the control complexity of the module.
The flow of control in a computer program normally proceeds
sequentially. It is interrupted by three possible situations.
A forward branch - This follows a conditional test that leads to a
choice of two possible actions.
A backward branch - Used to create loops, this may be
unconditional (as used at end of a for loop), or may follow a
conditional test (as used in a do .. while loop), that allows another
iteration or the termination of the loop.
A horizontal loop - Typically a transfer of control to a procedure,
function, or subroutine, this situation is normally considered an
interruption, since the procedure is supposed to return control to

the statement following the branch when it terminates. (Conte 62)

In order to fully understand the graph theoretic approach one must
understand how the graphs are derived. All directed graphs consist of
the two entities:

1) Node A sequential block of code with unique entrance and

29

exit but no internal branch or loop. (Cheung 700)
2) Edge Flow of control between various nodes. (Cheung 700)
The derivation of a graph from code follows the steps:

1) Identify the nodes - To identify nodes, one finds each
block of code that has one entry and
one exit, with no internal loops.

2) Connect the nodes - Connect the nodes with the
appropriate edges.

Examples of this method can be seen in the generation of the flow
graphs given in Appendix B, for the code listed in Appendix A.
In the next several pages the standard control flow metrics will be

defined. Table 2-3 contains counts for the flow control metrics on the

thesis program.

Flow Control Metrics

Module V(iG) BC CL CALLS BD+CALLS
Main 2 1 3 3 4
Load_records 6 5 7 0 5
Print_records 3 2 4 0 2
Free_records 2 i 3 0 1

Table 2-3

Decision Count
The simplest flow control metric is the Decision Count (DC), which is

the sum of the conditional statements within a module. This metric

30

gives a accurate account of the volume of conditional flow of a module.
The strongest argument against this metric is that it does not tell us
anything about the size of a module. This metric, used with volume
metrics such as the statement count has been used as a yardstick for

module efficiency.

McCabe's Cyclomatic Complexity Metrics

One of the most widely accepted metrics, McCabe’s Cyclometric
Complexity metric (V(G)) measures the number of "basic” paths through
a program. In more precise terms,

ViG) = EDGES - NODES + (2 * UNITS),

where EDGES and NODES are defined above and UNITS is the number
of connected components within the graph. This measure can also be
seen as the sum of the regions in the plane. This measure only
encompasses the control structure, without respect to the size or volume

of the module.

Gilb’s Metrics

Gilb, working with McCabe, proposed several other metrics which would
encompass the volume of the module as well as the control structure.
The CL, absolute logical complexity metric is equal to the total number

of binary decisions within the module. After further examination, it was

31
found that the V(G) and CL metrics are very closely related. Notice
that for any strongly connected graph

CL =V(G) + L.
The CL metric still does not account for module volume, so Gilb
developed metrics which relate the logical complexity to module size.
The cl. metric is the ratio of CL to the statement count for a given
module. The function

cl. = CL /S,
gives us an accurate account of the complexity, related to the size of
the module. Two other metrics related to Gilb’s research are :

CALLS = The total number of calls to other modules

CA + BD = The sum of the calls and binary decisions.
The second metric listed, CA + BD, relates module complexity to
architectural design. The Central Calls component of the D; metric is
closely related to these ideas and was developed after reviewing

McCabe’s and Gilb’s research.

KNOTS Count

The Knot count (KNOT) for a module is the sum of knot occurrences
within that module. A KNOT count is said to occur when two control
transfer intersect. The rationale for this metric is that a module that

contains KNOTS will be harder to understand than a module without

32
KNOTS, and thus will be more difficult to implement, test, and is apt

to be error-prone.

Reachability and Minimum Number of Path Metrics

Defined by Schneidewind and Hoffman, the reachability and minimum
number of paths metrics measure the run time characteristics of the
nodes within a module. The minimum number of paths metric (N,
views nodes as unique sequences of arcs. These arcs represent the flow
of control of the module to the node, resulting in each node having a N,
count. The N, count is the fewest number of nodes needed to be visited
from entry into the module to the node being analyzed. A related
metric is the reachability metric, R, which is the sum of the unique
ways of reaching the node. When analyzing this count, problems can
occur. A module with 50 lines and 25 IF_THEN-ELSE structures will
have more than 2% control paths, making the generation of a complete
list of the module control flows nearly impossible. To alleviate the
problem this presents, the determination of the N, count excludes the
paths with backwards loops traversed more than once. As the R metric
can be cumbersome to calculate on large projects, an alternative metric,
average reachability metric (R_) was suggested by Shooman. This
metric is calculated by taking the total number of paths divided by the

number of nodes within a module. Table 2-4 contains the thesis

33

program’s reachability and minimum number of paths metric counts.

Reachability and Minimum Number of Paths Metrics

Module Main

Node Np R
1 1 1
2 2 1
3 2 1
4 3 2
R_= 125

Module Load_records
Node Np R
1

et b 00 00 <3 O O A QO DO
OO L O o OO0 W B
(]
<

o
1
R. = 183/11

Module Print_records
Node Np R
1

1 1
2 2 1
3 2 2
4 2 2
5 3 3
R_=18

Module Free_records
Node Np R

1 1 2
2 2 2
3 2 2
R._=2

Table 2-4

Nesting Levels

34
In any programming language, nesting structures facilitate the
optimization of many algorithms, and are necessary for clear
programming. As with all things, too much of a good thing is bad. The
use of nesting is necessary, but, a module that has many nesting levels
becomes hard to understand, thus difficult to code, test, and maintain.
It is this attribute of design that the Nesting Levels Metric (NL)
measures. Each statement within the program has a nesting level
defined by the number of nested blocks'. The software engineer may
want to get a definitive description of the module nesting level. A
accurate nesting level count for the module can be acquired by finding
the, average nesting level (NL_). The NL_ metric is the mean of the

nesting levels of the statements within the module.

Data Control Metrics

The fundamental function for any program is to process data, thus it
seems prudent to measure the data being processed. The data control
metrics measure the scope, size, amount, or complexity of the data being

processed within a program or module.

! Blocks - As used in the compiler theory terminology. A block consists
of code that will be executed, any number of times, by the
control of a single atomic operation. (e.g. BEGIN .. END
(Pascal), { .. } (C), IF .. ENDIF (BASIC))

35

Variable Count

The simplest data control metric is the variable count (VARS). This
metric is calculated by counting the number of variables used within the
piece of code being analyzed. It is important not to count the variables
defined but not used within the code. To collect this count, it is useful
to use the cross-reference table which can be generated by most

compilers.

Halstead’s Derived Metrics

Halstead’s Software Science (N) can be classified as a data control

metric, as well as a volume metrics. In his research, Halstead derived

several metrics that measured the data control within code. Using the

software science metrics we can find the potential vocabulary by using,
n* = nl + n2 > 2 + n2.

This function is possible because in a minimal form, the number of

operators is 2.

Data Usage Metrics
The data usage metrics measure the use and scope of variables with an
program or module. The two most accepted data usage metrics are the

live variable and variable spans metrics. The live variable (LV) metric

36
is the count of the number of variables which are deemed "live" for each
statement. A variable is considered "live" within a statement if the
statement lies on or between the first and last access to that variable.
To gain a live variable measurement for a module, the (LV_) metrie,
average live variables with statements, is used. The variable span (VS)
metric captures the frequency of the use of the variable. The count is
the average number of lines between each pair of sequential references
of the variable. To gain the module count, the average of VS is
caleulated. Note that this count gives measurements for the variables,
not the code. Table 2-5 contains the data control counts for the thesis

program.

Data Control and Nesting Level Metrics

Module Main

Line # NL Live Variables
39 1

40 1

41 i list_ptr
42 1 list_ptr
43 2 list_ptr
44 2 list_ptr
45 2 list_ptr
46 2 list_ptr
47 2 list_ptr
48 1 list_ptr
49 2 list_ptr
50 2 list_ptr
51 2 list_ptr
52 1 list_ptr
53 1 list_ptr
54 1

55 0

VARS 1

Variable Span

list_ptr

V5_ =2
LV_ = 13/17
NL_ = 23/17

Module Load_Records

Line #

VARS 5
Variable
fp

top

NL

OMNNNMMNDWREOMODDOOOMUOUIGMOOMOMWUMMA GILGIMMULTLE R WWAWNDBDN e = = O

Live

top

Variables

top, fp
top, fp
top, fp, counter
top, fp, counter
top, fp, counter
top, fp, counter, temp

top,
top,
top,
top,
top,
top,
top,
top,
top,
top,
top,
top,
top,
top,
top,
top,
top,
top,
top,
top
top
top
fop
top
top
top
top
top
top

counter, temp
counter, temp
counter, temp,
counter, temp,
counter, temp,
counter, temp,
temp, t_ptr
temp, t_ptr
temp, t_ptr
temp, t_ptr
t_ptr

t_ptr

t_ptr

t_ptr

t_ptr

t_ptr

t_ptr

t_ptr

t_ptr

Span

t_ptr
t_ptr
t_ptr
t_ptr

37

temp
t_ptr
counter

26/5
80/42
143/42

VS_
LV_
NL_

Module Print_Records

Line #
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

VARS 1
Variable
x_ptr

6
14/16
34/16

[
<I
oo

Module Free_records

Line #
119
120
121
122
123
124
125
126
127
128

VARS 2
Variable
x_ptr
temp_ptr

VS_ = 3.5/2
LvV_=1

[l e o]

NL

O WWMWLWLWWWWLW N NNRMO

NL

ONMNDNNN -0

2

Live Variables
x_ptr
x_ptr
x_ptr
x_ptr
x.ptr
x_ptr
x_ptr
x_ptr
x_ptr
x_ptr
x_ptr
X_ptr
X_ptr
x_ptr

Span

Live Variables
X_ptr
X_ptr
x_ptr
x_ptr
x_ptr, temp_ptr
x_ptr, temp_ptr
x_ptr, temp_ptr

Span

38

39

NL_=13

Table 2-5

Hybrid Detailed Design Metrics

It is impossible to encompass all the nuances of an object with a
singular measure. A detailed design is not an exceptions to this rule.
With one volume or complexity measurement we can not say very much
about the design quality for a given module. It is from this reasoning
that the hybrid metrics were developed. A hybrid metric contains
several measurements each encompassing the data control, flow control,
functional purpose, volume, or any other accessible attribute. In most
cases, hybrid metrics proposed use the existing traditional detailed
design metrics as components in an equation which will give the metric

counts,

Vector Hybrid Metrics

As proposed by Dunsmore, Conte, and Shen the idea of a vector table
of metrics would be the most natural way to incorporate two metrics
that measure dissimilar attributes. Using this approach we would use
metrics A and B, combining them for a hybrid metric (HM) value of
HM(a,b). A vector table would be constructed from existing data for

the metric value. This metric value need not be numerical, but could

40
be descriptive. Such descriptive values might be low complexity,
borderline, high complexity. From these counts actions might be taken
during the detailed design reviews. One action might be to reevaluate
all modules with a HM value of high complexity. Obviously, the central
problem with this approach lies in the generation of the descriptive

value vector table, which may be somewhat subjective.

Li and Chung’s New_1 Metric

Using the fundamentals of software science metrics, Li and Chung have
proposed a metric which attempts to measure both volume and control
organization. Using such metrics as vocabulary and scope, they have
developed an equation that incorporates volume metrics into a purely
graph-theoretic approach. For brevity, I have chosen not to include the

mechanics of this metric, as its inherent complexity makes it prohibitive.

The D, Metric’

Proposed by the Ball State University Metric Research Team, the D,
metric tries to encompass volume and data control complexity within a
given module. This metric is a linear function with three metric counts

as the coefficients. These coefficients are:

The D, metric is defined in grater detail in Chapter 1 - D,
Definition and Background.

41
Central Calls

The central call component is similar to the calls volume
metric. A central call is any call to a module which has
been developed for the current project.
Data Structure Manipulations
The data structure manipulations count is classified as a
data control metric. This metric stems from the operators
metric used in the software science metrics. A data
structure manipulation is any indirect access to a data item.
1/0 Count
The /O count stems from the volume metric /O Formats
(IOFORMTS). An I/O count is any functional access to a
external device, such as a monitor.
After collecting these metrics for a module, the counts are applied in the
equation
D, = w,(CC) + w,(DSM) + wy(l/O)
to find the metric count for the module. Having stemmed from the
standard metrics, D, apparently gets a accurate account of the module’s
propensity for error. Table 2-6 contains the D, counts for the thesis

example program.

Di Metric Counts

Module

Main
Load_records
Print_records
Free_records

QDD e

DSM IO
4 4
11 4
8 8
4 0

Di(1)

11

16

Di(2)

17
31L.5
28
10

42

Table 2-6

Chapter 3

A Pilot Study of CS680 Projects

The Pilot Study

In January of 1990 the metric research team at Ball State University
began a pilot study on design metrics. Each fall at Ball State
University, a graduate level software engineering class is taught. In
this class, teams of students develop a software package using the
waterfall software development model. In the interest of verifying the
D,, D, and D(G) design quality metrics, the research team concentrated
our efforts on projects from the software engineering class of Fall 1990.

The study was conducted from January 1990 to April 1990.

The projects selected presented us with a reasonable test bed, for we
had the documentation and code of each system for evaluation. The
students deliver documentation from all phases of software development,
so that error tracking is possible. In addition to all these tangible

items, we had the ability to interview the developers about the selection

44
of certain designs over others. This ability to interact with the
developers "after the fact" allowed us to clearly understand all aspects

of the system designs.

The metrics team felt it prudent to look at other traditional metrics to
ensure our research was both unique and valuable. While testing our
initial D, metric, we felt it necessary to compare its results with
McCabe'’s cyclomatic complexity, V(G), metric. | This is valuable, as it can
be calculated at the detailed design phase. Other measures, such as
SLOC, source lines of code, can only be calculated late in the
development process, but is so widely used as a standard metric, it too

was selected to be tested.

Objective

By .applying our metrics to the projects, we hoped to verify the D(G)
metric as a good indicator of design quality by highlighting error-prone
modules in the systems. In the months prior to this study, the D,
metric was developed by the design metrics team at Ball State
University. The team had debated the theoretical foundations of the
metric and was ready to prove (or disprove) the suppositions and
expectations of their research. The D, metric was developed some time

before, as outlined in chapter 1. At most, the D, metric was tested on

45
a small test bed, and further verification was warranted. The
availability of resources needed to calculate and interpret the metrics
was cited as the central reason for using this data set. Great care was

taken in the collection of data, so as to ensure the integrity of the

study.

The Project

The project assigned to the software engineering class required the
students to design and implement a generic employee database system.
The project was designed to allow for a wide interpretation of the
requirements, thus giving a wide array of designs to analyze. The
development of the system was assigned on September of 1989 and was

finished on or about December 20, 1989.

In addition to the actual finished system, the students were required to
submit all design documents. It was from these documents, after
verifying the adherence of the finished systems to these documents, that

the metrics were collected.

The exact requirement specifications that were given to the students are

listed in Appendix C - Pilot Study Project Specifications.

46
The Project Teams
The teams of developers consisted of two to three individuals with
varying experience and knowledge. The students experience ranged from
several years of professional experience to first semester computer

science students. In all, the class contained 15 students constituting six

project teams.

The class was held for seventeen calendar weeks. The students were
graded on several tests and the ability of the teams to complete all

phases of the development life-cycle adequately.

The Finished Projects

All three projects selected to be used in this study were completed and
demonstrated in the last week of the semester. A representative from
each group was selected, and this representative demonstrated each
major requirement of the project. These demonstrations helped some

members of the metrics team become familiar with the systems.

It is interesting to note that the structure charts for the projects differed
greatly. The requirements were interpreted similarly by all teams, but

the resulting designs differed greatly.

48

Appendix D contains the actual D; counts from the projects.

Results
The statistical results of the pilot study were very encouraging. We

found that our D, metric performed better than any other metric at

locating "stress points” in a detailed design.

LOC {(over 50) as a Predictor of Error-Prone Modules
Modules Highlighted 15%
Highlighted Modules with Errors 00%
Errors Found 617%
Error Modules not Found 507%
Erroriess Modules Highlighted 907%

Table 3-2

The team felt it necessary to check our metric against traditional
metrics. In Table 3-2 we show the effectiveness of SLOC, or source
lines of code, as a design quality metric. Highlighting 50% of the
modules, and only finding 61% of the errors, SLOC > 50 does not seem
to have fared well.

The second metric we tested was McCabe’s cyclométié: complexity, or

V(@), on our test bed. This metric is designed to detect the complexity

47

In Table 3-1, the specific attributes of the projects used in the study are

listed.

Pilot Study Projects

Team | Language | SLOC | Number| Total Number
of # of of Error
Modules] Errors Modules

1 Pascal 478 17 34 4

Pascal 659 21 14 2

3 C 445 33 12 4
Table 3-1

The Data Collection Process

The metrics were collected by the members of the design metrics
research team in January of 1990. All counts were calculated manually,
and verified by other members of the metric team. The D, counts were
collected from the project structure charts. The D, counts were collected
from the actual code, which was submitted with the final projects. After
all data was collected and verified, the D(G) counts were calculated
from the original D, and D, counts. The counts were ;hen distributed

to the members of the team to be analyzed.

48

Appendix D contains the actual D; counts from the projects.

Results
The statistical results of the pilot study were very encouraging. We

found that our D, metric performed better than any other metric at

locating "stress points” in a detailed design.

LOC (over 50) as a Predictor of Error-Prone Modules
Modules Highlighted 15%
Highlighted Modules with Errors 90%
Errors Found 617%
Error Modules not Found 507%
Errorless Modules Highlighted 50%

Table 3-2

The team felt it necessary to check our metric against traditional
metrics. In Table 3-2 we show the effectiveness of SLOC, or source
lines of code, as a design quality metric. Highlighting 50% of the
modules, and only finding 61% of the errors, SLOC > 50 does not seem

to have fared well.

/

The second metric we tested was McCabe’s cyclométic complexity, or

V(G), on our test bed. This metric is designed to detect the complexity

49

V(G) {(>= 10) as a Predictor of Error-Prone Modules
Modules Highlighted 117%
Highlighted Modules with Errors 447
Errors Found 37%
Error Modules not Found 667%
Errorless Modules Highlighted 567%

Table 3-3

of a given module. In Table 3-3, we find that V(G) found 37% of the

errors, highlighting 11% of the modules.

Di (unit weights) as a Predictor of Error—Prone Modules
Modules Highlighted 9%
Highlighted Modules with Errors 867%
Errors Found 62%
Error Modules not Found S50%
Errorless Modules Highlighted 407%

Table 3-4

In testing our D, metric, we endeavoured to calibrate the w_ weights.
Using unit weights', D, highlighted 9% of the modules, which contained
62% of the errors in the system. Using this scheme we incurred a 14%

false positive rate, which in comparison to 56% of false positive rate of

unit weights -~ w, = w, = w, = 1

50
the SLOC metric, was more than acceptable. The results of this test

are listed in Table 3-4.

The correlation between errors and data-structure manipulations was
significantly higher, thus the new weighting scheme was generated.
After viewing the data, we decided to try the weighting scheme of w, =
w, = 1, and w, = 2.5, thus stressing the data structure manipulations.
The resulting formula
D, = CC + 2.5(DSM) + I/O

is used. Using this weighting scheme we found 92% of the error in the
projects while only highlighting only 8% of the modules. Note that no
modules were highlighted that contained O errors. These results are

listed in Table 3-5. .

D; (Wo = 2.5) as a Predictor of Error-Prone Modules
Modules Highlighted 8%
Highlighted Modules with Errors 1007%
Errors Found 927%
Error Modules not Found 407
Errorless Modules Highlighted 0%

Table 3-5

51
Conclusions
D, at least for some small projects, is successful at determining quality
of detailed designs. After calibrating the weights, D; highlighted
modules which contained more than 90% of the system errors. This
kind of result prompts this research team to collect more data. We
have found such an unbelievably high success rate, that more

verification is warranted.

It has been proposed that a acceptable criteria for a good metric would
find 80% of the errors by highlighting 20% of the modules in a system.
In this study, we have bettered this mark by finding 92% of the errors
by highlighting only 8% of the modules. If this metric could maintain
these kinds of results on large scale software, the value of the
application of these metrics to pi'ofessional environments would be

undeniable,

The traditional metrics SLOC and V(G) were tested on the pilot study
projects and did not seem to return any significant results. SLOC
managed to highlight modules which contained 61% of the errors, but
in doing so created a 50% false positive rate. In addition to this the
correlation between module errors and SLOC was insignificant. The

V(G) metric highlighted modules which only contained 37% of the

52
modules. In any case, neither metric does not seem to hold up as a

reasonable predictor of design quality when scrutinized.

Having found these results on small scale software, it would seem
reasonable to ask, "Sure, the metrics seem to have better results than
most, but, will it perform the same in a professional environment?”

This question will be answered by the remainder of this thesis.

Chapter 4

The Data Collection Process

When developing large-scale software it does not seem reasonable to
hand calculate the D, metric counts for each module. Realizing the need
for a automated metric calculation tool, the Ball State University
metrics research team developed a Software Detailed Design Analyzer
(SDDA). This system is intended to generate detailed design metric
counts from the documents created in the detailed design phase. In this
chapter I will list the assumptions underlying this tool and outline the
mechanics of the system. The system design was developed for the
specific needs of this research, and with some modification will be able

to collect counts in a industrial environment.

The Software Design Analyzer
Developed by the design metrics research team of Ball State University,
the Software Design Analyzer (SDA) calculates the D, architectural

metric from design documents developed in the architectural design

54
phase. The input documents, developed in a CASE' tool, are evaluated
and metrics are collected. Using this tool, one could detect the status
of a project under deveiopmeﬁt during or at the end of the
architechtural design phase. As the use of software engineering
methodologies becomes more prevalent in today’s development facilities,
the need for greater support of metrics would seem to make sehse. The
SDDA tool is the counterpart to this system, as they both calculate

metrics during the design phase.

The Data

The data, supplied by the Computer Science Corporation, consisted of
25 000 lines of code written in the ADA programming language. The
code encompassed 21 programs which are part of the STANFINS project,
a 2.5 million line system developed over the years 1986 - 1990. The
code was contained in 150 code files, which included approximately 2180
modules®’. The project target platform was the VMS/VAX DEC
FEnvironment. As all support libraries were not available to the research
team, the resolution of some data was not possible. While this

resolution was not possible through automated avenues, all cases were

CASE - Computer Aided Software Engineering. A case tool provides project development
and management utilities.

The definition of a "module” used in the calculation of the metrics was any procedure,
function, task or package which had an accessible code body.

55
dealt with individually and judgements were made by the researchers.

This not withstanding, consistency of data was scrupulously checked.

Objectives

The objectives for the detailed design analyzer consisted of 1) to
accurately calculate the D, counts on the ADA code, 2) report these
counts in a format which would facilitate the statistical analyses of
these counts, and 3) provide for future enhancements. With these
objectives in mind, a model that would be reliable, flexible, and coherent
was designed (see The SDDA Pipeline below). After analyzing the
resulting SDDA system, I feel these requirements have been adequately

met.

The SDDA Pipeline
In analyzing the SDDA functional needs, a series of distinct processes
of data calculation and analyses became apparent. This series of
processes became the model for the software design. This model has
been named the SDDA pipeline. In Figure 4-1, a diagram of this
pipeline is given, The three central operations of the SDDA are defined
as:

1) Caleulation of the Metrics - The calculation of the metrics

from the design documents is the most important process in

56

SDDA Pipeline

Document

Detailed Desigl;]

Metric

Calculation

Counts

Count

Analysis

Analyzed

Counts

Report

Generation

Metric Reporlj

Figure 4-1

2)

In the scope of this thesis we have parsed the ADA code,

and using the information included in these doucments,

calculated the metrics. The counts were calculated for each

module in the 21 programs, and output a file which was

intended as input for the SPSS/PC+ statistical package.

Analyze the Counts - As the counts are meaningless in

and upon themselves, the statistical analysis of metrics is

needed. The count population needs to be analyzed so that

outliers can be identified, and future action may be taken.

Such packages as SPSS and SAS can be used, as well as

user derived applications for this analysis. For this thesis

57
outliers can be identified, and future action may be taken.
Such packages as SPSS and SAS can be used, as well as
user derived applications for this analysis. For this thesis
I chose to use the SPSS/PC+ software package to analyze
the counts resulting from the calculation.

3) Report the Counts - The reporting facility does not really
add any new non-cosmetic functionality to the tool, but
rather allows a quick and less cumbersome review of the
resulting output, as well as management of the counts. In
many cases, a project manager may not want to look at the
individual counts for thousands of modules. In this case a
report of the "big picture” would be in order. Due to time
constraints, [was not able to add in this functionality, other
than the standard reporting facilities of the SPSS/PC+
package with this research. In ad'dition to generating
reports, this application might keep the counts in a
database for future use.

During the development of this tool, it became obvious that three
separate applications should be developed. The original design
contained one application enpompassing all three processes, and was
deemed too complicated. The resulting multi-application design is

clearer and in the end analysis, easier to implement.

58

Implementation Issues

Having the greatest availability to the research team, we selected the
VAX 11/780 unix platform to develop the SDDA, but have plans to port
these applications to the SUN workstation platform at a later date.
The Mt XINU UNIX operating system is used on the computer science
VAX. The unix operating system’s multi-processing capability became
instrumental in the application’s design, for the ability of the three
applications working in tandem facilitated the final design (see above).
Speed and work space never became an issue during development, but

for smaller systems, one might optimize the code further.

The Implementation
The next several pages will outline the actual design and
implementation of the SDDA software. For brevity, alternate designs

and reasoning for design decisions will not be included.

The Metric Count Calculator
Central to the problem is the actual semantic analysis of the detailed
design documents. The job the metric count calculator is to parse the

documents, glean the semantic meaning of the objects within the

59
document and accurately count the D, element occurrences. In this
research the detailed design documents consisted of the actual finished
ADA code. It seems prudent to take the symbol tables for an actual
compile of the ADA code and resolve the occurrences of data and
functional accesses. Using this logic the design for the metric calculator
was developed, and the decision to use a pre-compiler to interpret the
semantic meanings of the design documents was made.

Two language development tools were used to generate the count
calculator. The unix LEX (Lexical Analyzer Generator) and YACC (Yet
Another Compiler-Compiler) were used to generate the lexical and
syntactic parsers. The LEX application accepts a lexical grammar and
generates lexical parser C code. The YACC application accepts a
EBNF® grammar and generates syntactic parser C éode.

The parsers generated are actual C code with hooks to attach user
defined C routines. Using the code generated by the utilities along
with code written by the research team the calculator was compiled.
The job of the development team was to generate a symbol table and
occurrence resolution routines.

The final design resul.ted in a two pass compiler which would parse the

code, finding all possible D, occurrences and generating a symbol table

EBNF - Extended Backus - Naur Form - Symbolic form used to specify a complex set of
rules.

60
on the first pass. The second pass would resolve the possible
occurrences and calculate each module’s counts. The data used in this
thesis required that symbol tables be generated over several files, as the
programs defined and accessed data over several files. As information
to resolve some of the data was not present, the members of the

research team resolved those through external documentation and

commaon Sense.

The Count Analyzer

The count analyzer's job is to take to raw counts, calculate D, and
identify the outliers. More analysis may be warranted, such as the
calibration of k, weights. The application may use an existing package
or the user might want to develop a specific program. The advantage
of a user generated application is in that interface to output of the
metric calculator and the and input the report generator are easily
modified. For this thesis the SPSS/PC+ statistical analysis package was
used. Due to the exstensive statistical tests needed to test the behavior

of the metrics, the functionality of SPSS/PC+ was needed.

The Report Generator .
The purpose of the report generator is to take the metric counts and

put them into an acceptable form. A user may want to generate

61

reports at several times, or view the counts over time. This application
might also keep the counts in a data-base. The development of a
project could be tracked from the beginning to the end of the detail
design phase. These utilities are not really part of the count analyzer,
but would be useful in a professional environment. For this thesis, the

standard SPSS/PC+ reports were utilized.

Chapter 5

Results of STANFINS Data

Introduction

This chapter will outline and explain the results of statistical tests
performed on the data collected from the STANFINS project. The
method for the data collection is given in Chapter 4 - The Data
Collection process. Two approaches were taken to analyze the data.
The first approach is a result-oriented scheme. This scheme actually
applies the process of finding cutoff points and highlighting modules
accordingly. Using these modules, we determine statistics such as hit-
miss ratio, number and percentage of errors found, error modules found
and errorless modules highlighted. With these data, we can determine
- the effectiveness of the metric in practice. In addition to the standard
process, the X-Less algorithm, developed by the Ball State Metric
Research Team, is presented and used on the STANFINS data. The
second approach is a cause-oriented scheme. This scheme uses
regression analysis techniques to verify if the metric is actually a
predictor of error prone modules, as well as approximating the chance
of the results occurring by chance. These statistical tests will give us
a better look at the cause-effect relationship between D, and the

existence of error-prone modules. Finally, observations, explanations,

64

and areas of future study will be given.

Limitations of The Data

The data collected from the STANFINS project contains some problems
over which the researchers had no control. First and foremost is the
absence of any /O counts in the data. This was due to the structure
of the ADA language, which has no standard I/O functions. In ADA, all
/O must be handled in library modules and accessed through packages.
The I/O package which has been used throughout all 21 programs was
not available, and the IO functions used were not defined as such, so
any assumptions made by the research team about the /O would make
the data suspect. Secondly the amount of data structure manipulations
outweighs the central calls greatly. For the 21 program analyzed, the
STANFINS project consisted mainly of database records manipulation.
In most cases the modules consisted of the initialization, field
manipulation, and verification of database records. This led to the
massive counts for data structure manipulation, It is the belief of this
researcher that while other types of programs would result in significant
variation in count distribution, the metric would still preform well.
These problems not withstanding, the data resulted in meaningful

results.

65
A Result-Oriented Approach to Data Analysis
It is necessary to analyze the data as it would be used in a real
development environment, that is, if the developers of the system used
the D, metric, would they have benefitted from its use? The statistics
gathered will determine the effectiveness of the metric as used, removed

from the meaning of the effectiveness.

The programs were divided into three groups by CSC personnel. Each
of the three groups, named easy, medium, and hard, consisted of seven
programs of varying sizes. These groups were determined by the
difficulty of the program. The criteria which would determine grouping
encompassed the function, design, and implementation of the program.
Obviously, a program with simple function, design, and implementation
would fall into the easy group, medium in the medium group, and hard
into the hard group. While it is suspected that the program measures
were subjective, viewing the code themselves leant a measure of validity
to the groupings. Appendix E lists the actual metrics counts for each

module in the three groups.

The Easy Group
The easy group of programs contains usually small programs, which

perform functions which are easy to design and implement. Table 5-

66

1 contains statistical information about the analysis of D, on these
programs. The table uses the unit weight weighting scheme, (w, = w,

= w, = 1), for the analysis.

Easy Group Statistics 1

Di Weighting Scheme
1

wl -

w2 = 1

w3 = 1

Cases = 163

Mean = 37.073620

Stdev = 44764895

Cutoff = 81.838514

Sum = 6043.0000

Type Sum Percentage
Modules = 163 N/A
Total Errors = 175 N/A
Errer Modules = 31 19.02%
Modules Highlighted = 18 11.04%
Highlighted Modules with Errors = 13 72.22%
Errors Found = 129 73.71%
Error Modules not found = 18 58.06%
Erroriess Modules Highlighted = 5 27.78%

Table 5-1

The distribution of errors over these programs is normal, as all the
errors lie in 19% of the modules. This metric found 73% of the errors
in the system, with a false positive rate of 27%, which means 27% of
the modules highlighted had no errors. The problem that seems most
prevalent is that almost 60% of the error modules were not found. This

tells us that 73% of the errors were contained in 40% of the modules,.

67

Easy Group Statistics 2

Weighting Scheme
1

wl =

w2 = 2.5

w3 = 1

Cases = 163

Mean = 91.067485

Stdev = 111.490803

Cutoff = 202.558288

Sum = 14844.000000

Type Sum
Modules = 163
Total Errors = 176
Error Modules = 31
Modules Highlighted = 18
Highlighted Modules with Errors = 13
Errors Found = 129
Error Modules not found = 18
Errorless Modules Highlighted = 5

Percentage

N/A
19.02%

11.04%
72.22%
73.71%
58.06%
27.78%

Table 5-2

The weighting scheme where DSM occurrences are weighted 2.5 does

greatly effect the performance of the metric; in fact the same modules

are highlighted as in the unit weighting scheme.

This is due to the

great number of data structure manipulations as compared to the small

number of central ecalls.

Overall, the D, metric performed well on these programs. If used during

the detailed design process, potentially 73% of the errors could have

been avoided.

68

The Medium Group

The medium group consists of programs of average difficulty. The size
of these programs, in modules and LOC, is larger than for the easy
programs. The functionality of the programs do not seem to be much
different. In Tables 5-3 and 5-4, statistics for the D, metric over these
programs is given. Table 5-3 used the unit weighting scheme, whereas

Table 5-4 uses a 2.5 value for k,.

Medium Group Statistics 1

Di Weighting Scheme

wl = 1

w2 = 1

w3 = 1

Cases = 273

Mean = 29.641026

Stdev = 39.067853

Cutoff = 68.708879

Sum = 8092.000000

Type Sum Percentage
Modules = 273 N/A
Total Errors = 674 N/A
Error Modules = 67 24.54%
Modules Highlighted = 34 12.45%
Highlighted Modules with Errors = 23 67.65%
Errors Found = 423 62.76%
Error Modules not found = 44 65.67%
Errorless Modules Highlighted = 11 32.35%

Table 5-3

Medium Group Statistics 2

Di Weighting Scheme
wl = 1

w2 = 2.5

w3 = 1

Cases = 273

Mean = 72.736264
Stdev = 96.980687
Cutoff = 169.716951
Sum = 19857.000000

Error Analysis
Type

Modules
Total Errors
Error Modules

Modules Highlighted
Highlighted Modules with Errors
Errors Found

Error Modules not found
Errorless Modules Highlighted

[}

Hou

Percentage

69

Table 54

In Table 5-4 we find that the highlighted modules located 62% of the

modules by highlighting only 12% of the modules.

Notice that the

metric did not perform as well as it did on the easy modules. Moreover,

the false positive rate increased to 30%.

While it may be said that the metric did not perform as well as on

other projects, its ability to locate error-prone modules is unquestionable.

The Hard Group

The hard group encompassed the most difficult as well as the largest

programs and modules in the study. On average, the number of

modules per program was much larger than in the other two groups.

70
Tables 5-5 and 5-6 list statistics for the hard group programs using the

unit and k, = 2.5 weighting schemes, respectively.

Hard Group Statistics 1

Di Weighting Scheme

wl = 1

w2 = i

w3 = 1

Cases = 422

Mean = 39.872038

Stdev = 62.5405635

Cutoff = 102.412573

Sum = 16826.000000

Error Analysis

Type Sum Percentage
Modules = 422 N/A
Total Errors = 1398 N/A
Error Moduies = 122 28.91%
Modules Highlighted = 42 9.95%
Highlighted Modules with Errors = 35 83.33%
Errors Found = 720 51.50%
Error Modules not found = 87 71.31%
Errorless Modules Highlighted = 7 16.67%

Table 5-5

Hard Group Statistics 2

Di Weighting Scheme

wl = 1

w2 = 2.5

w3 = 1

Cases = 422

Mean = 98.331754

Stdev = 155.6053056

Cutoff = 253.937058 N
Sum = 41496,000000

Errvor Analysis
Type Sum Percentage

Modules = 422 N/A

71

Total Errors = 1398 N/A

Error Modules = 122 28.91%
Modules Highlighted = 42 9.95%
Highlighted Modules with Errors = 35 83.33%
Errors Found = 720 51.50%
Error Modules not found = 87 T1.31%
Errorless Modules Highlighted = 7 16.67%

Table 5-6

The hard modules found 51% of the errors by highlighting 9% of the
modules. The metric performed well on these programs, because a small
number of modules were highlighted and more than half of the errors
were found. The false positive rate for the hard modules was only 16%,
meaning that a small number of modules were highlighted that
contained no errors. Using these numbers for the hard modules, we
find that if the guidelines for the metric were used, potentially the
number of errors after the implementation phase would be greatly

reduced.

All Groups

The next study covered all modules in each of the three groups. The
modules were all weighted equally and no distinction was given to the
type of program analyzed. Tables 5-7 and 5-8 give statistics for all of
the groups analyzed together, where the weighting’sc’hemes are unit

weights and k, = 2.5 in Tables 5-7 and 5-8, respectively.

72

All Statistics 1
Di Weighting Scheme
wl = 1
w2 = 1
w3 = 1
Cases = 858
Mean = 36.085082
Stdev = 52.963482
Cutoff = 89.048564
Sum = 30961.000000
Error Analysis
Type Sum Percentage
Modules = 858 N/A
Total Errors = 2247 N/A
Error Modules = 220 25.64%
Modules Highlighted u= 87 10.14%
Highlighted Modules with Errors = 67 77.01%
Errors Found = 1216 54.12%
Error Modules not found = 153 69.55%
Errorless Modules Highlighted = 20 22.99%
Table 5-7

All Statistics 2

Di Weighting Scheme

wl = 1

w2 = 2.5

w3 = 1

Cases = 858

Mean = 88.807692
Stdev = 131.747182
Cutoff = 220.554875
Sum = 76197.000000

Error Analysis
Type
Modules

Total Errors
Error Modules

Modules Highlighted
Highlighted Modules with Errors
Errors Found

Error Modules not found

Sum Percentage

858 N/A

= 2247 N/A

= 220 25.64%
= 87 10.14%
= 68 78.16%
= 1218 54.21%
= 152 69.09%

73

Errorless Modules Highlighted = 19 21.84%

Table 5-8

Analyzing all modules together, the D, found 54% of the errors by
highlighting 10% of the modules. The false positive rate for this test
was 21%, meaning for every 5 modules highlighted, approximately 4
contain errors. Considering that one out of every four modules
contained errors, we can say that by highlighting 10% of the modules
and finding 54% of the errors, the metric performed well. A more

detailed analysis of these numbers is given in a later section of this

chapter.

The X-Less Algorithm

In the research performed by the metrics research team at Ball State
University, we found that in most designs there are large modules that

outweigh all others. Figure 5-1

gives a pictorial representation for X-Less Algorithm

these modules. Several reasons

are sighted to account for these | I

X=Legs Module

modules. First lies in the

scheduling process for most

projects. In many cases, design

Figure 1

T4
teams find themselves getting close to deadlines for designs. When this
happens, they take much of the functionality left to implement and
place it in several modules. These resulting modules are large, normally
highly coupled, and in general, poorly designed. Another possible reason
for these modules lies in incomplete or unusual specifications. If
specifications for a program involve many unrelated functions that do
not warrant their own modules, designers many design modules that are
receptacles for this functionality. If many unrelated task are placed
together within a module, it will have low cohesion. It is generally an
accepted fact that modules that are not cohesive are error-prone (Conte
108). The result of measuring these modules is that the sensitivity of
the metric is reduced. The standard deviation and mean for the metric
would be higher, in some cases by orders of magnitude. We have found
that be removing these modules from the population, we can find many
more modules without sacrificing accuracy. The term "X-Less” means
the removal of X percent of the modules from the population. Table 5-

9 shows the logic for this algorithm.

The X-Less Algorithm

Begin X-Less
Calculate Metrics
Complete Statistical Tests
While (not satisfied)
Begin
Remove X% of modules from population
Complete Statistical Tests
Increment X
End

End X-Less

75

Table 5-9

Using the X-Less algorithm, we found the results listed in Table 5-10.

All groups and the k, = 2.5 weighting scheme were used.

Di Weighting Scheme

X-Less Algorithm Results

wl = 1.00
w2 = 2.50
w3 = 1.00
Type Sum Percentage
Modules = 858 N/A
Total Errors = 2247 N/A
Error Modules = 220 25.64%

Highlighted Error

Meodules Modules Errorless
Percent Modules Modules with Errors not Modules
Removed Removed Highlighted Errors Found found Highlighted
0 G 10.14% 78.16% 54.21% 69.09% 21.84%
1 8 13.88% 69.09% 61.37% 64.156% 28.81%
2 17 15.58% 67.54% 64,80% 62.44% 29.77%
3 25 18.73% 58.78% 68.49% 61.11% 36.54%
4 34 20.27% 55.64% T1.61% 60.85% 37.13%
5 42 22.06% £5.07% T74.28% G58.47% 37.22%
6 51 23.92% 53.52% 75.92% 56.82% 37.82%
i 60 25.56% 51.39% 77.97% 56.21% 38,73%
8 68 26.33% 50.71% 78.15% §56.71% 3B.94%
9 7 27.02% 47.01% 178,189 59.62% 39.81%
10 85 27.43% 48.03% 178.37% 60.13% 39.62%
Table 5-10

Table 5-10 shows the results of the X less algorithm on the sample

data. The most striking thing about these results is that by removing

5% of the modules from the population one get a 50% increase in the

76

number of errors found. This is strong evidence that this algorithm
should be applied when using the D, metric. According to these data,
the law of diminishing returns applies to this algorithm. After removing
5% of the modules, removing more does not give any significant benefit.
The number of modules highlighted does not increase much, so the effect
of the module removal is nominal, at best. The reason for this
phenomenon is in the distribution of the module counts. After removing
5% of the modules, the range of population counts is reduced

dramatically, so outliers from that distribution are few and far between.

Cause Oriented Analysis

It seems prudent to analyze the cause-effect relationship between D,
and errors. This is necessary, for any study that looks at data without
regard to its interrelationships is suspect. An accepted way of finding
and verifying these relationships is regression analysis. Regression
analysis, ” .. is a good way to describe and summarize the linear
relationship between two variables"(NORIUS 341). In this study we are
using multiple regression which assesses the relationships between the
dependant variable and two or more independent variables. Some
assumptions are made when using this process.

The most important assumption that is made in regression analysis is

that the relationship has some theoretic base. One could not perform

77
regression analysis on the relationship between the type of car ones
drives and the high school attended, for this relationship has little
intuitive basis. However, a relationship between the type of car one
drives and the annual salary can be performed, for this relationship has
a reasonable theoretical base. In the latter case, a regression analysis
would give evidence for or against this theorized relationship. Moreover,
a regression analysis specifies the nature of the relationship through
regression coefficient which describes how changes in the independent
variables bring about changes in the dependant variable. It is
important to note that the analysis does not take into account any
problems in the data collection process. If the collection process is
sound, then the regression analysis will be sound. In the case of this
thesis, every step possible to ensure the integrity of the data was taken.
The purpose of the regression analysis of the data is twofold. The first
is to determine the existence of the relationship between the D; metric
and errors. Secondly, the analysis will give the optimal error
approximation coefficients for the D, formula. In the case of the D,
multiple regression analysis, the dependant variable is errors and the
independent variables are central calls, data structure manipulations,
and input/output, for the supposition is that the D, metric is an accurate

predictor of error-prone modules.

78
The D, - Error Relationship

The first step in verifying D, as an error-prone module locator is to
determine that the relationship between the two actually exists. In
table 5-11, a portion of the SPSS/PC+ output of the multiple regression

analysis is given.

Total Modules Analysis

Number of Valid Observations (Listwise} = 855.00

Variable Mean Std Dev Minimum Maximum N Labet

cC 71 1.54 0 14 855 Central Calls

DM 35.48 52.56 ¢ 653 855 Data Structure Manipulation
10 01 .01 o 6 B&S Input-Output

ERR 2,62 8.24 0 84 855 Number of Errors

Page 3 Total Modules Analysis

This procedure was completed at 19:41:04
CORRELATION VARIABLES ALL.

Page 4 Total Moduies Analysis

Carrelations: CcC DSM 18] ERR
CC 1.0060 .2913% -0157 1102%*
bBSM .2913** 1.0000 -.0225 B175%*
18] - 0157 - 0225 1.0000 -.0109

ERR J1102%* 5175%F 0109 1.0000
N of cases: 855 1-tailed Signifi * - .01 ** . 001

" is printed if a coefficient cannot be computed

Table 5-11

The top portion of Table 5-11 gives the raw statistics. The bottom
section characterizes the relationships between the elements of D, and
errors, as well as the interrelationships between the elements
themselves. The numbers in the columns are the correlation coefficients.
These coefficients give the interdependence of one variable’s variance

with another. In more precise terms, the square of the correlation

79
coefficient gives the amount, in percent, of the variables’ variance due
to each other. In the case of the DSM - Error relationship, the
correlation is .5175, which squared is .2601, or 26%. This means that
26% of the variance of errors is due to the variance in DSM. Using this
formula, we can say that the central calls count is significantly
correlated with errors, as is DSM. When looking at these numbers we
can also tell that the central calls is significantly correlated with DSM.
This brings us to the fact that there is some overlap between the
variance attributed to central calls and data structure manipulations.
Since the only input/output count involved in the study was due to a
data error, we can’t say anything about its relationship to errors.
Overall this study tells us that DSM is an accurate approximator of

errors, and further study is warranted.

The D, Formula Coefficients

In addition to determining the existence of a valid relationship,
regression analysis can find an optimal coefficient scheme for the
element formula. Table 5-12 gives a portion of the SPSS/PC+ output

file for the regression analysis.

80

Regression Analysis of Coefficients

......................... Variables in the Equation

Variable B SE B Beta T Sig T
DSM 08116 4.59472E-03 51751 17.664 .0000
(Constant) -.25939.29124 -.891 3734
------------------------- Variables not in the Equation --—er-r-ceesmmaeens
Variable Beta In Partial Min Toler T Sig T
CcC -.04424 -.04946 91517 -1,445 1487
10 7.4073E-04 .00087 99950 025 9799
End Block Numher 1 PIN = .050 Limits reached.

Table 5-12

This table gives us an analysis of the "best - fit" coefficients for the
data. Using these coefficients, we get the best approximation of errors
on this data. Notice that the input/output and central calls elements
are left out of the formula. This is because, for this data, they do not
add any significant ability in highlighting error-prone modules. This
analysis gives us the error approximation formula,
Errors = -.25939 + (DSM * .08116).

This formula is in a slope - intercept form, where -.25939 is the axis
intercept and the .08116 is the slqpe of the line defining errors as a
function of the DSM count. This formula not only gpproximates the
existence of errors within a module, but the actualh number of errors

within the modules.

81

Conclusions

The most noticeable conclusion that one can draw from this study is
that data structure manipulations seems to be a good indicator of
software errors. If the nature of the data is not unique to this project,
but is normal in all software development, we can say with authority
that when a module has a high data structure manipulation count, the
module has a very good chance of containing errors. The problem with
the study is in that the data collected may not be "normal”. There were
many extenuating circumstances which may have effected the data.
First and foremost is that the input and output functions in the
programs could not be determined, for the resources were not at my
disposal. Secondly, the programs were database intensive, which in
actuality meant the amount of data being manipulated outweighed the
control transfer as to make central calls counts insignificant. The result
of these two factors made the study only effective on the data structure
manipulations count in approximating errors. These factors not
withstanding, no documentation was available with the programs, so

making observations about the functionality is pure speculation.

Future Research

The results of this analysis lead us to the conclusion that data structure

82
manipulations are valid approximators of error, but not enough
information and this type of application prohibited any credible
statement about central calls, input/output, or D, as an error predictor.
The study should be repeated on an entire system, which has an even
distribution of the elements of D, To ensure data integrity, the
developers should be at hand, and any assumptions about the system
should be cleared through them. In analyzing a stable system, where
the researcher can control the external variables, a more accurate study
can be performed. If this type of system can be obtained, verification
of the D, metric and components as an error-prone medule locator can

be completed successfully.

83

Bibliography

Baker, Albert L. and Zweben, Stuart H. A Comparison of Control Flow
Complexity. IEEE Transactions on Software FEngineering. Vol SE-6.
No. 6. November 1980.

Barnes, J.G.P. Programming in Ada. Third Edition. Addison-Wesley
Publishing. Menlo Park, California. 1989.

Card, David, Church, Victor, and Agresti, William. An Empirical Study
of Software Design Practices. IEEE Transactions on Software
Engineering. Vol SE-12. No. 2. February 1986.

Chol, Song C. and Scacchi, Walt. Extracting and Restructuring the
Design of Large Systems. I[EEE Software. January 1990.

Conte, S.D., Dunsmore H.E., and Shen V.Y.. Software FEngineering
Metrics and Models. The Benjamin/Cummings Publishing Company.
Menlo Park, California. 1986.

Dunsmore, HE. Evidence Supports Some Truisms, Belies Others.
IEEE Software.

Glass, Robert. Persistent Software Errors. IEEE Transactions on
Software Engineering. Vol. SE-7. No 2. March 1981.

Holub, Allen. Compiler Design in C. Prentice-Hall Publishing. 1990.
Englewood Cliffs, New Jersey.

LI, HF. and Chueng, WK. An Empirical Study of Software Metrics.
IEEE Transactions on Software Engineering. Vol. SE-13. No. 6. June
1987.

Norusis, Marija. SPSS/PC+ Studentware. SPSS Publishing 1988.
Chicago, Illinois.

Rombach, H. Dieter. Design Measurement: Some. Lessons Learned.
IEEE Software. March 1990,

Withrow, Carol. Error Density and Size in Ada Software. IEEE
Software. January 1990.

84

Zage, Wayne M. and Zage, Dolores M. Relating Design Metrics to
Software Quality: Some Empirical Results. SERC Technical Report TR-
74-P, May 1990.

Zage, Wayne M. Design Metrics Status Report. May 1990.

85

Appendix A

Thesis Program Code Listing

This appendix contains the code for the Thesis program. The file was
generated by the Microsoft C 6.0 compiler.

Line# Source Line

3 /* */

4 /# THESIS.C */
5 /* *f

6 /* Code file for thesis */

T /* program, *f
8 /* */

9 /**************************/
10

11 #include <stdio.h>

12 #include <mallo¢.h>

13 #include <memory.h>

14

15 /* Utility Defines */

16 #define FILENAME "EMPLOYEE,DBS"
17

18 /* Global Typredefs*/

19 typedef struct employee_type {
20 char name[20];

21 char address{30};

22 int age, hight, weight;

23 struct employee_type *next;
24 } employee_record,;

25

26

27 /* Functional Prototypes */

28 employee_record *load_file(void);

29 void print_records(employee_record *x_ptr);
30 void free_records(employee_record *x_ptr);
i

32

33 /¥ Data Declarations */

34 employee_record *list_ptr;

36

37 /* Functions */
38 int main{void)
39

}

printf{"Employee DataBase Program Starting ...\n");
list_ptr = load_file();

if (list_ptr '= NULL)
{
print_records(list_ptr);
printf{"Employee Database Successfully Read.\n");

else

(
printf"Error No Database found.\n");

}
printf"Employee DataBase Program Terminated.\n");

return (1);

employee_record *load_file(void)

FILE *fp;
employee_record *top, *t_ptr, temp;
int counter;

top = NULL;
if ((fp = fopen{ FILENAME, "r+")) '= NULL)
{

counter = 5;
while {counter == 5}

(
if ({(counter = fscanfl fp, "%20.20s%30.30s %d %d %d", &temp

.name, &temp.address,

) == 5}

&temp.age, &temp. hight, &temp.weight

if ((t_ptr=malloc(sizeof{employee_record))) == NULL)

(
printf"Ervor Allecating Memeory - Out of Memory\n

counter = -1;
}
else
{
memepy(t_ptr, &temp, sizeoflemployee_record));
]f (top =T= NULL)
{
top = t_ptr,
t_ptr -> next = NULL;
}
else
{
t_ptr -> next = top;
top = t_ptr;
)i

86

92]

93 else

94 {

a5 printf"Error opening database file.\n");
96

97 return { top);

98]

load_file Local Symbois

Name Class Type Size Offset Register
tptr. auto -004a
fo.... auto -0048
temp. auto -0042
top auto -0006
counter auto -0002
99
100 void print_records(employee_record *x_ptr}
101
102 if (X“ptr == NULL)
103 printf{"No Records Found or Unable to find Database.\n");
104 else
105 while (x_ptr '= NULL)
106 {
107 printf("\n");
108 printf(" Name : %-20.20s\n", x_ptr -> name);
109 printfl" Address : %-20.20s\n", x_ptr -> address);
110 printf(" Age 1 %-3d\n", x_ptr -> age);
111 printfl” Hight : %-3d\n", x_ptr -> hight);
112 printfl” Weight : %-3d\n", x_ptr -> weight);
113 printf"\n");
114 X_ptr = x_ptr -> next;
115 }
116)

print_records Local Symbols

Name Class Type Size Offset Register
xptr..... param 0006

117

118 void free_records(employee_record *x_ptr)

119 .

120 employee_record *temp_ptr;

121

122 while (x_ptr '= NULL)

123 {

124 temp_ptr = x_ptr;

125 x_ptr = x_ptr -> next;

87

126 free(temp_ptr);
137)
128 |}

free_tecords Local Symbols

Name Class Type
temp_ptr. auto
xptr..... .0 param

Global Symbols

Name Class Type
fopen extern far function
free. extern far function
free_records, global far function

Global Symbols

Name Class Type
fscanf, extern far function
list_ptr. common far pointer
load_file global far function
main, global far function
malloe. extern far function
MemePY. + v v v v v . extern far function
print_records global far function
printf, extern far function
Code size = 0262 (610)

Data size = 0190 (400)

Bss size = 0000 (D)

No errors detected

Size Offset

-0004
0006
Size Offset
skokosk ook ok
Aok kikok
ok (0226

Size Offset

Rt Aok
4 ok
o 00&e
o 0000
ok ok
ok ok o FkR
ok 0166
*Ak dek ok

Register

88

89

Appendix B

Thesis Program Structure Chart and Flow Graphs

Figure B-1 contains the structure chart for the thesis program. Figures
B-2, B-3, B-4, B-5 contain flow graphs generated from modules main,
load_records, print_records, and free_records.

Thesis.c Structure Chart

Main

list_ptr/

Load_.records Print_records Free_records

Figure B-1

90

Main

/\
\/

Load._ records

C @
ol \®

Figure B-2

Figure B-3

Print _records

o
N

Free records

AN
) (@)

Figure B-4

Figure B-5

In table B-1, listed below, are the line numbers cofresponding to the

nodes of the flow graphs.

Flow Graph Line Numbersa

Module Main

Node Line Numbers
1 39 - 43

2 44 - 48

3 49 - 51

4 52 - b4
Module Load_records
Node Line Numbers
1 62 - 63

2 95

3 97

4 65 - 66

5 68 - 69

6 70

7 71

8 73-74

9 78 - 79

10 82 - 83

11 87 - 88
Module Print_records
Node Line Number
1 102

2 103

3 1056

4 107 - 114

5 116

Module Free_records
Node Line Number
1 122

2 124 - 126

3 128

Table B-1

92
Appendix C - Pilot Study Project Specifications.
CS680 Project 1

Requirements :

For a certain company, the method by which the pay for each
employee is computed depends on whether that employee is classified as
an Office employee, a Factory employee, or a Salesperson. Suppose the
a file of employee records is maintained is which each record is variant
depending on the classification. The following is the format of these
data.

Name (20 Characters)

Social Security Number (integer)

Age (Integer)

Number of Dependents (integer)

Employee Code (O, F, or 5)

Hourly Rate, if employee is Factory worker

Annual Salary, if employee is office worker

A Base pay and commission if employee is salesperson

The program should be menu driven allowing at least the following
options, which are selected by the user.

Insert the record for a new employee
Update the record of a existing employee
(e.g. allow change of name, SS#, etc.)
Retrieve and display the record for a specified employee (for Name
or SS#)
List the records (or perhaps selected items in the records) in order.
This option should allow these sub-options
- list all employees
-- list only office employees
- list only factory employees
-- list only salespeople
To copy records into a permanent file
To delete the record of an employee from the file

Produce a data flow diagram, the structure chart, and running code in
any language. Your program should be as user-friendly as possible.

93

Appendix D - Pilot Study Project Characteristics

owayds Bunubiem g sreuwsone Ag parubuubiy
awayos Bunyubiam hun g Ag om;@:;oi“

gL | 04 O g SE 0 uren
B | ¥| O b e 0 1517
6 £ q L 14" 0 {1e-151
b £ S L GL 0 531 RS-1517
6 3 S L Gl 0 AJ0108] 71517
b £ Q L CL 0 a8214J0-1511
0oL OLl O 1} EL 0 ZNUaL Ul id
B £ £ ¢ gL 5 yoJess
cl| 2l O 0 cc 0 R1PD -9 M
AN I 4 G £ e L 21920
B¥ | Sk| ¢ 4 66 gL tya1epdn
BL| ¥ Lb | E GE gl + 19%U|
g el € L EL 0 al1}~01-18)1 ~Ad0oD
S c E B 8¢ 3] UodaessepUn
0¢| Ogl U B (E 0 [sBen=Thtly)
bl] £ B m 5] 0 NUBN~IUE Jd
LLp Lk 0 0 14" 0 aoel B
q {O/H{WsS3 | 20| 2075 | sJ0443 SolUeN Sa| PO

SD115171018 UUSISAS | —dW

Table D-1

94

3wauds bunubram g seusde Ag parybrubiv,
away>s Bunjybiam yien Q £q om;c@__co:.:

L u} S B EE D ulew
gL c 0 < bL 0 nuaul™ ulew
B L 0 L 6 D 1DN.sUL T eu 4
el & D E 0c 0 AJ0ODT151T
gL LL 0 S 1144] 1517
Ch B & L Le o Aa0108) 71517
Ll 6 L L Le 0 59|85 1S
(L 6 4 L L2 0 3314307351
Le oL oL L 7e 0 HETIS
(L 9 gL L Sl 0 1S DU M
Lk E2 SL £ a4 0 y Ado2"dug
(L L c L Ft 0 JUSLBIS 313120
cl 0 Ll L (L 0 219130
EL 6 g z 8t D a1epdn
9 ¥ o L Lel 9 + yduie” orepdn
ch 4 8 o GL 0 askoidwa™pulg
L9 ce EE £ Ec =) 1 ¥IUBUWBID PRY
L1 LL O 0 EL] NS g
0q 8L S¢ 8 GF 0 y BP0 21e2.0)
cl 0 cl 0 EL D 195U
oL g oL] L D IBDUIDID DU
010/ [WSa | 20 | 20718 | SHOHYI SUIBN 3|NPOW

5211511215 WIS1SAS 2 —dN

Table D-2

95

2wauds Buniubiem 0 sivvisie Ag peyubiubin
awayls Bunubiam ypun g Aq patubiiyben ,
B 4 0 ¥ [4 ¢! pURLLILLIOD T 128} 851
(&) 1 Dy 9 A% 8] ubiu~mous
Bl E B B A8 &} 15117 MOUS
8 0 [4 L L 0 151D
E u} 1} 3 aL 1] 1117 ed
< L E 2 2 D @5~ Aeidsipt
St c e ct OE 3] SPURWALIOD 1587
0e £ 8 & 0z 0 sty pesy
£l E 3 b oL 0 CHTRCRE -
<L I 4 [4 61 0 PUBLLALOD ™ te)
£l L B 12 an 0 ubiu~mousTieg
< 1] S 0 4 0 snT1apToInNg
DE 4 kL AR Lt 0 plopas eeueq
514 a B SL BL s pross v dsig
B 0 [L gL i pAoIRIpUI4
Le < E EL Le 1] Do Ajtoads
LL ul £ g Bt 5 [eXlon=Wa-TY- W -0}
Let BE 1% +C ot a + ¢ L meTIenon
12 t gL < tZ 0 ubiu~mous"e1endn
5 0 S 0 L 0 151 endnTg
8 4 1] ¥ g1 u] DU BUALIOD ™ S1RPdN
2z 4 LL ZL e] DI03S B1epdn
BL 8e 91 +E FE S + PRI ITIIRSU|
B 4 0 4 De a pLIDT}RI88
E 1 L L < 0 138195~ AnidsIg
9 c] 8 Sk 0 nusLWTUtEw
B 0 0 8 L2 0 su011e.4330
BL D 5] 5 Li 0 SOUDT UL
L =] 1] B cL 0 U TUBINS
B 4 H b LL 0 UDISXET MOUG
BL [o 2L I3 i} w1 Bewy
42 S] L Ee o W uoy
3 0 a 8 ai? 0 urewy
a o/ WS 30 2075 SHOHY3 sweN IINpow
SD11511815 WUD1ISAS £ —dIN

Table D-3

EASY 1

EASY 2

EASY 3

96

Appendix E - STANFINS D, Metric Counts

COMONHRNHOONDOOHOMINWOSH—®C - lo COOHOHONNOD—~T |G
] 9]

OO O

DSM

13
86
23

81

21
79
35
30
13
11

106

47
48
92
11
39
57

28
80

DSM

13

105
98
12

|5

oo oo oo OoOQ

pe
=]

[N R e R e W W oo W B Jon B e o B e o e e o o o e o s o]

E

cCoOooo oo

Easy Programs

Avzhgped_Aspect.Set_[nitial_Screen
Fhgp_View. Appl _Fnd_Cmt_Doc.Make_Prime_Kev
Ehgp_View.Appl Fad Cmt_Doc.nitialized

Ehgp_View.Operation_Status

Avzhgped _Aspect.Process_Steps
Avzhgped_Aspect.Process_Steps.Retrieve_Record _And Update
Avzhgpes_Aspect.Process_Steps.Retrieve_Record_And_Update.Lo
Ehgp_View.Modify_Record
Avzhgpes_Aspect.Bhgp_Continue_Frem_A
Interactive_Input_Comm_Area. Transfer_Control_And_gxit
Avzhgpes_Aspect.No_Local_Process

ERRS Mbodule Name
0 Avzhgped_Aspoct
1

0

b}

0 Fhgp_View. Retrieve
0

2

3

0

0

0

G

0

ERRS Module Name

QO oo oOooOLDWOO OO0 0D D

Avzuhped_Aspeel

Avzubped _Aspect.Set_Initial_Screen

Avrubped _Aspect.Process_Sleps.Prepare_For_Step_2
Avzubped_Aspect.Process_Steps. Edit_Kev_Data.Build _Fnd_M_jo_Inf
Eubp_View.Appl_Fnd_Mjo.Initialized
Bubp_View.Appl.Fnd_M_jo.Make_Prime_Kev

Bubp_View.Relrieve

Fubp_View.Operation_Status
Avzubped_Aspect.Process_Steps.fdit_Kev_Data.Build_M_jo_Dst_Inf
Eubp_View.Appl_Mjo_Dst.Initialized

Avzubped _Aspect.Process_Sleps.Edit_Kev_DataBuitd_All_Id_Inf
Eubp_View.Appl_All_ld.Make_Prime_Kev

Bubp_View.Appi_Al_Id Initialized
Avzubped_Aspect.Process_Steps. Validate_Screen_Amounts
Avzubped_Aspect.Process_Steps.Prepare_For_Step_3
Avzubped_Aspect. Process_Steps.Process_Change_Amount
Avzubped_Aspect.Process_Steps.rocess_Confirmation.Validate_Pa
Avzubped_Aspect.Process_Steps.Process_Confirmation. Modifv_Fnd
Fubp_View.Relcase_Record

Eubp_View.Modilv_Record
Avzuhped_Aspect.Process_Steps.Process_Conl_irmation.Add_Fnd
Eubp_View.Appl_Fnd_Dst_Ph.Initialized

Eubp_ View.Add_Record
szuhpc4_Aspcct.Proccss_Stcps.Proccss_Conﬁrmatiun.Buiid_Scrn
Avzubped_Aspect.No_Local_Process

Avzerpmb_Aspect.Put_Report_Header
Avzerpm5_Aspeet.Convert_To_Sjo
Avzerpm5_Aspecl.Bdit_Data
Avzerpm5_Aspeet.BEdit_Data.Determine_Atg_Month_Info
Merp_View. Appl Atg_Month. Make_End_Dt_Kev

ERRS Module Name

0 Avrzerpmb_Aspect
2

0

20

27

0

V]

Merp_View. Appi_Alg_Month.Initialized

3 78 0 0 Merp_View. Retrieve
0 2 0 0 Mecrp_View.Operation_Status
2 56 0 8 szcrpmS_Aspect.Edit_Data.Determine_Input__Errors
2 142 0 5 Avzerpm5_Aspect.Edit_Data.Validate_Input_Fields
0 1 0 0 Mecrp_View.Appl_Eor_TblInitialized
0 11 0 0 Merp_View.Appl_Eor_Tbl.Make_Prime_Key
3 83 0 0 Merp_View.Read Index_ Only
8 200 0 12 Avzerpm5_Aspect.Edit_Data Verifv_Database_Records
0 15 I} 0 Merp_View.Appl_Fnd_S_jo.Make_Prime, Kev
0 1 0 0 Mecrp, View.Appl_Fnd_Sjo.Initialized
0 15 0 0 Merp_View.Appl_Rmb_Ord.Make_Prime_Key
0 3 0 0 Merp_View.Appl _Rmb_Ord.initialized
0 1 0 0 Merp_View.Appl_Al_Id.Initialized
0 ki 0 0 Mcrp_View.Appl_Fnd_Mjo.Initialized
0 27 0 0 Merp_View.Appl_Exec_Cmt_Obg.Make_Prime_Key
0 11 o 0 Merp_View.Appl_Exec_Cmt_Obg.Initialized
0 11 0 0 Merp_View Appl_All_Id_Make_Prime_Kev
5 218 v} 27 Avzerpm5_Aspect,Update_Files
0 3 0 0 Merp_View. Appl_Lmt_Mjo lnitialized
0 5 0 0 Merp_View.Appl_Exec_Rpt.Initialized
2 72 0 2 Avzerpmb_Aspect.Update_Files.Build_Batch_Record
1 35 0 6 Avzerpm3_Aspect.Update_Files.Print_Update_Error
1 64 0 4 Avzerpmi_Aspect.Update_Fites.Build_Lmt_Mjo_Bufler
0 1 0 0 Merp_View. Appl_Limit_Code_Tbl.Initialized
0 15 0 0 Merp_View Appl_Limit_Cede_Tbl.Make_Prime_Kev
0 19) 0 Merp_View. Appl_Lmt_Mjo.Make_Prime_Key
0 67 0 0 Avzerpma_Aspect.Update_Files.Build_Rmb_Ord_Buffer
0- 73 0 6 Avzerpmi_Aspect.Update_Files.Build_Exec Cmt_Obg_Buffer
0 1 0 0 Merp_View.Appl_Cus_Tvp_Thl.Initialized
0 1 0 0 Merp_View.Appl_Exee_Grp_Asg.Initialized
0 7 0 0 Merp_View.Appl_ Cus_Tvp_Thl.Make_Prime_Kev
0 19 0 0 Merp_View.Appl Exce_Grp_Asg Make_Prime_Kev
1 111 0 13 Avzerpm5_Aspect.Update_Files.Build_Fnd_Mjo_Buffer
2 29 0 0 Merp_View.Release_Record
0 1 0 0 Merp_View.Record_Is_[Locked
0 100 0 3 Avzerpm5_Aspect. Update_Files.Build_Excce_Rpt_Buffer
0 85 0 0 Merp_View.Appl_Exec _Rpt.Make_Prime_Kev
1 54 0 2 Avzerpms_Aspect.Update_Files Modifv_All_Lgr_Buffer
0 16 0 0 Merp_View. Appl_All_Lgr.Make_Prime_Kev
0 3 0 ¢ Merp_View. Appl_All_Lgr.Initialized
0 11 0 4] Merp_View.Appl_Exec_Pst.Make_Prime_Kev
0 3 0 0 Merp_View.Appl Exec_Pst.Initialized
0 9 0 ¢ Mecrp_View.Appl_tixee_For_Tran.Initialized
1 40 0 0 Merp_View.Add_Record
1 40 0 0 Merp_View Maodifv_Record
0 24 0 0 Avzerpm5_Aspect.Update_Files.Fix_Ode
0 18 0 [Avzerpmi_Aspect.Close Edit_Report
EASY 4
cC DSM 8] ERRS Module Name
7 12 0 0 Avzwipl3_Aspect
1 118 0 1 Avzw1pi3_Aspect.Displav_Initial_Screen
0 1 0 v} Fwlp_ View Appl_Fxd_Ast.]nitialized
0 1t 0 0 Fw_1_p_View.Appl_Fxd_Ast.Make_Prime_Kev
0 8 0 1 Avzwlpf3_Aspect.Displav_[nitial_Secreen.Blank_In_Record
+] 21 0 2 Avzw1pl3_Aspect.Displav_nitial_Screen.Set_Sereen
3 61 0 0 Fw_1_p_View.Retrieve
2 0 0 0 Fw,_1_p_View.Operation_Status ‘
0 0 0 1 Avzw_1_pf_3_Aspect.No_Local_Process
EASY 5
cCc DSM LO ERRS Module Name
4 5 ¢ 0 Avzk 1_pg7_Aspect
0 69 0 0 Avzk 1pg7_Aspect.Do_Top_ Edits
0 1 0 0 Gkip_View.Appl_Dssn_Un_Tblinitialized

EASY 6

Easy 7

=8 -]

sSooor |O
13

OO0 ONOAFODOON OO HOOOHOOHNO=OOWOoO o OOQOW |o
]

50

17
21

DSM

300
44
160
60

53
36
50

15
Kt
17
47

11

29
38
122

15

11
62
122

54
98

11
55
98
I

3%

14

oo o o

coocoo |
5

o}

98

Gk_1_p.View Appl_Dssn_Un_Tbl.Make_Prime _Key
Gkip_View.Read_Index_Only
Gk_1_p_View.Operation_Status

Avzk_1_pg7. Aspect.Finish_Building_Record
Avzk_1_pg7_Aspect.Lock _All_Top_Fields

Avzlspgd_Aspect.Do_Top_Edits
Avzlspgd_Aspect.Do_Top_Edits.Valid_Input
Avzlspg®_Aspeet.Finish_Building_Record
Avzlspg9_Aspect.Lock _All_Top_Ficlds

0
0
0
0
0
ERRS Module Name
0 Avzlspg9_Aspect
9
2
0
2
ERRS Module Name

[TErErEelolaolaNaoNoNo N N Nolalole ol ool ¥ il e e R R el e R o lle N Sl e B Rav J el Joe I - I o R I o Jow low I it s Il 8

Avzhlpeb_Aspect

Avzhlpes Aspect. Transier_Logic

Interactive_Input_Coram_Area. Transfer_Control_And_Exit
Avzhlpes_Aspect.Set_Key_Fields
Avzhlpes_Aspect.Set_Input_Fields
Avzhlpes_Aspect.Sct_Bottom_Fields

EhlmQ.Set_[nitial_Secreen
Ehlp_View.Appl_Fnd_Cmt_Reg.Make_Prime_Key

Ehip_View. Retrieve

Avzhlpes_Aspect.Setup_Cmt_Req_Add
Avzhlpes_Aspect.Sctup_Cmt_Req_bodily
Avzhipes_Aspect.Send_Next_Sereen
Ehlp_View.Appl_Fnd_Cmt_Req.Initialized
Ehlp_View.Operation_Status
Avzhipe5_Aspect.Send_Previous_Sereen
Avzhiped_Aspect.Process_Steps
Avzhipes_Aspect.Process_Steps.Edit_lnputs
Avzhipes_Aspect.Process_Steps. Edit_Inputs.Edit_Required_Fi
Avzhlpes_Aspect.Lrocess_Steps.Edit_Inputs.Get_Fnd_Sjo
Ehlp_View.Appl_Fnd_Sjo.Initialized
Ehlp_View.Appl_Fnd_Sjo.Make_Prime_Key
Avzhlpe5_Aspect.Process_Steps.Edit_Inputs.Get_Fnd_Cmt_Doc
Avzhlpes_Aspect. Process_Steps. Update_Cmt_Document.Get_All
Avzhlpe5_Aspect.Process_Steps.Update Cmt_Document.Validate
Ehlp_View.Appl_Cec_Jo_Corr_Thl.initialized
Ehip_View.Appl_Ccc_Ja_Corr_Tbl.Make_Prime_Key
Avzhlpeb_As pcct.Pmccss_Steps.Update_Cmt_Documcnt.Validate
Avzhlped_Aspect Process_Steps.Update_Cmt_Document.Update F
Fhip_View Modifv_Record

Avzhlpes_ Aspeet.Process_Steps. Update_Cmt_Document Build_Re
Ehlp_View.Appl_Fad_Mjo.Initialized
Ehlp_View.Appl_Fnd_M_jo.Make_Prime_Key
Ehlp_View.Appl_Rmb_Ord.Initialized

Ehlp_View.Appl _Rmb_Ord.Make_Prime_Key
Avzhipes_Aspect.Process_Steps. Update_Cmt_Document.Get,_Req
Avzhipes_Aspect.Process_Steps.Update_Req_Document
Ehlp_View.Appl_Ga_Sys_Islinitialized

Avzhlpes, Aspoct.Process_Steps. Update_Req. Document Edit_Req
Avzhlpos Aspect.Process_Steps.Update_Req Document.Validate
Ehlp_View.Appl _Eor_TblInitialized

Ehlp_View. Appl_Eor_Thl.Make_Prime_Key
Avzhlpes_Aspect.Process_Steps.Update_Reg_Document Retrieve
Avzhlpos_Aspect.Process_Steps, Update_Req_Document.Retrieve
Ehlp_View.Appl_Ga_S8vs_Isl.Make_Prime_Key
Avzhlped_Aspecl.Process_Steps.Clear_Bottom_Fields
Avzhlpes_Aspeet.Quit

Avzhlpes_Aspect.Continue_Processing
Avzhlpes_Aspect.No_Local_Process

Medium

Medium

1

OO OMOONMNO S MO bRO& ‘O
&

M OOWOOONCSONOONOOROCOMOCOCHO OO OCONWO O OO IO 02
]

DSM

19
77
10
22

15
63
45
22
15
10

15

23
160
34
40

=
o

[=f=felojalolalalelaleleleiele)e)

Q

99

Medium Programs

Avzxmpg8_Aspect.Pss Parm.Put
Avzxmpg8_Aspect.Do_Edits
AvzxmpgB_Aspect.[lo_Edits.Set_Required_Field_Attr
Avzxmpg8_Aspect.Do_Edits, Validate
Gxmp_View.Appl_Atg Month.Initialized

Gxmp_View Appl_Atg_Month.Make_Prime_Key

Gxmp_View Oporation_Status
Avazxmpg8_Aspect.Do_Edits.Invalid_Year_End_Ide
Avzxmpg8_Aspect.Do_Edits.Set_Invalid_Field_Attr
Avzxmpg8_Aspect.Do_Edits.Batch_Open
Gxmp_View.Appl_Bat_Inp_Hdr Initialized
Gxmp_View.Appl_Bat_Inp_Hdr.Make_Prime_Key
Avzxmpy8_Aspect.Finish_Building_Record
Avzxmpg8_Aspect.Lock_Hields

Avrr2pg2? Aspect.Pss_Parm.Put
Avzr2pe2_Aspect.Do_Top_Edits

ERRS Module Name
0 Avzxmpg8_Aspect
6

27

6

0

0

0

0 Gxmp_View.Retrieve
0

0

19

0

0

0

2

2

ERRS Module Name
0 Avzr2pg2_Aspect
3

26

18

O‘DgOOOOOOOO-P-OOHOO&—-OOHOOOOL\BOOOOOOOOOO’)

Avzr2pg2_Aspect.Do Top_Edits.Set_Required_Field _Attr
Avzr2pg2_Aspect.Do_Top_Edits.lovalid_Prf_Cd
Gr2p_View.Appl_Sid_Inx.Initialized

Gr2p_ View.Appl_Std_Inx.Make_Prime_Key
Gr2p_View.Read_Index_Only
Gr2p_View.Operation_Status
AvrrZpg?2_Aspect.Do_Top_EditsInvalid_Rpt_lde
Aver2pe2_Aspeet.Do_Top_Edits.lavalid_Rpt_Pat_Idc
Avzr2pg?2_Aspect.Do_Top_Edits.Invalid_Atg_ Dt
Gr2p_View.Appl_Atg_Moath.Initialized
Gr2p_View.Appl_Atg_Month.Make_End_Dt_Key
Avzr2pg2_Aspect.Do_Top_Edits.Required_Rpt_Pat_Ficids
Avar2pg2_Aspect.Do_Top_Edits.lnvalid_Rpt_Pat_Fields
Avzr2pg2_Aspoct.Do_Top_Edits.Invalid_Bs
Gr2p_View.Appl_Bs_Edit_Tbl.Initialized
Gr2p_View.Appl_Bs_Edit_Tbl.Make_Prime_Key
Avzr2pg?_Aspect.Do_Top_Edits)nvalid_Ams
Gr2p_View.Appl_Ams_TblLInitialized
Gr2g_View.Appl_Ams_Tbt.Make_Prime_Key
Avzr2pg?_Aspect.Do_Top_Edits.invalid_Ams_Sp_Prj
Gr2p_View.Appl_Ams_Sp_Prji_TblInitialized
Gr2p_View.Appl_Ams_Sp_Prj_Tbl.Make_Prime_Key
Avzr2pe2_Aspect.Do_Top_Edits.Invalid_Sys_Cpe
Gr2p_View.Appl_Ama_Sys_Ttl_Tbl.Initialized
Cr2p_View.Appl_Ams_Sys_Ttl_Thl.Make_Prime_Key
Avzr2pg2_Aspect.Do_Top_Edits.Invalid_Uic
Gr2p_View.Appt_Uic_Mst_Tbllnitialized
Gr2p_View.Appl _Uic_Mst_Thl.Make_Prime_Key
Avzr2pg2_Aspect.No_Top_Edits.Check_All_d_Wss_[d
Cr2p_View.Appl_All_Id.Initialized
Cr2p_View.Appl_Al_Id.Make_Cas_All_Key
Cr2p_View.Appl_Fnd_Sjo.Initialized
Gr2p_View.Retrieve
Gra2p_View.Appl_Fnd_Sjo.Make_Wss_Seq_Key
Avzr2pg2_Aspect.Do Top_Edits.Set_Invalid_Field_Attr
Avzr2pg2_Aspect.Finish_Building_Record
Avar2pg?_Aspect.Lock_AN_ Top_Ficlds

100

Medium 3

cCc DSM vo ERRS Module Name

8 11 0 0 Avz0OBpeT_Aspect

0 35 0 0 Avz06peT_Aspect.Set_Key_Fields

0 25 0 0 AvzO6peT_Aspect.Sct_Data_Line

0 53 0 0 Avz06peT_Aspect.Clear _Screen

1 42 0 4 Avz08peT_Aspect.Record_Valid

0 1 0 0 E06p_View.Appl_Misc_Sjo.Initialized

0 19 0 0 Lo6p_View. Appl_Misc_Sjo.Make_Prime_Key

3 56 0 0 E06p_View.Read_Index_Only

2 0 0 0 E06p_View.Operation_Status

1 204 0 1 AvzO6peT_Aspect.Fill_Screen

0 7 0 0 E06p_View.Appl_Dssn_Doc_Oth.Initialized

0 35 0 0 E08p_View.Appl_Dssn_Doc_Oth Make_Prime_Key

3 69 0 0 E06p_View.Retrieve

1 198 0 0 AvzO6pe7_Aspect.Fill_Sercen_Reversed

0 32 0 0 Avz06pe7_Aspect.Set_Initial_Secreen

0 23 0 0 Avz06pe7_Aspect.Send_Previous_Sercen

0 23 0 0 AvzO6pe7_Aspect.Send_Next_Screen

0 28 0] 0] Avz0QGpe7_Aspect.Process_Steps

¢ 39 0 0 Avz06pe7_Aspeet.Process_Steps.Edit

0 62 0 0 Avz06pe?_Aspect.Process_Steps.Edit.Edit_Required Fields

1 85 0 1] szOﬁpe7_1-\5puct.?roccss_Steps.Edit.CheckADSSn_Doc_Oth

o 1065 0 ¢ Avz06pe?_Aspect.Pracess_Steps.tpdate

0 15 0 0 Avz06pe7_Aspect.Process_Steps.Update. Block_Entered

0 44 0 0 Avz06pe7_Aspecl. Process_Steps.Update Bdit_Required_Fields

0 28 0 0 szOGpc’?wAspcct.Pmccss_StepS.Updatc.Validate_Rej_T['o_Cd

0 1 0 0 F0Gp_View.Appl_Dssn_Thlinitialized

0 7 0 0 20Bo_View Appl_Dssn_Thl.Make_Prime_Key

0 1 0 0 L06p_View. Appl_Dssn_Un_TeLInitialized

0 7 0 0 Eo6p_View.Appt_Dssn_Un_Thl.Make_Prime_Key

3 124 0 0 Avz06pe7_Aspect.Process_Steps.Update. Validate_Sjo

0 1 0 0 E06p_View.Appi_Fnd_Sjo.nitialized

0 15 0 0 E0Gp_View.Appi_Fnd_Sjo.Make_Prime_Key

1 121 0 1 szOGpeT_Aspcct.Proccss_Schs.Updatc.Modify_Dssn_Doc__Oth

1 200 Q 12 AvzO6pe7_Aspoct.Process_Steps.Update. Modily_Dssn_Doc_Oth.A

0 5 ¢ 0 E06p_View,Appl_Bat_ Inp_Dtlinitialized

1 33 0 ; L06p_View.Add_Record

2 18 0 0 Eo8p_View.Release_Record

1 33 0 0 E06p_View. Modify_Record

0 24 0 0 AvzQipe?_Aspect.Process_Steps.Relresh_Screen

0 I, 0 0 Avz06pe7_Aspect.No_Local_PProcess

0 29 0 4 AvzOGpeT_Aspect.Quit

1 35 0 0 Avz(Q6pe7_Aspect.Quit.Create_Mhbjp_Dti_Hdr

1 30 0 0 Avz(6pe?_Aspect.Quit.Create_Mbjp_Dti_Trl

1 32 0 0 Avz06pe?_Aspect.Quit.Create_Bat_[np_Hdr

] 9 0 0 [06p_View. Appl_Irr_Queuc.Initialized

0 3 0 0 Fo06p_View.Appl_lrr_Rpt_Delault.Initiatized

Q 15 0 0 E06p_View.Appl_iir_Rpt_Delault.Make_Prime_Key
Medium 4

cc DSM /o ERRS Module Name

7 12 0] 0 Avzgoped_Aspeel ;

0 13 o 1 Avzgopes_Aspect.Set_Initial_Sereen

0 100 0 2 Avzgopes_Aspecl.Process_Steps

2 85 0 3 Avzgoped_Aspecl.Process_Steps.Retriove_Fnd_S jo Ree

0 15 0 0 Egop_View.Appi_Fnd_Sjn.Make_Prime_Key

0 1 0 0 Egop_View.Appi_Fnd_Sjo.Initialized

0 18 0 0 Egop_View.Roetrieved

2 ¢ 0 0 Bgop_View.Operation_Status

1 21 0 6 Avzgoped_Aspeet.[Process_Steps.Get_Fnd_M_jo_Rec

0 15 0 0 Egop_View.Appl_Fnd_Mio.Make_Prime_Key

0 9 0 o Egop_View.Appl Fnd_Mjo.Initialized

0 32 0 0 Avzgopes_Aspect.Process_Steps.Set_Top_Attr

COOODOoOCOOoOOOOHOOOCOOOOHOOCOHOOOONCOCOOMROOO

Medium 5

CONOCOOOMMOONWOOmOOO 10 -3 IO
Q

Medium 6

20
56
66
52
11
31
55
11
12

83
31

63
15
42
15
19
16
42
11

65
11

19

3
21

bsM

o000 e
]

113

22
a2

15
83

12
5d
34
20

11
12

o

11

OO oCOoOOCOOOOOIOOOT OO0 OO0

<o

COoOoCOOTOoADOLCODOOOLOOCOoONOOSHOQOOCOREWOooTMOMO

ERRS

101

Avzgoped_Aspeel.Process_Steps.Set_Bottom_Attr
Avzgopes_Aspect.Process_Steps.Edit_Top_Fields
Avzgopeh_Aspect.Process_Steps.Edit_Top_Ficlds.Required_Fie
Avzgoped_Aspect. Process_Steps.Edit_Top_Fields. Move_Allotme
figop, View Appl_All_ld.Make_Prime_Key
Bgop_View.Appl_All_Id.Initialized
Avzgopes_Aspect.Process_Steps.Edit_Top_Fields.Caleulate_Un
Avzgopes_Aspect.Process_Steps.Edit_Top_Ficlds Validate_Top_Inputs
Egop_View.Appl_Eor_Tbl.Make_Prime_Key
Egop_View.Appl_Eor_Tbl.Initialized

Egop_View.Appl Atg_Month.Make_End_Dt_Key
Egop_View.Appl Atg_Month.Initialized
Avzgope5_Aspect.Process_Steps.Edit_Top_Fields.Check_For_Obg
Egop_View.Appl_Exec_Cmt_Obg.Make_Obg_Doc_No_Key
Egop_View.Appl_Exec_Cmt_Obg.Initialized
Avzgope5_Aspect.Process_Steps.Edit_Bottom_Fields_And _Update
Egop_View.Appl_Rmb_Ord.Make_Prime_Key
Bgop_View.Modily_Record

Egop_View.Appl _Lmt_Mjo.Initialized
Egop_View.Appl_Limit_Code_Thl Make_Prime_Key
Egop_View.Appl_Limit_Code_Thl.Initialized
Egop_View.Appl_Lmi_Mjo.Make_Prime_Key
Egop_View.Appl_Exce_Pst.nitialized

Egop_View Appl_All_Lgr.Make _Prime_Key
Egop_View.Appl_All_Lgr.Initialized
Egop_View.Appl_Exec_[Bor_Tran Initialized
Egop_View.Add_Record
Bgop_View.Appl_Excc_Pst.Make_Prime_Key
Egop_View.Appl_Exec_Rpt.Initialized
Egop_View.Appl_Exec_Rpt.Make_Prime_Key

Bgop_View.Appl _Cst_Cen Make_Prime_Key

Egop_View.Appl Cst_Cen.Initialized

Egop_View. Appl_Md{_Tbl.Make_Prime_Key
Egop_View.Appl_Mdf_TbiInitialized
Fgop_View.Appl_Bac_Qui_Hdr Make_Sta_Key
Egop_View.Appl.Baw_Qui_Hdr Inilialized
Egop_View.Appl_Bal_Qui_Dilnitialized

Fgop_View. Appl_Bat_Qut_Dtl.Make_Prime_Key
Avzgopes_Aspect.No_Local_Process

Module Name

SO0 OCOr OO OO ONWHD

Avzp9pe3_Aspeet

Avzp9pesd_Aspeet.Set_nitinl_Screen
Avzp9ped_Aspect.Process_Steps
Avzp9ped_Aspect.Process_Steps.[idit_And_Update

Ep9p. View_Appl_Fxd_Ast_Initialized e

Avzp9ped_Aspect. Process_Steps.Edit_And_Update.Check_Requir
Avzp9ped_Aspect.rocess_Steps.Edit_And_Update.Calculate Cp
Fp9p_View Appl_Fxd_Ast_Amt.Initialized
Ep9p_View.Appl_Fxd_Ast_Amt.Make_Prime_Key
Ep9p.View.Retrieve

Ep9p_View.Operation_Status

Ep9p_View.Appl Atg Month Initialized

Epdp_View.Appl Atg_Month.Make_End_Dt_Key
Avzp9pe3d_Aspect.Process, Steps.Bdit_And_Update Update_Databa
Tp9p_View.Modify_Record
Bp9p_View.Appl_Ppy_Lgr.Make_Prime_Koy
Ep9p_View.Appl_Ppy_Lgr.Initialized
Ep9p_View.Appl_Fa_Pst.Initialized
Tp9p_View.Appl_Fa_Pst.Make_Prime_Key
Lp9p_View.Release_Record

Fp9p_View. Appl_Fxd_Ast.Make_Prime_Key
Avip9ped_Aspect.No_Local_Process

102

cC DSM vo ERRS Module Name
ki 12 0 0 Avzntped_Aspoct
1 84 0 2 Avzntped_Aspect.Set_Locks
1 7 O 1 Avzntped_Aspect.Scet_Initial_Screen
0 27 a 3 Avzntped_Aspect.Process_Steps
2 48 0 3 Avzntpe3_Aspecl.Process Steps.Display_Fxd_Ast_Rec
0 3 0 0 Entp_View.Appl_Fxd_Ast.Initialized
v} 61 ¢ 1 Avzntped_Aspact.Process_Steps.Pisplay_Fxd_Ast_Rec.Fili_Scrn
0 11 o 0 Entp_View. Appl_Fxd_Ast.Make_Prime_Key
3 68 v} 0 Entp_View.Retricve
3 0 o] ¢ Eatp_View.Opcration_Status
4 105 0 4 Avzniped_Aspect.Process_Steps.Edit_And Update
0 35 0 0 Avzntped_Aspect.Process_Sleps.Edit_And_Update.Field_Entered
0 15 0 1 Avzntped_Aspect.Process_Steps.Bdit_And_Update.Dpr_Ide_Change
1 31 0 1 Avantpe3_Aspect.Process_Steps.Edit_And_Update.Cp_Ast_ Use O~
1 31 0 0 Aventped_Aspect.Process_Steps.Edit_And_Update.Cp_Ast_Acg_O~
0 21 0 2 Avzntped_Aspect.Process_Steps.Edit_And_Update.Field_Changed
0 T 0 47 Avzntped_Aspect.Process_Steps.Edit_And_Update. Edit_Fields_Ea
0 1 0 0 Tatp_View. Appl_Cp_Ast_Nme_Tbl Initialized
0 1% 0 0 Entp_View.Appl_Cp_Ast_Nme_Tbl.Make_Prime_Key
3 15 0 0 Entp_View.Read Index_Onty
0 1 0 0 EntmO.Get_Cp_Ast_Acq Own
0 1 0 0 Entp_View.Appl_Fse Nme_Tbhl.Initialized
0 1 0 0 Eatp_View.Appl_Fsc_Ast_~bl.Initinlized
0 19 0 0 Entp_View Appl_Fsc_Ast_~bl.Make _Prime_Key
0 15 0 0 Eatp_View.Appl_Fsc_Nme_Tbl.Muke_Prime_Key
0 1 0 0 Eatp_View.Appl_Fac_Cat_-yp_Thllnitialized
; 1 0 0 Entp_View.Appl _Fac_Cat_~st_ThiInitialized
0 19 0 0 Enlp_View.Appl_Fac_Cat_~st_ThiMake_Prime_Key
; 7 0 0 Entp_View.Appl Fac_Cat_~yp_ThiMake_Prime_Key
0 177 0 13 Avzntped_Aspect.Process_ Steps.Edit_And_Update.Build_Fxd_Ast
{0 16 0 5 Avantped_Aspeet.Process_Steps. Edit_And_Update.Update_Genera
0 3 0 0 Entp_View.Appl_Fa_Pst.Initialized
0 20 0 0 Eatp View.Appl_Ppy_Lgr.Make_[Prime_Key
0 3 0 0 Entp_View.Appl_Ppy_Lgr.Initialized
0 11 0 0 Fntp_View.Appl Fa_Pst. Make_Prime_Key
1 37 0 0 Entp_View.Modily_Record
2 15 0 0 Entp_View.Release_Record
0 18 0 0 Avzntped_Aspect.Process_Steps.Edit_And_Update Reset_Screen
0 0 0 0 Aventped_Aspect.No_lLocal_Process
Medium 7
cc DSM prie} ERRS Moadule Name
6 3 0 0 Avzeupmb_Aspect
0 17 0 13 Avzeupmb_Aspect.Initinlize_Edit_Report
1 13 0 2 Avzcupmb Aspect.Put_Report_Header
0 6 0 1 Avzcupmd_Aspeet.Convert_To_Sjo
0 122] 71 Avzeupmb_Aspect, [Ldit_Data
1 120 0 28 Avzcupmb5_Aspect. Edit_Data.Determine_Atg_Month_Infe
0 12 ¢ 0 Mecup_View.Appl_Atg_Month.Make_End_Dt_Key
1] 3 0 0 Mecup_View.Appl_Atg_Month.Initialized
¢ 1 0 0 Meup_View. Appl_Ga_Sys_Isl.Initialized
0 11 0 0 Meup_View. Appl_Ga_Sys_Isl.Make_Prime_Key
3 80 0 0 Mcup_View.Retrieve
2 o 0 0 Mecup_View.Operation_Stalus
2 99 0 14 Avzcupmb_Aspect, Bdit_Daia Determine_Detail_String Errors
0 91 0 38 Avzeupmb_Aspect.Edit_[ata,Validate_ Detail_Fields
7 206 0 31 Avzeupm5_Aspeel. Edit_Data,Verify_Database Records
0 1 0 0 Meup_ View.Appl_All_Id.Initialized
b 12 0 Iy, Mecup_View.Appl_Ast_Ohj_Cd_Tbl.Make_Prime_Key
0 1 0 g Mecup_View.Appl_Ast_Obj_Cd_Tbl.Initialized
0 3 0 0 Mecup_View.Appl _For_Tbl.Initialized
0 i 0 0 Mecup_View. Appl_Fnd_Mijo.Initialized
o 15 0 0 Mecup_View.Appl_Fnd_Sjo.Make_Prime_Key
0 1 0 0 Mecup_View. Appl_Fnd_Sjo.Initialized
0 15 0 0 Meup_View.Appl_Rmb_Ord.Make_Prime_Key
o 5 0 0 Meup_View. Appl_Rmb_Ord.Initialized

DO~ RPN OOLOLELOLOLOOHRCOOOA,ANOCOND

11
67
11
15
41
161
163

69
83

65
26
19

[l e le Ro- ol o oo ol o e e e o e e o o R e o oo Jo Jo B o o Jo o R B o)

o)

103

Meup_View.Appl_Eor_Thl.Make_Prime_Key
Mcup_View.Read_Index_Only

Meup_View.Appl_All_Id. Make_Prime_Key
Meup_View.Appl_Fnd_M_jo.Make_Prime_Key
Avzcupmb_Aspect.Update Files

Avzeupmb_Aspect, Update_Files.Build_Detail_Record_Iafo

Avzcupmb_Aspect. Update_Files. Update Database_Records
Meup_View.Appl_Excc_Cmt_Obg.Initialized
Meup_View.Appl_lixec_Cmt_Obg.Make_Prime_Key
Meup_View.Appl_Lmt_Mjo.Initialized

Avzeupmb_Aspect. Update_Files.Update_Database_Records.Print_Up
Avzcupmb_Aspeet.Update_Files.Update_Ilatabase_Records.Build_L~
Mcu p,\’icw.Appl_Limit_CodeﬂTbl.lnitialized
Mecup_View.Appl_Limit_Code_Tbl.Make_Prime_Key
Mcup_View.Appt_Lmt=Mjo.Make_Prime_Key
Meup_View.Appl_Cus_Typ_Tbl.Initialized
Mcup_View.Appl_Exe=Grp_Asg.Initialized
Mecup_View.Appl_Cus_Typ_Tbl.Make_Prime_Key
Mcup_View.Appt_Exece_Gip_Asg.Make_Prime_Key
Mcup_View.Record_Is_laocked
Meup_View.Appl_All_Lgr.Make_Prime_Koy

Meup_View.Appl All_Lgr.Initialized
Meup_View.Appl_Excc_Pst.Make_Prime_Key

Mecup_View. Appl_Exce_Pst.Initialized
Meup_View.Appl_Exec_Tor_Tran.Initialized
Meup_View.Add_Record

Mecup_View Madily_Record

Avzeupms_Aspecl.Update Files Update_Database Records Add_Dsc
Avzeupma_Aspeet. Update_Files. Update_Database_Records.Add_Tb
Meup_View.Appl_Exec_Rpt.Initialized

Meup_View Appl_Exec Rpt.Make_Prime_Key
Avzeupmd_Aspect.Update_Files Fix_Iirrors
Avzeupmi_Aspect.Close_Edit_Report

Hard 1

Hard 2

Hard 3

FOOoONWoSOROODOR]O
]

]
@]

\

3]

O HFOFEROOROOON RO OO WONWoOOoOWoOODOODOE—~OO ~~

DSM

15
35
13
55

bsSM
12
13

a8
181

30
16
28

23
52
15
66
23
40
12
39

142
11

ad
75
144
78
109

30
33

DSM

22
17

CoCCOoO0O0OOoSOOSO |§
Q

=
<

|

fen e e o o o B o R o B o o Jo e ol foRaisfalslalels lololaoleNolelelalsRel

coo |m
|5

104

Hard Programs

Avzxypg8_Aspect.Pss_Parm.Put
Avzxypg8_Aspect,Do_Edits
Avzxypg8_Aspect.Do_Ldits.Sct_Required_Field_Attr
Avzxypg8_Aspect. Do_Ldits. Validate

Gxyp_View Appl_Atg_Month.initialized
Gxyp_View.Appl_Atg_Month.Make_Prime_Key

Gxyp_View.Operation_Status
Avzxypg8_Aspect.Do_Ldits.Set_[nvalid_Ficld_Attr
Avzxypg8_Aspect.Finish_Building_Record
Avzxypg8_Aspect. Lock_Ficlds

ERRS Module Name
0 Avzxypg8_Aspoct
5

15

2

12

0

0

0 Cxyp_View.Retricve
0

2

2

1

ERRS Module Name

OISO N oo NN NIDOD QO ONM—OC DO bh —N—O

Avzuceped _Aspect

Avzucped _Aspect.Set_Initial _Screen

Avzueped _Aspecl.Process_Stops

Avzucped _Aspeet. Process_Steps.Request_Ponding
Avyuceped_Aspect. Process_Steps.Prepare_For_Step 2

Avzucped _Aspect.Process_Sleps. [idit_Key_Data
Buep_View.Appl_Fnd_Mjo.Initialized

Eucp_View. Appl_All_IdInitialized

Fucp_ View. Appl_Mjo_Dst.Initialized
Avzucped_Aspect.Process_Steps.Edit_Key_Data, Check _Step_1_In
Avzucped_Aspect.Process_Steps. Edit_Key_Data.Set_Error_Messag
Avzucped Aspect.Process_Steps. Edit_Key_Data Valid_Sys_Ba_Jo
Buep_View.Appt_Fnd_Cntl_ Ba.lnitialized
Fuep_View.Appt_Fnd_Cntl_BaMakce_Ba_All_Key
Luep_View.Read_Index_Only

Euep_View.Operation_Status
Fuep_View.Appl_Fnd_M_jo.Make_Prime_Key
Eucp_View.Relrieve

Buep_View. Appl _All Id-Make Prime_Key

Avzucped Aspect.Process_Steps. Validale_Screen_Amounts
Avzucped _Aspect.Process_Steps.Prepare_For_Step_3
Avzucped_Aspect. Process_Steps. Edit_Action_Data

Avzucped Aspect,Process_Steps.Update_Action_Data
Eucp_View.Appl_Ga_Sys_Isl.Make_Prime_Key

Fucp_View.Appl Ga_Sys_IslInitialized

Avyucped Aspect.Process _Steps.Update_Action_Data.Check_Pass
Avzucped_Aspect.Process_Steps.Update Action_Data.Prepare_For
Avzueped _Aspect.Process_Steps.Update_ Action_Data.Get_Mje_Re
Avzucped _Aspect.Process_Steps.Update_Action_[ata.Determine
Avzucped _Aspect.Process_Steps.Update_Action_Data.Update_Dat
Buep, View. Appl_Fnd_Ntv.Initialized

Fucp_View.Modily Record
Avzueped _Aspectl. Process_Steps.Update_Action_Data.Prepare_Fo
Avzucped_Aspeet.Na_local_Process

Avzbfpm7_Aspect.Initialize_Edit_Report

0
Eucep_View.Add_Record
ERRS Module Name
0 Avzbfpm7_Aspect
15
2

Avzblpm7_Aspect,Put_Report_Header

COmOCOOCO OO0 WHHDDOHOeHHRRONOO R OO RO OO OO LLONCSE HLOHOLHLOOLLWLOHLDOLONWOOD—O

193
29
12

20

165
32
43

11

77
15

11
36
15

18

67

38
101
21

129
35

22
163
15

56
54
208

3
11
194
33
52
19

(=== e e g e o e e 2 =R~ R R R o Ror NN R or Jor B o o T o B we o o B B ow o B ol - N - B B e B - e B Beor B e e e M B e T B o Y e T B e Bt e s e e B il i B e e B e B e W e B o B e o B e O o

QOO D A
o

— b
e b

NOCOOOOOWS

(<L

o

momﬁoozoooooooaqo.—amcccmoooa:a:a::c:ooom::c

= 0N
2] -1 e L3

QOHOO%OQQOO

105

Avgblpm7_ Aspect.lidit Data
Avyblpm7_Aspect.dit_Data.Get_Current_Atg_Month
Mblp_View.Appl_Alg_Month Make_End_Pt_Key
Mbfp_View.Appl Atg Menth.Initialized

Mblp_View Retrieve

Mblp_View.Operation_Status
Avzblpm7_Aspect.Edit_Data.Determine_Fields_In_Error
Avzblpm7_Aspect.Edit_Data.Check_Ior_Valid_Values
Avzb{pm7_Aspeet.Edit_Data.Check _For_Valid_Values.Check_For
Avzblpm7_Aspect.Bdit_Data,Check_For_Valid_Values.Valid_Eor
Mbfp_View.Appl_Eor_Tbl.Make_Prime_Key
Mblp_View.Appl_ Eor Thllnitialized
Mbip_View.Read_Index_Only

Mblp_View. Appl_Fnd_Sjo.Make_Prime_Key
Mbip_View.Appl_Fnd_Sjo.Initialized

Mbip, View.Appl_All_ld.Initialized
Mhfp_View.Appl_All_Id.Make_Prime_Key
Avzhlpm7_Aspect.Bdit_Data.Check_For_Vatid_Values.Jo_Valid_O
Mbip_View.Appi_Misc_Sjo.Make_Prime_Key

Mhbfo_View Appi_Misc_Sjo.Initialized

AvzblpmT7_Aspect. Edit_Data.Check_For_Valid_Values.Valid_ Cst C
Mblp_View.Appl_Cst_Cen.Make_Prime_Key
Mhla_View.Appl_Cst_Cen.initialized
Avzblpm7_Aspect.Edit_Data.Cheek_For_Valid_Values,Valid_Dssn
Mblp_View. Appl_Dssn_Un_Tbl.Make_ Prime_Key
Mble_View.Appl_Dssn_Un_TbLinitialized
szbfpm?_Aspcct.EdiL“D:lta.Chcck_For_\"a]id_Values.Valid_SysﬂB
Mblp_View.Appl_Exce_Bll.Make_Sjo_Bil_Key

Mblp_View Appl_Exec_Rllinitialized
Mbip_View.Appl_Dssn_Adv_Cntl.Initialized

Mufp_View.Appl Dssn_Adv_Cntl.Make_Prime_Rey
AvzblpmT_Aspecl.Fdil_Data.Choeck_For_V alid_Values.Valid_Mat
Avzblpm7_Aspect.Edit_Data.Check_For_Valid_Values.Validate_Ag
AvzblpmT_Aspect.Bdit_Data.Got_Todays_Xmt_No
Mblp_View.Appl_Xmt_No_Thl.Make_Primec_Key
Mblp_View.Appl_Xmt_No_Tbl.Initialized
AvzbipmT_Aspect.Update_Files
Avzbipm7_Aspect.Update_Files.Get_Atg_Month Rec
Avzblpm7_Aspect.Update_Files.Make_Atg_Dt
Avabipm7_Aspect.Update_Files Get_Fnd_Sjo_Ree
Avzbfpm7_Aspect. Update_Files.Determine_Trans_Typ
Mbip_View.Appl_Fnd_Mjo.Make_Prime_Koy
Mbip_View.Appl_Fnd Mjo.Initialized

Mbfp_View.Appl_Rmb_0Ord Make_Prime_Key
Mbfp_View.Appl_Rmb_Ord.Initialized
Avzblpm7_Aspect.Update_Files.Retrieve_Do_Pst
Mbfp_View.Appl _Do_Pst. Make_Prime_Key

Mbfp_View.Appl, Do_Pst.Initialized
Avzblpm7_Aspect.Update_Files.Create_Dssn_Doc_Oth
Mbfp_View. Appl_Dssn_Doc_ Oth.Initialized
Mblp_View.Add_Record

Avzblpm7_Aspect.Update_Files.Create Dssn_Dac_SIf
AvzhlpmT_Aspect.Update_Piles.Create_Dssn_302t Rpt
Mbp_View.Appl_Dssn_302¢t_Rpt.Initialized
Avzbipm7_Aspect.Update_Files.Update_Collection
Avzblpm7_Aspect.Update Files.Update_Collection.Get_Exec_Bil
Avzbfpm7_Aspect.Update_Files.Update_Collection.Caleulate_Dist
Avzhipm7_Aspect.Update_Files.Update_Collcetion Update_Rmb_Or
Mbfp_View.Modily_Record
Avzblpm7_Aspect.Update_Files.Update_Callection. Update_All_Lg
Mbfp_View. Appl_Ar_Pst.Initialized

Mbip_View. Appl_All_lgr.Make_Prime_Key
Mbfp_View.Appl_All_Lgr.Initialized
Mblp_View.Appl_lixee_Eor_Tran.lnitialized

Mblp_View. Appl_Ar_Pst. Make_Prime_Key
AvzblpmT_Aspect.Update_Files.Update_Collection Update AH_Ar
Mblp_View.Appl_Ar_Rpt_Ipa.Make_Prime_Key

Mblp_View. Appl_Ar_Rpt_Ipa_lnitialized

Avzblpm7_Aspect. Update_Files.Update_Collection.Update_Dssn_A
Mblp_ View. Appl_Exece_Rpt.Make_Prime_Key
Mblp_View.Appl_Excc_Rpt.Initialized

106

1 85 0 16 Avebipm7_Aspeet.Update_Files, Update_Rpt_239_Rec
0 55 0 0 Mbip_View.Appl_Rpt_239 Make_Prime_Key
0 3 \ ¢ Mblp_View. Appl_Rpt_239.1nitialized
4 180 0 48 Avzblpm7_Aspect.Update_Files. Update_Dssn_Day_Sum
0 3 Y o Mblp_View . Appl_Dssn_Day_Sum.initialized
0 36 [0 Mblp_View Appl_Dssn_Day_Sum Make_Prime_Key
0 7 0 1 Avzblpm7_Aspect.Update_Files.Calcutate_Mo_Of_Qtr
0 18 0 0 Avzblpm7_Aspect.Close_[Rdit_Report
0 5 0 6 Cv_Edit_Rpt.Put_Controi_Total
Hard 4
cC DSM Lo ERRS Module Name
7 12 0 0 Avzglped_Aspect
0 13 0 4 Avzglped_Aspect.Set_Initial_Screen
2 102 0 21 Avzglped_Aspect.Process_Steps
0 39 0 8 Avzglped_Aspect.Process_Steps.Set _Top Attr
0 82 O 26 Avzglped_Aspect.Process_Steps.Sct_Bottom Attr
2 69 0 2 Avzgripes_Aspect.Process_Steps.Retrieve_Fnd_Sjo_Ree
0 15 0 0 Lglp_View.Appl_Fnd_Sje.Make_Prime_Key
0 1 0 0 Eglp View.Appl_Fnd_S_jo.Initialized
3 88 0 0 Eglp_View Retrieve
2 0 0 0 Eglp_View.Operation _Status
1 21 a 0 Avzgloes_Aspect.Process_Steps.Get_Frd_M_jo_Rec
0 9 0 0 Egtp_View Appl_Fnd_Mjo Make_Prime_Key
0 15 0 0 Egtp_Yiew Appt_Fnd_Mjolnitialized
2 42 0 84 Avzglpes_Aspect.Process_Steps. Edit_Top_Of_Sercen
0 120 0 4 Avuglpes_Aspect.Process_Steps.[idit_Tep_Of_Screen.Check _Requi
3 85 0 30 Avzglpes Aspeel.Process_Steps. Bdit_Toep_Of_Screen.Validate_[n
0 3 0 0 Eglp View.Appt_For_ThlInitialized
0 11 0 0 Eglp_View.Appl_Ear_Thl.Make_Prime_Key
0 1 0 0 Fglp_View Appi_Cec_do_Corr_ThlInitialized
V] 11 0 0 Eglp_View.Appl_Cee_Jo_Corr_Thl.Make_Prime_Key
3 75 0 0 BEglp_View Read_[ndex_Only
0 20 ¢] Tglp_View.Appl_Ppy_Lgr.-Make_Prime_Key
0 3 0 0 Eglp_View.Appl_Ppy_Lgr.nitinlized
0 12 0 0 Eglp_View.Appl _Atg_Month.Make_End Dt _Key
0 3 0 0 Eglp_View.Appl_Atg_Month.Initialized
2 99 0 12 Avzglped_Aspect.Process_Steps. Edit_Top_OI_Screen.Validate Pr
0 11 0 20 Tglp_View. Appl_Exee_Cmt_Obg.Initialized
1} 31 0 0 Rylp_View.Appl_Exce_Cme_Obg.Make_Obg_Doc_No_Key
0 3 0 0 Lglp_View.Appl_Fxd_Ast Initialized
0 15 0 0 EBglp_View.Appl_Fxd_Ast.Make_Prime_Key
1 59 0 23 Avzglpes_Aspect.Process_Steps.lidit_Top_O f_Screen.Build_0/P_8
o H 0 0 Eglp_View.Appl_All_Td Initialized
0 11 0 0 Bglp_View. Appl_All_Id.Make_Prime_Key
14 338 0 6 Avzgipes_Aspect.Process_Steps. Update_Records
0 3 0 0 Fgip_View.Appl_Al_Lgr.lnitialized
0 5 0 0 Bgip_View.Appl_Bxec_Rpt.Initialized
0 15 0 0 Egip_View.Appl_Rmb_Ord Make_Prime_Key
0 5 v 0 Eglp_View.Appl Rmb_Ovd.Initialized
7 408 0 7 Avzglpos_Aspeet.Process_Steps.Update_Records.Update_Fs_Recs
0 27 0 0 Eglp_View. Appl_Exec_Cmt_Chg.Make_Prime_Key
0 19 ¢ 0 Felp_View.Appl_Limit_Code_Thl.Make_Prime_Key
v 3 0 0 Eglp_View.Appl_Limil_Code_TblLinitialized
1 52 0 1 Eglp_View Modify_Record
g 3 0 0 Eglp_View.Appl_tixec_Pst.Initialized
0 1 0 ¢ Eglp_View.Appl_fixec_Pst.Make_Prime_Key
0 11 0 0 Eglp_View.Appt_Excc_Eor_Tran.Initialized
1 52 0 0 Egln_View Add_Record
0 1 0 0 Eglp_View.Appi_Cus_Typ_ThlInitialized
0 i 0 0 Eglp_View.Appl_Cus_Typ_Tbl.Make_Prime_Key
0 1 0 0 Eglp_View.Appi_Exec_Grp_Asg.Initialized
0 19 0 0 Fglp_View Appl_Exec_Crp_Asg.Make Prime_Key
0 16 0 0 Eglp_View.Appl_All_Lgr.Make_Prime_Key
2 35 0 0 Eglp_View.Release Record
0 65 0 0 Tglp_View.Appl_Exec_Rpt.Make_Prime_Key
0 1 0 0 Tglp_View.Record_Is_locked
4 102 0 0 Aviglpes_Aspect.Process_Steps.Update_Fa_Recs

Hard 5

OO OOOHNOCON OO OO

COHROSCOHOOOOOHDODOHFFOO RO OO HOLDOMOLONWOO oo o= lo
Q

11

21

124
102

DSM

12
108
28
36
269
17
49

11
87

20
30
68
40

27
229
38

5
30
38

11
53

23
56
73
i1l
31
70
27
94
26
25

223
80

12

(=R = =j=lwleololejejejofejelojofolo) =) -N=)a]

|5

for e e I - e i N B i . o B e e B e R e o e R e e e R e = e N e Yo He o oo Bo ol o Ro ol =N o Yo N e

NO oD OO0 O DO O~ OO RO OD

ERRS

107

Fglp_View Appl_Ga_Sys_[sl.Make_Prime_Key
Eglp_View.Appl_Ga_Sys_IslInitialized
Avzglpe5_Aspect.Process_Steps. Update_Fa_Recs.Get Cp Amt Cd
Avzyglpes_Aspeet.Process_Steps. Update_Fa_Recs.Update Faa Rec
Eglp_View. Appl_Fxd_Ast_Amt.Initialized
Avzglpes_Aspect.Process_Steps, Update_Fa_Recs Add_Fxd_Ast_Re
Avzglpes, Aspect.Process_Steps. Update_Fa_Rees Update_Ppy_Lgr
Eglp_View.Appl_Fa_DPst.Make_Prime_Key
Eglp_View.Appl_Fa_Pst.Initialized
Avzglped_Aspect.Process Steps Edit_Bottom_And_Update
Avzglpe5_Aspect.Process_Steps.Edit_Bottorn_And_Update.Check
Eglp_View.Appl_Fsc_Ast_TblLInitialized
Eglp_View.Appl_Fsc_Nme_Thl.Make_Prime_Key

Eglp_View. Appl_Fsc_Nme_TblInitialized

Eglp.View. Appl_Fsc_Ast_Thl Make_Prime_Key
Eglp_View.Appl_Fac_Cat_Ast_TblInitialized
Bglp_View.Appl_Fac_Cat_Typ_TblInitialized

Egip_View.Appl_Fac Cal_Typ_Tbl.Make_Prime_Key
Eglp_View.Appl_Fac_Cat_Ast_Tbl.Make_Prime_Key

Bglp_View. Appl_Md[_ThiMake_Prime_Key

Fglp_View.Appl MdI_TblLInitialized

Avzglped Aspect.No_Lecal_Process

Module Name

SONOOO = mOoWOoOMWODOC DO DO OO NMAEAN O OO O DWW IO

Avzmupes_Aspect

Avzmupes_sspect. Set_Key_ Fields
Avzmupes_Aspect.Sct_[nitial_Sereen

Avzmuped_Aspect, Process_Steps

Avzmupes_Aspecl.Process _Steps. [Edit
Avzmuped_Aspect.Process_Steps.Bdit, Validate_Fic
Avzmupei_Aspoect.Process_Steps.[idiv Validate_Eor

Emup_ View.Appl_[Bor_TblInitialized

Emup_View.Appl Eor_TblL.Make_Prime_Key

Emup_View.Retrieve

Emup_View.Operation_Status

Avzmupe5_Aspect. Process_Steps. Bdit.Validate_Ode
Avzmuped_Aspect.Process_Steps. Edit. Edit_Ode

Avzmupes _Aspect.Process_Steps. Edit. Edit_Required_Fields
Avzmupe5_Aspect.Process_Steps, Edit.Get_Misc_3 jo
Emup_View.Appl Misc_Sjo.Initialized

Emup_View. Appl_Misc_S_jo.Make_Prime_Key
Avzmupe5_Aspect.Process_Steps.Edit. Edit_Funded
Avzmupes_Aspect.Process_Steps. Edit. Edit_Funded.Get_Fnd_Sjo
Emup_View.Appl_Fnd_SjoInitialized

Emup_View. Appl_Fnd_Sjo Make_Prime_Key
Avzmuped_Aspeet.Process_Steps.Edit.Edit_Funded Required Fund
Avzmuped_Aspect.Process_Steps. Bdit. ldit_Funded.Validate_Bu_V
Emup_View.Appl_Bu_Vou_Dellnitialized

Emup_View.Appl Bu_Vou_Def Make_Bu_Vou Key
Avzmuped_Aspect.Process_Steps.Edit.Bdit_Funded.Validate_Cst_C
Emup_View.Appl_Cec_Ja_Corr_Thl.Initialized
Emup_View.Appl_Cee_Ja_Corr_Thl. Make_Prime_Kev
Avzmuped_Aspect.Process_Steps.Edit.Bdit_Funded.Get_Pvrl_Cmt
Avzmupes_Aspect.Process_Steps.Bdit.Edit_Funded.Get_Exec_Cmt
Emup_View.Appl Exee_Cmt_Obg.lnitialized
Emup_View.Appl_Exec_Cmt_Obg.Make_Obg_Doc_No_Kev
Avzmupe5_Aspect.Process_Steps. Bdit. Bdit_Funded.Get_Exec_BV_P
Emup_View.Appl_Exec_Cmt_Obg.Make_Prime_Kev
AvzmupeS_Aspect.Process_Steps.Bidit.lidit _Tfo
Avzmupes_Aspect.Process_Steps.Edit. Edit_Tfo.Required Tfo_Fie
Avzmupes_Aspect. Process_Steps.Edit. Validate Dssn
Bmup_View.Appl. Dssn_Un_Thl.Initiakized

Emup_View. Appl_Dssn_Un_Tbl.Make_Prime_Kev
Avzmuped_Aspect, Pracess_Steps.Bdit.Format_Sereen
Avzmuped_Aspect.Process_Steps.Bdit.Get_Atg_Month

Emup, View_Appl_Atg_Month.Initialized
Tmup_View.Appl_Atg_Month Make_End_Dt_Kev

Hard 6

O ON OO O OO R HORHN OO O~ O R NN~ OORHFoOONOR DO OO OO0

10
28
653
64
40
23
30
28
40
117

50
85
28

229

148
51
51
34
114
3o
a7

122

127
&
65
75
88

55
73
&6

ih

160

[=E=R==R=Nel=l= R iR leleR=Re k= EeEeloEnleRelelelelieleleleloleEelealeleie el e llolelleleleloiiele el i e =l el R i)

[v9]

OO ORNOCOOCOoO OO OO MINOOO O MmN EO N

DO OoONO WO ODOIMMNPWUNNITIDOOW

ERRS

108

Avzmuped_Aspect.PProcess_Steps.Bdit.Get_Atg_Month.Calculate M
Avzmupes_Aspect.Pracess_Steps. Edit.Get_Atg_Month.Create_Atg
Avzmupe’_Aspeet.Process_Steps. Edit.Get_Xmt_No_Thl
Avymupes_Aspect.Process_Steps.Update
Avzmupes_Aspect.Process Steps.Update.Resct_To_Step
Avzmupes_Aspeot, Process_Steps. Update.Reset_To_Step 2
Avzmupes_Aspect, Process_Steps. Update.Edit_Conf_irm
Avzmupes_Aspeet.Process_Steps.Update. Edit_Trf_Amount
Avzmupés_Aspect.Process_Steps.Update Edit, Trf_Hrs
Avzmupes_Aspoct.Process_Steps.Update.Get_Mise_S_jo
Avzmupes_Aspoct. Process_Steps.Update. Update_Funded
Avzmupes_Aspect.Process_Sieps. Update.Update_Funded.Get_Pst
Emup_View.Appl_Cus_Typ_Tbl.Initialized
Emup_View.Appl_Rmb_Ord.lvitialized
Emup_View.Appl_Rmb_Ord.Make_Prime_Kev
Emup_View.Appl_Cus_Tvp_Thl.Make_Prime_Kev

Emup_View. Appl_Exec_Grp_Asg.Initialized
Emup_View.Appl_Exce_Grp_Asg.Make_Prime_Kev
Avzmupes_Aspeel. Process_Steps.Update.Update_Funded.Locate C
Avzmuped_Aspeet.Process_Steps.U pdate.Update_Funded. Load_Scra
Avzmupes_Aspect.Process_Steps.Update. Update_Funded. Load_Fod
Avzmupes_Aspeet.Process_Steps.ipdate. Update Funded.Load_Fnd
Fmup_View Appl_Fnd_Mjo.Initialized

Emup_View Appl_Frd_M_jo.Make_Prime_Kev

Avzmu ped_Aspect, Process_Steps. Updale Update_Funded. Edit_Fund
Avzmuped_Aspect.Process_Steps.Update.Update_Funded, Load Eor
Avzmuped_Aspect Process_Steps.Update.Update_Funded.Load_All
Emup_View.Appl Al _Id.Inittalized
Emup_View.Appl_Ali_Id.Make_Prime_Kev
Avzmuped_Aspeet.Process_Steps.Update Update_Funded Update Pv
Emup_View.Add_Record

Emup_View.Modifv_Record

Emup_View.Delete_Record

Avzmupe5_Aspect.Process_Steps. Update. Update Tio
Avzmuped_Aspect. Process_Steps.Update Update_Tfo.Get _Eor_Tbl
Avzmuped_Aspect,Process_Steps.Update. Update_Tlo.Add_Dssn 30
Emu p_Vicw.App]_Dssn_i{()Zt_Rpt.lnitializcd
Avzmuped_Aspect.Process_Steps.Update.Update_Tlo.Add_Dssn_To
Emup_View. Appl_Dssn_Doe_Oth.Initialized
Avzmuped_Aspect.Process_Steps. Update. Update_Exec_Rpt

Emup_View Appl_Exce_Rpt.Initialized

Fmup_View. Appl_Exce_Rpt.Make_Prime_Key
Avzmuped_Aspect.Process_Steps.Update Update_Rmb, Ord
Avzmupe§_Aspect. Process_Steps.Update. Update_Dssn_302t_Rpt
Avzmupei As peet. Process_Steps.Update. Update_Dssn_Doc_SIf
Emup_View.Appl_Dssn_Doec_SIL.Initialized
Avzmupes_Aspect.Process_Sleps.Update. Update_ Fad_M_jo
Avzmupes_Aspect.Process Steps.Update Update_Lmt_M_jo

Emup_View. Appl_Lmt_Mjo.Initialized

Emup_View. Appl_Limit_Code_TblLInitialized

Emup_View. Appl_Limit_Code_Tbl.Make_Prime_Key

Emup_View. Appl_Lmt_Mjo Make_Prime_Key
Avzmupe5_Aspect.Process_Steps.Update. Add_Exee_Eor_Tran

Emup_View. Appl_Exce_Eor_Tran lnitialized

Avamuped_Aspect. Process_Steps.Update. Update_General Ledger
Emup_View Appl_All_Lgrlaitialized

Emup_View. Appl_All_Lgr.Make_Prime_Key

Emup_View. Appl_Exec_Dst.Initialized

Emup_View Appl_fixec_Pst.Make Prime_Key

Avzmupes, Aspect.No_local_Process

Module Name

oo

Avzorpe_1_Aspect

Avzorpe 1 Aspect.Sct_[nitial_Screen
Avzorpe_1_Aspect. Process_Steps
Avzorpel_Aspect.Process_Sleps.Edit_And_Update
Eorp_View.Appl_Sve_Mst_Tbi.Initialized

109

0 3 0 0 Eorp_Vicw.Appl. Sve Cus Mst_Tbilnitialized
9 246 0 21 Avzorpe_1_Aspect.Process _Steps. Bdit_And_Update.Update
0 3 0 0 Eorp_View.Appl_Sve_Dst_Tblinitialized
o 3 0 0 Lorp_View. Appl_All_Lgr.Initialized
0 1 0 0 Eorp_View.Appl_I"nd_Sjo.Initialized
0 7 0 0 Barp_View.Appl_Fnd_Mjo.Initizlized
0 i 0 0 Forp_View.Appl _Cus_Typ_ThlInitialized
2 123 0 3 Avzorpe_1_Aspect.Process_ Steps.Bdit_And_Update. Update.GI_Upd
0 3 0 0 Lorp_View. Appl_Fxce_Pst.Initialized
0 11 0 0 Eorp_View.Appl _Excc_Pst.Make_Prime_Key
0 27 0 0 BormO.Get_Pst_Grp_Id
0 9 0 0 Borp_View.Appl_Exec_Bor_Tran Initialized
3 75 0 0 Eorp_View. Rotrieve
2 0 0 0 [orp_VYiew.Operation_Status
0 1 0 0 Borp_View.Appl_Excc Grp_ Asg.Initialized
0 19 0 0 Eorp_View.Appl_Excc_Grp_Asg.Make_Prime_Key
0 45 0 0 Avzorpe1_Aspect.Process_Steps.Bdit_And_Update.Update.Prepare
0 8 0 0 Avzorpe_1_Aspect.Process_Steps.Edit_And_Update Update. Modify
1 44 0 0 Forp_View.Modily_Record
0 14 0 0 Avzorpe_1_Aspect.Process_Steps.Bdit_And_Update.Update. Modily
0 a3 0 0 Avzorpe_1_Aspeet. Procesa_Steps. dit_And_Update.Update Retrie
G 15 0 0 Eorp_View.Appl_Fnd_Mjo.Make_Prime_Key
1 945 0 0 Avzorpel_Aspect.Process_Steps.Edit_And_Update. Update.Update
1 58 0]] Avzorpel_Aspect.Process_Steps.fidit_and_Epdate.Update.Update
0 3 0 0 Forp _View.Appl_Ar_Rpt.initialized
0 31 0 4] Forp_View.Appl_Ar Rpt.Make_Prime_Key
1 163 0 0 Avzarpe_1_Aspect.Process_Steps. Bdil_And_Update.Update Update
0 23 ; 0 Forp_View.Appl_Exee_BllInitialized
0 41 0 0 Avzorpe 1 _Aspeet.rocess_Steps. Edit_And_Update.Update.Update
0 5 0 0 Forp_View.Appl_Exce_Rpt.Initialized
0 51) 0 Avzorpe 1_Aspect.[Process_Steps.Edit_And_Update. Update. Update
0 685 0 0 Eorp_View.Appl_Excc_Rpt.Make_Prime_Key
0 77 0 5 Avzorpe_1_Aspect.Process_Steps.fdit_And_Update.Update.Do_Simp
0 188 0 9 Avzorpe_1_Aspect.Process_Steps.Jidit_And_Update.Update.Do_Nen
0 188 0 9 Avzorpe_1_Aspect.Process_Steps.Bdit_And_Update Update,Do_Non
0 15 0 0 Borp_View. Appl_All_Lgr.Make_Prime_Kev
0 7 0 0 FBorp_View. Appi_Cus_Tvp_Tbl.Make_Prime_Kev
0 15 0 0 Eorp_View.Appl_Fnd_S8jo.Make_Prime_Kev
0 12 0 0 Forp_View. Appl_Atg_Month.Make_End_Dt_Kev
0 3 0 0 Forp_View. Appl_Alg_Month.Initialized
2 76 0 8 Avzarpe_1_Aspect.Process_Steps.[Bdit_And_Update. Update.Check_A
0 N 0 0 Sorp_View.Appl_Sve_Dst_Thl.Make_Prime_Kev
0 42 0 0 Avzarpe_1_Aspect.Process_Steps. [dit_And_Update Edit_Sve_Tvp
0 19 0 0 Forp_View.Appl_Sve_Cus_Mst_Tht.Make_ Prime_Kev
0 85 0 ¢ Avzorpe_1_Aspecl.Process_Steps.Edit_And_Update Edit_Sve_Tvp
0 15 t] [} Forp_View.Appl_Sve_Mst_Thl.Make_Prime_Kev
0 0 0 0 Avzorpe_1_Aspect.No_Local _Process
Hard 7
CcC DSM 10 ERRS Module Name
9 13 0 0 Avz6Tph8_Aspect
4] 27 0 0 H6Tp_View.Appl_Excc_Cmt_Obg.Make_Prime_Key
0 3 0 0 H87p_View.Appl_Fxec_Cmt_Obg.lnitialized
3 65] 0 Ha7p_View.Read_Index_Only
2 0 0 0 He7p_View.Operalion_Status
0 37 0 0 HG7p_View.Appl_Fnd_Cmt Req.Make_Prime_Koy
4 1 0 0 He7p_View Appl_Fnd_Cmi_Req.Initialized
0 15 0 0 H&7p_View. Appl_Rmb_Ord Make_Prime_Key
0 3 0 0 H67p_View.Appl_Rmb_Ord.Initialized
0 15 0 0 He7p_View.Appl_Fnd_Sjo. Make_Prime_Key
0 1 0 0 HB7p, View. Appl_Fnd_Sjo.Initialized
0 195 0 2 AvzB7ph8_Aspeet.Build_Sercen
0 13 0 5 Avz67ph8_Aspect.Process_Steps
0 103 0 14 AvzG7ph8_Aspect.Process_Steps.Perform_Action
1 29 0 0 Avz67ph8_Aspect.Process_Steps.Perform_ Action. Get_Rf_Ide
0] 1 0 0 HETp_View.Appl_Bs_Edit_Thl.lnitialized
0 15 0 0 HE7p,_ View. Appl_Bs_Edit_Tbhl.Make_Prime_Key
3 78 0 0 H67p_View.Relrieve

o O OO WO OO0 OO NHHFNOHPOC O

39

233
42
60
11l
25
216
42
25
206

—
=]

— et

ot

—

=]
b

[om Jom GG S | A L L et el R S I |
— o =1 —

e Rl oRel=E=leleleRekeRelelolelwieie e e le el ool ie R il l=jle e pbe e R

20

= OO O DO
I+

I~

OOOCDC)CDO;COODOOOOOOCC’OOOOOOOOO

110

Avz6T7ph8_Aspect.’rocess_Ste ps.Perform_Action.Add_Record
H6Tp_View Appl_Jom_ThlInitialized

AvzG67ph8_Aspect. [Process_Steps.Perform_Actio n.Add_Record.Put
HB7p_View.Add_Record
Avz67ph8_Aspect.Process_Steps.Perform_Action.Delete_Record
He7p_View. Appl_dom_Thl.Make_Prime_Key

HE7p, View.Delete_Record
Avz68Tph8_Aspect. Process_Steps. Perform_Action,Modily Record
H67p_View.Modily_Record

H67p_View Release_Reeord

Avz6Tph8_Aspect.Process Steps.Perform_Action.Bdit_For_Inval
H67p_View.ApplJom_Thi.Make_Jom_Mjo_Key
H67p_View.Appl_Ams_Tbl. Make_Pri me_Key
HB7p_View.Appl_Ams_Thl.Initialized
HETp_View.Appt_Ams_Sys_Ttl_ThlInitialized
H67p_View.Appl_Ams_Sys_Tt_Thi Make_Prime_Key
H67p_View. Appl_Ams_Sp_Pj_ThlInitialized
H67p_View.Appl_Ams_Sp_"rj_Thl.Make_Prime_Key
H67p_View.Appl_Oh_A pl_Cd_TblInitialized

H67p_View. Appl_Oh_Apl_Cd_Thi.Make_Prime_Key
HG’?pmView.Appl_Csthcn.}nitializcd

H67p_View Appl _Cst_Cen.Make_Prime_Key

H67p_View Appl_Uic_Mst_ThlInitialized
He7p_View.Appl_Uic_Mst_Thl.Make_Prime_Key
HG’?p_Vicw..-\|>13LH50_\Vt_F‘c1'_'['bl.Initializcd
H67p_View.Appl_Hsc_Wi_Fer_Thl Make_Prime_Key
H67p_View.Appl_Dir_ldr_Ttl_Thl.Initialized

H8Tp_View Appl_Dir_idr_TtI_Thl. Make_Prime_Key
H&7p_View. Appl_Std_Inx.Initinlized
He7p_View.Appl_Std_Inx.Make_Prime_Key

Apn_Fy_Nsg Pkg.Valid

AvzB87ph8_Aspect.Process_Ste ps. Transfer_Controi
AvzG7ph8_Aspecl.Receive_Control

HG7p_View.Appl _All_ld.Initialized

He7p_View. Appl_Fnd_Mja.Initialized
Avz67phB_Aspect.Reccive_Control. Display M_jo_Fields
He7p_View Appi_Fnd_Mjo.Make_Prime_Key

H67p_View. Appl_Al_ld Make_Prime_Key
Av287ph8_Aspect.Na_Local Process
AveB7ph8_Aspect.No_[nput_Process

