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D ata centers and large enterprises often use 
network installation and monitoring to 
manage the integrity of their deployed 
systems. This lets administrators focus 

on hardening fewer systems and cloning them over 
the network to a multitude of machines. Once the 
systems are installed, administrators can use remote 
monitoring tools and services to automate the detection 
of system behavioral anomalies, intrusions, and illicit 
!le-system modi!cations. These mechanisms aim to 
provide trusted distribution, whereby administrators 
can verify that a system was installed as intended and 
that nothing was secretly modi!ed after installation.1 
Without trusted distribution, it’s di"cult to ensure 
the ongoing correctness of a system at runtime. 

Unfortunately, network-based installation 
introduces new challenges to the already di"cult 
process of verifying system installation. The most 
common way to initialize a network installation is 
to load a bootstrap program over the network, thus 
eliminating the need for installation media such as 
optical disks. However, the additional network access 
opens the possibility for malicious parties to compromise 
installer code or corrupt the disk image in #ight. Even 
after system installation, malicious modi!cations can 
compromise security-critical !les in ways that are 
di"cult to detect in cases such as con!guration scripts 
that lack a well-known correct state. In the presence of 
such subversive code and hard-to-verify data, attackers 
can trick monitoring tools into failing to report a 
problem. Ultimately, administrators need a method 
to prove that a system has been securely installed 

and hasn’t been 
modi!ed since 
that installation.

To achieve 
this goal, we propose a Network-Based Root of Trust 
for Installation (netROTI), an installation method that 
links a !le system to its installer and the disk image 
used prior to con!guration. If administrators trust 
their installer and disk image, they can trust systems 
booted from !le systems derived from a netROTI 
installation. By con!guring their hardened images 
and deploying them with netROTI, they can install 
all of their machines automatically and receive a proof 
from each machine, showing whether it was booted 
from a compromised !le system. 

We implemented a netROTI system for a 
Eucalyptus cloud environment.2 It added only an 
8-second !xed overhead plus 3 percent of image 
download time to the network installation process 
and automated veri!cation for the administrator. The 
result is veri!able, automated network installation, 
even over an untrusted network.

Network Boot Installation
We begin by describing the process of network 
installation, followed by the possible attacks on this 
procedure and the security guarantees required for a 
trusted installation.

Current Network Installation
Organizations with large system deployments install 
and maintain their systems di$erently from typical 
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desktop users. Individual systems are typically 
installed using an optical disk or USB drive, but the 
long installation process, physical media requirements, 
and speci!c customizations in that environment make 
the approach impractical for hundreds of machines. 
Instead, administrators use network-based installation 
techniques that employ customized automated 
installer images or disk cloning to rapidly upgrade 
out-of-date systems or restore compromised servers to 
their proper state.

From speaking with administrators in several large 
companies and our own university, which supplies 
computing resources for over 40,000 students, we found 
the most common disk-cloning tools to be Symantec’s 
Norton Ghost (www.symantec.com/norton/ghost), 
Acronis True Image (www.acronis.com/home 
computing/products/trueimage/), or custom-
designed tools that use a variety of free and open source 
utilities. Other services, such as Microsoft’s Windows 
Deployment Services (http://msdn.microsoft.com/
en-us/library/aa967394.aspx) and Rocks (www.
rocksclusters.org), automate installation tasks. All these 
tools function by loading a client over the network at 
boot time, connecting to a management server, and 
downloading !les, such as a precon!gured disk image 
or installer programs. This reduces deployment time 
and lets administrators harden a single installation and 
replicate it among systems that perform similar tasks, 
such as virtual memory managers (VMMs) in a cloud 
or employee workstations.

There are several methods of bootstrapping 
an installer client, but the Preboot Execution 
Environment (PXE) is among the most common.3 
Figure 1 brie#y illustrates a network install using 
the PXE protocol. First, the system to be imaged, 
which we call the client system, boots into the PXE 
!rmware loaded from the network interface card 
(NIC) !rmware. Next, the client starts the protocol 
by (1) broadcasting a DHCPDISCOVER request on 
port 67 with an additional PXEClient extension tag. 
A Dynamic Host Con!guration Protocol (DHCP) or 
proxy DHCP server responds with a DHCPOFFER 
on port 68, providing an IP address and a list of boot 
servers. The client then (2) sends a DHCPREQUEST 
to a boot server and gets a DHCPACK message with 
the !le name of a network-boot program (NBP) 
that it retrieves from the boot server via Trivial File 
Transfer Protocol (TFTP). The client then executes 
the NBP, which can request additional !les such as a 
kernel or modules required for the client’s hardware.

The NBP sets up the installer client using !les either 
downloaded from the boot server or retrieved through 
protocols like Network File System or HTTP. Finally, 
the client (3) contacts the image server and requests a 
disk image. After the installer has written the image 

to the hard drive, the client performs additional 
con!guration steps, such as setting up the hostname 
and networking. Finally, the machine reboots into the 
newly imaged operating system (OS).

Attacks on Network Installation
To ensure the correct operation of systems within 
large installations, administrators must be able to 
prove system installations and con!gurations that 
use high-integrity code and data. Although the 
techniques we’ve mentioned automate installation, 
they don’t enable veri!cation that a system booted 
from a properly installed !le system. Potential attacks 
on the installation or on later system modi!cations 
could corrupt a server and lead to a host of attacks 
from within a large deployment like a data center.

For example, during the installation process described 
in Figure 1, the client system could potentially corrupt 
a server by loading malicious PXE !rmware from 
the NIC installed during a previously compromised 
state. Another demonstrated source of corruption is a 
remote attack that compromises NIC !rmware over 
the network.4 In either case, the !rmware could lead to 
direct attacks on the system’s memory. 

Another vector for attack exists when the PXE 
client searches for the boot server. Because the PXE 
client relies on information from local or proxy 
DHCP servers, a compromised server acting as a 
rogue DHCP server on the local subnet could trick 

Figure 1. A network install bootstrapped via Preboot Execution Environment 
(PXE) boot. The client system (highlighted in blue) loads the PXE boot 
!rmware, (1) initiates a DHCP request on the local subnet to set up basic 
networking and locate a boot server, then (2) requests a network boot 
program from the boot server and executes it. Finally, (3) the installer 
connects to the image server and begins transferring the disk image to the 
target system’s hard disk, after which the system reboots.
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the client into downloading a malicious NBP and 
installing a rootkit. At the network level, an attacker 
could modify unencrypted data sent to the client on 
the wire or perform a man-in-the-middle attack to 
tamper with the installation.

After installation, a system remains vulnerable to 
attacks that place rootkits on the !le system or make 
malicious changes that persist even after a system 
reboots. 

Securing Network Boot Installation
Securing a network installation requires showing that 
the installed system derives from the expected origins, 
installer, and disk image. Although not everyone 
might trust the installer or disk image, those who 
do would be willing to work with such a system if 
it could be veri!ed. In this case, we envision data 
center administrators being able to leverage such trust 
because they specify the installer and disk images that 
can be loaded. 

Verifying a system’s installation requires accurate 
measurement and reporting methods. Recent work 
in trusted computing has examined the challenge 
of building trust in commodity systems. Trusted 
hardware, such as the Trusted Platform Module 
(TPM) and new extensions to Intel and AMD 
processors, o$ers various trust primitives. Using this 
hardware support, systems can generate attestations 
of a platform’s critical code and data, which remote 
parties can verify. Bryan Parno and his colleagues 
survey the broad range of applications to which 
researchers have applied these trust primitives.5

However, verifying installation isn’t very useful 
by itself because the machine will be immediately 
rebooted after installation and might be rebooted 
multiple times before any subsequent reinstallation. 
An administrator must therefore be able to verify that 
a system was booted from an expected installation. 
Our netROTI method lets an administrator verify 
that the !le system at boot time is linked to the 
installation origins—that is, the installer and the disk 
image. This doesn’t prevent the system from coming 
under runtime attacks, such as bu$er over#ows, but 
runtime attacks that modify the !le system will be 
detected at next reboot. 

Any secure network installation must be practical. 
A key question is whether the installed !le system 
is su"ciently stable to enable such a veri!cation. 
In an initial experiment,6 we found that netROTI 
dynamically modi!ed only three !les of a privileged 
VM system con!guration during its execution. 

Our approach prohibits manual system updates 
because they are ad hoc. For administrators, a clean, 
automated install is preferable to manual modi!cations, 
anyway. Administrators that wish to push incremental 

updates to systems will need to extend the install-time 
proofs to cover these modi!cations to the !le system.

The netROTI Method
The netROTI method links the installed system 
veri!ably to a particular source.

Trust and Threat Models
For our design, we assume a trust model in which the 
physical hardware is safe from attack and is implemented 
correctly. We also assume that an administrator or 
software provider exists who has the authority to 
deem particular code and data, such as the installer 
and disk image, as trustworthy. We don’t assume that 
such trust is placed correctly; our goal is to prove that 
a system links to a particular origin certi!ed by one or 
more authorities. Thus, an administrator can trust in a 
system based on the administrator’s trust in authorities’ 
ability to certify systems. We also assume trust in the 
data center administrators and hence do not address 
insider attacks. Finally, we don’t consider attacks on 
the cryptographic algorithms used nor attacks on 
the PKI or authentication procedures for establishing 
identities, such as direct anonymous attestation.7

For our threat model, we consider an attacker that 
can modify or inject data on the network, impersonate 
various services, and compromise other hosts on 
the network. With these attacks, the client could 
load a malicious installer that could, in turn, install 
a vulnerable or malicious disk image or otherwise 
compromise device !rmware. An attacker could also 
change the contents of the client’s disk after installation 
and perform attacks on the running system. 

Reporting attacks on the system’s runtime state is 
outside the scope of the work we report here, but the 
netROTI does provide a root of trust for detecting 
these security violations by giving a proof of the 
system’s initial integrity at boot time.

Installation Phases
The netROTI installation method cryptographically 
links the installed !le system with the installer and 
source used in the installation. Figure 2 illustrates six 
installation procedure phases. Each phase has a speci!c 
goal and associated tasks to achieve it.

Preinstall phase. The !rst phase is a manual step in 
which the administrator prepares the client system for 
installation. The phase tasks con!gure components 
that enable generation of ROTI proofs. This phase 
is trusted axiomatically because the administrator 
performs the tasks manually. 

To prepare the system, the administrator con!gures 
the client BIOS to boot from the network and installs 
the client’s Root of Trust for Measurement (RTM) 
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with keys that identify it uniquely. The installation 
process uses the RTM to record and report critical 
code and data. 

Gather phase. The goal of the second phase is to 
retrieve the installation image and installer. The client 
gathers the necessary !les to install from the network. 
Figure 2 highlights this phase in red because it might 
be performed by untrustworthy code. However, we 
need not measure this phase because we start the 
install in the bootstrap phase from a known state, 
using only these inputs. 

The client machine !rst loads the network boot 
!rmware to obtain network access and locate the boot 
server. Then it retrieves an NBP that downloads the 
additional installer !les, the installer kernel, a RAM 
disk containing the installer code, and a bootstrap 
program that sets up a secure environment for the 
installer.

Bootstrap phase. The client then downloads the 
installer in the bootstrap phase, which is the !rst of 
three phases linking the installer and image to the 
client’s !le system for building a ROTI proof in the 
!nal phase.

Because the gather phase performed unmeasured 
operations, it opens the possibility for malicious 
code to have been loaded into memory. Therefore, 
the bootstrap phase initializes a secure execution 
environment for the installer, establishing a clean 
starting point for measuring subsequent installation 

process operations. A CPU-supported technique, 
called late launch, achieves this goal by taking a piece 
of code, recording it in the RTM, and e$ectively 
rebooting the system before executing the code in a 
region of protected memory. This memory protection 
prevents attacks both from potentially malicious 
resident code loaded before the installer and from 
external devices that have direct access to memory.

Once the installer kernel is launched, it measures 
the installer’s RAM disk, unpacks it into memory, and 
begins the next phase. 

Download phase. After the installer is initialized, it 
enters the download phase. The goal is to retrieve and 
measure the disk image before installing it. First, the 
installer prepares the local system’s basic networking 
and partition table to enable retrieval and writing of a 
disk image to a clean disk. The installer also measures 
the disk image and records it in the RTM so that a 
veri!er can later identify the trustworthiness of the 
downloaded disk image. This task helps detect attacks 
on the disk image while it’s in transit and malicious 
images from compromised or rogue image servers.

Configure phase. Next, the installer con!gures the 
downloaded disk image to the target system. This 
includes setting up networking, !le-system tables, 
devices, security policies, Secure Shell (SSH) host 
keys, and so on. The installer also generates signing 
keys used by the RTM for generating attestations and 
the ROTI proof. 
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Figure 2. The netROTI installation process timeline. The administrator con!gures the client in the preinstall phase. 
Next, the client gathers the necessary !les to install from the network; the phase is shaded red because it is 
unmeasured and need not be run by trusted code. The client then downloads the installer and bootstraps a secure 
environment, which measures the installer. Next, the installer downloads, measures, and con!gures a disk image to 
place on the local disk. The resulting !le system is then measured by the installer and, in the proof phase, it generates 
a proof of the system’s root of trust for installation—that is, a ROTI proof. The blue phases measure the installer code 
and data before executing them.
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Next, the installer modi!es the system’s startup 
scripts to measure the root !le system at boot 
time. The resulting !le system manifest is included 
in attestations so the veri!er can inspect any 
modi!cations to the !le system.

Proof phase. In the last phase, the RTM generates a 
ROTI proof that ties the !nal installed !le system to 
the installer and disk image for runtime veri!cation 
that the client derives from these inputs. 

The ROTI proof is a signed tuple, R = Sign(F, D, I)
K¯, where K¯ is a private key that identi!es the physical 
machine and is endorsed by its RTM. This tuple acts 
as a proof, showing that a machine possessing K¯ was 
speci!cally con!gured by installer I using disk image D 
to produce !le system F. A veri!er can inspect the ROTI 
proof to determine whether it believes the combination 
of I and D results in a trustworthy installation (that is, 
F). Upon completion of the ROTI proof, the system 
reboots into its newly installed !le system. 

Verification
Once the installation procedure is complete, the 
system is ready for veri!cation, proving that the 
current !le system used a particular installer and disk 
image. The veri!er can then make a trust decision 
whether the combination of installer and disk image 
came from a source they trust.

Figure 3 illustrates the validation procedure. 
During boot, the client system loads the initial RAM 
disk (initrd) containing a program to measure the root 
!le system and generate a manifest of hashes for each 
!le. Once the root !le system is mounted, the system 
starts a network-facing attestation daemon to handle 
attestation requests. When a remote veri!er wishes to 
inspect the proving system, it sends a nonce to the 

attestation daemon, which builds an attestation and 
returns it to the veri!er. The attestation is a signed 
statement A = Sign(R, F’, N)K¯, where R is the ROTI 
proof, F’ is the current !le-system manifest, N is the 
nonce, and K¯ is the system’s private key endorsed by 
its RTM. 

The veri!er checks that the signatures on both A 
and R are from keys endorsed by the proving system’s 
RTM. Verifying the identities of keys is outside the 
scope of the work we report here, but we assume that 
the administrator deploying the systems maintains 
a PKI. Once the veri!er establishes the identities 
of the signing keys, it assesses whether it trusts the 
installer and disk image in R to produce a trustworthy 
installation. If it does, it then compares F’ and F in 
R to see how they di$er. If no security-critical !les 
have changed, the veri!er can assume the current 
system booted into a !le system that was produced by 
a trusted installer and disk image.

Implementing netROTI
Before describing our proof-of-concept netROTI 
implementation, we introduce some background on 
the trusted computing components we use.

Trusted Computing Primitives
Two key netROTI mechanisms are TPM attestations 
and the new dynamic root of trust. 

The TPM is a secure coprocessor, attached 
to the motherboard. It provides several features, 
including nonvolatile RAM (NVRAM) for 
storing cryptographic secrets and a set of platform 
con!guration registers (PCRs) for storing arbitrary 
data measurements. The TPM also contains a public 
key pair, the endorsement key (EK), which uniquely 
identi!es the TPM device and associated client. Using 
the EK, the TPM can generate and certify other keys. 

The TPM’s main runtime mechanisms are

TPM Extend, which adds a measurement to a PCR 
by hashing the measurement value with the current 
PCR value to form a hash chain, and 
TPM Quote, which produces a signed statement over 
a speci!ed set of PCRs and a nonce from a second 
party. This quote lets a remote veri!er examine the 
system’s state (represented by the PCR measure-
ments) at the time the nonce is generated. 

The TPM uses a signing key called the attestation 
identity key (AIK), derived from the EK to sign the 
quote. The AIK e$ectively identi!es the quote as 
coming from the platform containing the TPM. A 
TPM attestation is a quote combined with the list of 
measurements associated with the PCRs’ current state. 
To verify an attestation, a remote veri!er validates 
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Figure 3. Timeline of the netROTI validation process. The client measures its 
root !le system and generates an attestation of the installed and current !le 
systems, which the verifying system can check.
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that the measurements correspond to an acceptable 
operation (for example, a trusted installer load) and 
that the series of measurements results in the provided 
PCR values.

Producing meaningful attestations requires 
establishing a dynamic root of trust guaranteeing 
that a trustworthy entity on the system takes the 
measurements. A computer boots into what is called a 
static root of trust for measurement (SRTM) because 
the normal boot process is largely !xed. Normally, 
the BIOS takes a measurement of its !rmware and 
option ROM in any peripheral before passing control 
to the bootloader, which is expected to continue the 
measurement chain by measuring itself, the kernel, 
and so on. This chain, rooted in the normal boot 
procedure, gives a veri!er a view of how the system 
booted. However, there are several known attacks on 
the SRTM, such as TPM reset attacks, which enable an 
attacker to reset a PCR and insert false measurements.

To address these issues, new secure virtualization 
architectures, such as AMD’s Secure Virtual Machine 
(SVM)8 and Intel’s Trusted Execution Technology, 
let a machine form a dynamic root of trust for 
measurement (DRTM) by e$ectively rebooting the 
system and executing a piece of code called a secure 
loader in a memory-protected region that is safe from 
code loaded before the loader was executed. The CPU 
!rst sets a special group of DRTM PCRs to a speci!c 
value that only the CPU can set and then measures 
the loader before it starts. This prevents malicious 
code from imitating the DRTM process by inserting 
secure loader’s code measurement into the PCR. The 
DRTM is useful for bootstrapping security-critical 
code, such as a VMM kernel, when a system’s security 
is di"cult to assess at boot time.

Proof-of-Concept Installation
We created our netROTI proof-of-concept 
implementation as a series of scripts that automates 
the installation process. The scripts are packed into 
an 11-Mbyte ext2 (second external) RAM disk that is 
downloaded along with a modi!ed Linux 2.6.18 kernel 
and the Oslo (open source loader) bootloader.9 Oslo is 
a specialized bootloader that implements the DRTM 
functionality in AMD processors. We use Oslo to 
launch the installer kernel in a secure environment. 

Before installation begins, the administrator 
con!gures the BIOS to boot from the PXE !rmware. 
The administrator must also clear the TPM of any 
previous administrative passwords and keys so that the 
installer can create its own. This corresponds to our 
design’s preinstall phase. 

In the gather phase, the !rmware initiates the 
PXE protocol to obtain the boot server’s location. 
The client then downloads the pxelinux.0 NBP 

via the TFTP, which automatically retrieves the Oslo 
bootloader, Linux kernel, and installer RAM disk.

The system then enters the bootstrap phase (see 
Figure 4). First, the NBP constructs a multiboot header 
indicating the installer !le addresses in memory and 
then executes the Oslo bootloader. Oslo consists of 
three executable and linkable format (ELF) binaries 
that perform separate stages of the DRTM process. 
The !rst binary prepares the system for the DRTM 
process by shutting down all but the primary CPU 
core and loads the second-stage binary into the secure 
loader block (SLB). The AMD DRTM instruction, 
skinit, is invoked with the SLB’s entry point address 
as its only argument. The CPU then sets the DRTM 
PCRs in the TPM to 0, sets the device exclusion 
vector (DEV) to enable memory protection for the 
SLB, and sends a measurement of the SLB to the TPM. 
Finally, the CPU jumps to the SLB entry point that 
measures the installer Linux kernel, RAM disk, and 
boot parameters in the multiboot header, restarts the 
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the skinit instruction to measure the secure loader block (SLB), which contains 
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other CPU cores, and disables the DEV protection. 
Finally, Oslo launches the third-stage binary that 
imitates a normal grand uni!ed bootloader (GRUB) 
and launches the Linux kernel. 

Once the installer has been bootstrapped, the 
installer kernel unpacks the RAM disk into memory 
and executes the installation script. This sets up basic 
device support, such as the console and networking, and 
starts the download phase by running a partimage 
client. This contacts a precon!gured partimaged 
server, veri!es its Secure Sockets Layer (SSL) certi!cate 
against the Certi!cate Authority (CA) certi!cate in 
the RAM disk, establishes an SSL connection, and 
downloads the disk image. The installer then measures 
the image and writes it to the hard disk. 

In the con!gure phase, the installer scripts 
con!gure machine-speci!c !les, including updating 
devices for new hardware, networking con!gurations, 
!rewall rules, and !le system table entries; creating a 
swap partition, regenerating SSH host keys, and so on. 
The installer then sets new administrative credentials 
in the TPM and generates a fresh AIK. The TPM 
endorses the AIK by creating a certi!cate that signs 
the AIK’s public key with the TPM’s EK. The installer 
also installs a simple network-facing python service 
we wrote that acts as the attestation daemon, which 
services requests for attestations. The initial RAM disk 
is modi!ed by the installer to generate a manifest of the 
!le system at every boot. This manifest contains a hash 
of every !le and is included with future attestations. 

In the proof phase, the installer takes a Secure 
Hash Algorithm-1 (SHA-1) hash of each !le on disk 
that has changed or was added since writing the disk 
image. The !nal step generates the ROTI proof by 
producing a TPM quote with PCRs containing every 

measurement taken during the installation process. 
This quote is signed with the newly created AIK from 
the con!gure phase. We use a hash of the system’s 
hostname as the nonce because we are not concerned 
with the quote’s freshness and care only that the ROTI 
proof correctly identi!es the installer and disk image 
for this system. We tar and gzip the quote with the 
!le manifest and list of measurements taken during 
installation to create the !nal ROTI proof !le.

Proof-of-Concept Verification
Before the veri!cation protocol between a system 
installed by netROTI (the proving system) and a remote 
veri!er begins, the proving system boots into its initial 
RAM disk and then executes the measurement script 
inserted during installation. This script generates a 
manifest of the entire !le system with corresponding 
hashes for each !le. The system resumes the boot process 
and starts the attestation daemon. When a veri!er sends 
a nonce to the daemon, the daemon takes a SHA-1 hash 
of the nonce and requests a TPM quote signed by the 
TPM’s AIK. The quote’s PCRs contain a hash of the 
!le-system manifest taken at boot time and the nonce. 
The quote is then returned to the veri!er with the 
ROTI proof !le (corresponding to R in the attestation 
A (described earlier), the !le-system manifests taken 
at boot (F’) and during installation (F), and the AIK’s 
certi!cate (the veri!er has the nonce N already).

Upon receiving the attestation, the veri!er !rst 
validates the quote and ROTI proof signatures. It 
then checks that the AIK’s certi!cate is signed by the 
expected TPM’s EK. Next, the veri!er assesses the 
trustworthiness of the installer and disk image by 
extracting them from the ROTI proof and matching 
them against a list of acceptable measurements. If these 
are found to be trustworthy, the veri!er compares the 
!le-system manifests to see if any !les have changed 
since installation. If no security-critical !les are 
modi!ed, the veri!er accepts the proving system as 
having booted into a !le system installed by a trusted 
installer and disk image.

Proof-of-Concept Evaluation
We used the proof-of-concept netROTI system to 
assess its overall impact network installation and how 
it addresses attacks on the installation process.

Performance
To evaluate the netROTI’s overhead on installation, 
we performed 10 installations of a Eucalyptus cloud 
node’s disk image across 10 systems. We created an 
image to be installed by manually con!guring an 
Ubuntu server cloud in our Eucalyptus on a Dell 
PowerEdge M605 blade with 8-core, 2.3-GHz 
Opteron CPUs and 16 Gbytes of RAM on a quiescent 

Table 1. Breakdown of the installation time averaged over 
10 installations of a Eucalyptus cloud node.

Type Operation Time (seconds)

Install Download and write disk image 64.000

Install Con!guration 18.644

Subtotal 82.644

netROT netROTI con!guration 6.740

netROTI Measure image 1.900

netROTI Generate TPM quote 0.890

netROTI Measure modi!ed !les 0.390

Subtotal 9.920

Optional TPM setup 45.400

Optional Generate AIK 11.220

Subtotal 56.620

Total install 149.184
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gigabit network. We then created a 387-Mbyte 
gzipped disk image of the 1.3-Gbyte !le system. 

Table 1 shows the times for each operation 
performed during installation. Normal installation 
took 82.644 seconds or 55.34 percent of the overall 
time. The disk-image-related operations (such as 
downloading, writing, and measuring the image) 
are a function of the disk image’s size, which can 
be improved through more e"cient compression 
algorithms. In particular, we found our hardware 
could perform SHA-1 hashes at 132 Mbytes per 
second, which resulted in a 1.9-second disk-image 
measurement time.

TPM-related operations are inherently slow due 
to the TPM’s bus speed (33 MHz) and its low-power 
design. Although netROTI-speci!c operations added 
time to the install, two operations—namely, generat-
ing a new AIK and TPM setup—account for 37.95 
percent of that overhead. We note that these steps cre-
ate keys that could be reused across multiple installa-
tions as long as the encrypted public portions of the 
AIK and SRK (created in the TPM setup operation) 
are retained during reinstallation. Thus, an adminis-
trator could copy those encrypted !les and redistrib-
ute them in the installer or have the installer copy 
them from the local disk before overwriting it. 

Ultimately, we !nd the netROTI overhead to be 
a !xed cost of about 8 seconds plus about a 3 percent 
overhead for measuring the image when the optional 
TPM setup and AIK creation steps are reused from 
previous installations.

Security Evaluation
Table 2 lists a comparison of several security 
mechanisms and their ability to handle a range of 
attacks on the network installation process. 

In addition to our netROTI design, we consider 
the Oslo bootloader alone, the !le-system auditing 
tool Tripwire,10 and the Windows Bitlocker !le-en-
cryption scheme.11 Oslo uses the DRTM process both 
to measure malicious installer code and to defeat root-
kits the system might boot into before installation, but 
it cannot address any other attacks. Tripwire is an au-
diting tool that creates a digitally signed log of the 

installed !le system that administrators can query to 
detect changes. This prevents attacks that change the 
disk contents after installation, but it cannot guaran-
tee anything about the !le system during installation. 
Bitlocker encrypts the !le system and optionally uses 
the TPM to verify that the early boot phase has not 
been modi!ed before decrypting the disk. This pre-
vents o%ine attacks but not modi!cations to the disk 
after decryption. The netROTI uses Oslo for protec-
tion against rootkits and to record malicious installers. 
It also measures disk images before installation and 
uses the ROTI proof combined with boot-time !le-
system measurements to detect changes. However, 
none of these approaches directly address attacks on 
the installed system at runtime.

The key advantage of the netROTI over these 
other approaches is its ability to provide an attestation 
of not only the !le system but also the installation 
environment that produced it. The other solutions in 
our comparison prevent attacks at various stages of the 
installation process, but none of them can speak for the 
trustworthiness of the installer that produced them. 
By using secure hardware to measure before using 
each critical component during installation, netROTI 
creates a veri!able proof of the !le system’s origin.

O ur evaluation demonstrated the netROTI protects 
against a variety of attacks on the installation pro-

cess and introduces only minimal overhead when opti-
mizations are taken into account. Using the netROTI 
approach, administrators can deploy systems via net-
work installation and verify those systems have booted 
into a !le system produced by the desired sources. 
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