
Engineering Secure Systems

18 COPUBLISHED BY THE IEEE COMPUTER AND RELIABILITY SOCIETIES 1540-7993/11/$26.00 © 2011 IEEE JANUARY/FEBRUARY 2011

D ata centers and large enterprises often use
network installation and monitoring to
manage the integrity of their deployed
systems. This lets administrators focus

on hardening fewer systems and cloning them over
the network to a multitude of machines. Once the
systems are installed, administrators can use remote
monitoring tools and services to automate the detection
of system behavioral anomalies, intrusions, and illicit
!le-system modi!cations. These mechanisms aim to
provide trusted distribution, whereby administrators
can verify that a system was installed as intended and
that nothing was secretly modi!ed after installation.1
Without trusted distribution, it’s di"cult to ensure
the ongoing correctness of a system at runtime.

Unfortunately, network-based installation
introduces new challenges to the already di"cult
process of verifying system installation. The most
common way to initialize a network installation is
to load a bootstrap program over the network, thus
eliminating the need for installation media such as
optical disks. However, the additional network access
opens the possibility for malicious parties to compromise
installer code or corrupt the disk image in #ight. Even
after system installation, malicious modi!cations can
compromise security-critical !les in ways that are
di"cult to detect in cases such as con!guration scripts
that lack a well-known correct state. In the presence of
such subversive code and hard-to-verify data, attackers
can trick monitoring tools into failing to report a
problem. Ultimately, administrators need a method
to prove that a system has been securely installed

and hasn’t been
modi!ed since
that installation.

To achieve
this goal, we propose a Network-Based Root of Trust
for Installation (netROTI), an installation method that
links a !le system to its installer and the disk image
used prior to con!guration. If administrators trust
their installer and disk image, they can trust systems
booted from !le systems derived from a netROTI
installation. By con!guring their hardened images
and deploying them with netROTI, they can install
all of their machines automatically and receive a proof
from each machine, showing whether it was booted
from a compromised !le system.

We implemented a netROTI system for a
Eucalyptus cloud environment.2 It added only an
8-second !xed overhead plus 3 percent of image
download time to the network installation process
and automated veri!cation for the administrator. The
result is veri!able, automated network installation,
even over an untrusted network.

Network Boot Installation
We begin by describing the process of network
installation, followed by the possible attacks on this
procedure and the security guarantees required for a
trusted installation.

Current Network Installation
Organizations with large system deployments install
and maintain their systems di$erently from typical

A network-based system installation method that binds

a !le system to its installer and disk image, thereby

thwarting many known attacks against the installation

process.

JOSHUA
SCHIFFMAN,
THOMAS
MOYER,
TRENT JAEGER
AND PATRICK
MCDANIEL
Pennsylvania
State
University

Network-Based Root of Trust
for Installation

Engineering Secure Systems

 www.computer.org/security 19

desktop users. Individual systems are typically
installed using an optical disk or USB drive, but the
long installation process, physical media requirements,
and speci!c customizations in that environment make
the approach impractical for hundreds of machines.
Instead, administrators use network-based installation
techniques that employ customized automated
installer images or disk cloning to rapidly upgrade
out-of-date systems or restore compromised servers to
their proper state.

From speaking with administrators in several large
companies and our own university, which supplies
computing resources for over 40,000 students, we found
the most common disk-cloning tools to be Symantec’s
Norton Ghost (www.symantec.com/norton/ghost),
Acronis True Image (www.acronis.com/home
computing/products/trueimage/), or custom-
designed tools that use a variety of free and open source
utilities. Other services, such as Microsoft’s Windows
Deployment Services (http://msdn.microsoft.com/
en-us/library/aa967394.aspx) and Rocks (www.
rocksclusters.org), automate installation tasks. All these
tools function by loading a client over the network at
boot time, connecting to a management server, and
downloading !les, such as a precon!gured disk image
or installer programs. This reduces deployment time
and lets administrators harden a single installation and
replicate it among systems that perform similar tasks,
such as virtual memory managers (VMMs) in a cloud
or employee workstations.

There are several methods of bootstrapping
an installer client, but the Preboot Execution
Environment (PXE) is among the most common.3
Figure 1 brie#y illustrates a network install using
the PXE protocol. First, the system to be imaged,
which we call the client system, boots into the PXE
!rmware loaded from the network interface card
(NIC) !rmware. Next, the client starts the protocol
by (1) broadcasting a DHCPDISCOVER request on
port 67 with an additional PXEClient extension tag.
A Dynamic Host Con!guration Protocol (DHCP) or
proxy DHCP server responds with a DHCPOFFER
on port 68, providing an IP address and a list of boot
servers. The client then (2) sends a DHCPREQUEST
to a boot server and gets a DHCPACK message with
the !le name of a network-boot program (NBP)
that it retrieves from the boot server via Trivial File
Transfer Protocol (TFTP). The client then executes
the NBP, which can request additional !les such as a
kernel or modules required for the client’s hardware.

The NBP sets up the installer client using !les either
downloaded from the boot server or retrieved through
protocols like Network File System or HTTP. Finally,
the client (3) contacts the image server and requests a
disk image. After the installer has written the image

to the hard drive, the client performs additional
con!guration steps, such as setting up the hostname
and networking. Finally, the machine reboots into the
newly imaged operating system (OS).

Attacks on Network Installation
To ensure the correct operation of systems within
large installations, administrators must be able to
prove system installations and con!gurations that
use high-integrity code and data. Although the
techniques we’ve mentioned automate installation,
they don’t enable veri!cation that a system booted
from a properly installed !le system. Potential attacks
on the installation or on later system modi!cations
could corrupt a server and lead to a host of attacks
from within a large deployment like a data center.

For example, during the installation process described
in Figure 1, the client system could potentially corrupt
a server by loading malicious PXE !rmware from
the NIC installed during a previously compromised
state. Another demonstrated source of corruption is a
remote attack that compromises NIC !rmware over
the network.4 In either case, the !rmware could lead to
direct attacks on the system’s memory.

Another vector for attack exists when the PXE
client searches for the boot server. Because the PXE
client relies on information from local or proxy
DHCP servers, a compromised server acting as a
rogue DHCP server on the local subnet could trick

Figure 1. A network install bootstrapped via Preboot Execution Environment
(PXE) boot. The client system (highlighted in blue) loads the PXE boot
!rmware, (1) initiates a DHCP request on the local subnet to set up basic
networking and locate a boot server, then (2) requests a network boot
program from the boot server and executes it. Finally, (3) the installer
connects to the image server and begins transferring the disk image to the
target system’s hard disk, after which the system reboots.

Engineering Secure Systems

20 IEEE SECURITY & PRIVACY JANUARY/FEBRUARY 2011

the client into downloading a malicious NBP and
installing a rootkit. At the network level, an attacker
could modify unencrypted data sent to the client on
the wire or perform a man-in-the-middle attack to
tamper with the installation.

After installation, a system remains vulnerable to
attacks that place rootkits on the !le system or make
malicious changes that persist even after a system
reboots.

Securing Network Boot Installation
Securing a network installation requires showing that
the installed system derives from the expected origins,
installer, and disk image. Although not everyone
might trust the installer or disk image, those who
do would be willing to work with such a system if
it could be veri!ed. In this case, we envision data
center administrators being able to leverage such trust
because they specify the installer and disk images that
can be loaded.

Verifying a system’s installation requires accurate
measurement and reporting methods. Recent work
in trusted computing has examined the challenge
of building trust in commodity systems. Trusted
hardware, such as the Trusted Platform Module
(TPM) and new extensions to Intel and AMD
processors, o$ers various trust primitives. Using this
hardware support, systems can generate attestations
of a platform’s critical code and data, which remote
parties can verify. Bryan Parno and his colleagues
survey the broad range of applications to which
researchers have applied these trust primitives.5

However, verifying installation isn’t very useful
by itself because the machine will be immediately
rebooted after installation and might be rebooted
multiple times before any subsequent reinstallation.
An administrator must therefore be able to verify that
a system was booted from an expected installation.
Our netROTI method lets an administrator verify
that the !le system at boot time is linked to the
installation origins—that is, the installer and the disk
image. This doesn’t prevent the system from coming
under runtime attacks, such as bu$er over#ows, but
runtime attacks that modify the !le system will be
detected at next reboot.

Any secure network installation must be practical.
A key question is whether the installed !le system
is su"ciently stable to enable such a veri!cation.
In an initial experiment,6 we found that netROTI
dynamically modi!ed only three !les of a privileged
VM system con!guration during its execution.

Our approach prohibits manual system updates
because they are ad hoc. For administrators, a clean,
automated install is preferable to manual modi!cations,
anyway. Administrators that wish to push incremental

updates to systems will need to extend the install-time
proofs to cover these modi!cations to the !le system.

The netROTI Method
The netROTI method links the installed system
veri!ably to a particular source.

Trust and Threat Models
For our design, we assume a trust model in which the
physical hardware is safe from attack and is implemented
correctly. We also assume that an administrator or
software provider exists who has the authority to
deem particular code and data, such as the installer
and disk image, as trustworthy. We don’t assume that
such trust is placed correctly; our goal is to prove that
a system links to a particular origin certi!ed by one or
more authorities. Thus, an administrator can trust in a
system based on the administrator’s trust in authorities’
ability to certify systems. We also assume trust in the
data center administrators and hence do not address
insider attacks. Finally, we don’t consider attacks on
the cryptographic algorithms used nor attacks on
the PKI or authentication procedures for establishing
identities, such as direct anonymous attestation.7

For our threat model, we consider an attacker that
can modify or inject data on the network, impersonate
various services, and compromise other hosts on
the network. With these attacks, the client could
load a malicious installer that could, in turn, install
a vulnerable or malicious disk image or otherwise
compromise device !rmware. An attacker could also
change the contents of the client’s disk after installation
and perform attacks on the running system.

Reporting attacks on the system’s runtime state is
outside the scope of the work we report here, but the
netROTI does provide a root of trust for detecting
these security violations by giving a proof of the
system’s initial integrity at boot time.

Installation Phases
The netROTI installation method cryptographically
links the installed !le system with the installer and
source used in the installation. Figure 2 illustrates six
installation procedure phases. Each phase has a speci!c
goal and associated tasks to achieve it.

Preinstall phase. The !rst phase is a manual step in
which the administrator prepares the client system for
installation. The phase tasks con!gure components
that enable generation of ROTI proofs. This phase
is trusted axiomatically because the administrator
performs the tasks manually.

To prepare the system, the administrator con!gures
the client BIOS to boot from the network and installs
the client’s Root of Trust for Measurement (RTM)

Engineering Secure Systems

 www.computer.org/security 21

with keys that identify it uniquely. The installation
process uses the RTM to record and report critical
code and data.

Gather phase. The goal of the second phase is to
retrieve the installation image and installer. The client
gathers the necessary !les to install from the network.
Figure 2 highlights this phase in red because it might
be performed by untrustworthy code. However, we
need not measure this phase because we start the
install in the bootstrap phase from a known state,
using only these inputs.

The client machine !rst loads the network boot
!rmware to obtain network access and locate the boot
server. Then it retrieves an NBP that downloads the
additional installer !les, the installer kernel, a RAM
disk containing the installer code, and a bootstrap
program that sets up a secure environment for the
installer.

Bootstrap phase. The client then downloads the
installer in the bootstrap phase, which is the !rst of
three phases linking the installer and image to the
client’s !le system for building a ROTI proof in the
!nal phase.

Because the gather phase performed unmeasured
operations, it opens the possibility for malicious
code to have been loaded into memory. Therefore,
the bootstrap phase initializes a secure execution
environment for the installer, establishing a clean
starting point for measuring subsequent installation

process operations. A CPU-supported technique,
called late launch, achieves this goal by taking a piece
of code, recording it in the RTM, and e$ectively
rebooting the system before executing the code in a
region of protected memory. This memory protection
prevents attacks both from potentially malicious
resident code loaded before the installer and from
external devices that have direct access to memory.

Once the installer kernel is launched, it measures
the installer’s RAM disk, unpacks it into memory, and
begins the next phase.

Download phase. After the installer is initialized, it
enters the download phase. The goal is to retrieve and
measure the disk image before installing it. First, the
installer prepares the local system’s basic networking
and partition table to enable retrieval and writing of a
disk image to a clean disk. The installer also measures
the disk image and records it in the RTM so that a
veri!er can later identify the trustworthiness of the
downloaded disk image. This task helps detect attacks
on the disk image while it’s in transit and malicious
images from compromised or rogue image servers.

Configure phase. Next, the installer con!gures the
downloaded disk image to the target system. This
includes setting up networking, !le-system tables,
devices, security policies, Secure Shell (SSH) host
keys, and so on. The installer also generates signing
keys used by the RTM for generating attestations and
the ROTI proof.

Generate
ROTI proof

Customize
disk image

Download
disk image

Initialize installer
environment

Gather
installer client

Con!gure
boot options

Measure
!lesystem

Measure
disk image

Measure
installer

Initialize
RRM

Proof phaseCon!gure phaseDownload phaseBootstrap phaseGather phasePreinstall phase

Figure 2. The netROTI installation process timeline. The administrator con!gures the client in the preinstall phase.
Next, the client gathers the necessary !les to install from the network; the phase is shaded red because it is
unmeasured and need not be run by trusted code. The client then downloads the installer and bootstraps a secure
environment, which measures the installer. Next, the installer downloads, measures, and con!gures a disk image to
place on the local disk. The resulting !le system is then measured by the installer and, in the proof phase, it generates
a proof of the system’s root of trust for installation—that is, a ROTI proof. The blue phases measure the installer code
and data before executing them.

Engineering Secure Systems

22 IEEE SECURITY & PRIVACY JANUARY/FEBRUARY 2011

Next, the installer modi!es the system’s startup
scripts to measure the root !le system at boot
time. The resulting !le system manifest is included
in attestations so the veri!er can inspect any
modi!cations to the !le system.

Proof phase. In the last phase, the RTM generates a
ROTI proof that ties the !nal installed !le system to
the installer and disk image for runtime veri!cation
that the client derives from these inputs.

The ROTI proof is a signed tuple, R = Sign(F, D, I)
K¯, where K¯ is a private key that identi!es the physical
machine and is endorsed by its RTM. This tuple acts
as a proof, showing that a machine possessing K¯ was
speci!cally con!gured by installer I using disk image D
to produce !le system F. A veri!er can inspect the ROTI
proof to determine whether it believes the combination
of I and D results in a trustworthy installation (that is,
F). Upon completion of the ROTI proof, the system
reboots into its newly installed !le system.

Verification
Once the installation procedure is complete, the
system is ready for veri!cation, proving that the
current !le system used a particular installer and disk
image. The veri!er can then make a trust decision
whether the combination of installer and disk image
came from a source they trust.

Figure 3 illustrates the validation procedure.
During boot, the client system loads the initial RAM
disk (initrd) containing a program to measure the root
!le system and generate a manifest of hashes for each
!le. Once the root !le system is mounted, the system
starts a network-facing attestation daemon to handle
attestation requests. When a remote veri!er wishes to
inspect the proving system, it sends a nonce to the

attestation daemon, which builds an attestation and
returns it to the veri!er. The attestation is a signed
statement A = Sign(R, F’, N)K¯, where R is the ROTI
proof, F’ is the current !le-system manifest, N is the
nonce, and K¯ is the system’s private key endorsed by
its RTM.

The veri!er checks that the signatures on both A
and R are from keys endorsed by the proving system’s
RTM. Verifying the identities of keys is outside the
scope of the work we report here, but we assume that
the administrator deploying the systems maintains
a PKI. Once the veri!er establishes the identities
of the signing keys, it assesses whether it trusts the
installer and disk image in R to produce a trustworthy
installation. If it does, it then compares F’ and F in
R to see how they di$er. If no security-critical !les
have changed, the veri!er can assume the current
system booted into a !le system that was produced by
a trusted installer and disk image.

Implementing netROTI
Before describing our proof-of-concept netROTI
implementation, we introduce some background on
the trusted computing components we use.

Trusted Computing Primitives
Two key netROTI mechanisms are TPM attestations
and the new dynamic root of trust.

The TPM is a secure coprocessor, attached
to the motherboard. It provides several features,
including nonvolatile RAM (NVRAM) for
storing cryptographic secrets and a set of platform
con!guration registers (PCRs) for storing arbitrary
data measurements. The TPM also contains a public
key pair, the endorsement key (EK), which uniquely
identi!es the TPM device and associated client. Using
the EK, the TPM can generate and certify other keys.

The TPM’s main runtime mechanisms are

TPM Extend, which adds a measurement to a PCR
by hashing the measurement value with the current
PCR value to form a hash chain, and
TPM Quote, which produces a signed statement over
a speci!ed set of PCRs and a nonce from a second
party. This quote lets a remote veri!er examine the
system’s state (represented by the PCR measure-
ments) at the time the nonce is generated.

The TPM uses a signing key called the attestation
identity key (AIK), derived from the EK to sign the
quote. The AIK e$ectively identi!es the quote as
coming from the platform containing the TPM. A
TPM attestation is a quote combined with the list of
measurements associated with the PCRs’ current state.
To verify an attestation, a remote veri!er validates

Verify signatures
and !lesystem

Assess installer
and disk image
trustworthiness

Generate
attesstation

Send nonce
to prover

Create !lesystem
manisfest

Sign
attestation

Measure
manisfest

Proving
client

Verifying
system

Verify
attestation

Generate
attestation

Request
attestation

Measure
!lesystem

Figure 3. Timeline of the netROTI validation process. The client measures its
root !le system and generates an attestation of the installed and current !le
systems, which the verifying system can check.

Engineering Secure Systems

 www.computer.org/security 23

that the measurements correspond to an acceptable
operation (for example, a trusted installer load) and
that the series of measurements results in the provided
PCR values.

Producing meaningful attestations requires
establishing a dynamic root of trust guaranteeing
that a trustworthy entity on the system takes the
measurements. A computer boots into what is called a
static root of trust for measurement (SRTM) because
the normal boot process is largely !xed. Normally,
the BIOS takes a measurement of its !rmware and
option ROM in any peripheral before passing control
to the bootloader, which is expected to continue the
measurement chain by measuring itself, the kernel,
and so on. This chain, rooted in the normal boot
procedure, gives a veri!er a view of how the system
booted. However, there are several known attacks on
the SRTM, such as TPM reset attacks, which enable an
attacker to reset a PCR and insert false measurements.

To address these issues, new secure virtualization
architectures, such as AMD’s Secure Virtual Machine
(SVM)8 and Intel’s Trusted Execution Technology,
let a machine form a dynamic root of trust for
measurement (DRTM) by e$ectively rebooting the
system and executing a piece of code called a secure
loader in a memory-protected region that is safe from
code loaded before the loader was executed. The CPU
!rst sets a special group of DRTM PCRs to a speci!c
value that only the CPU can set and then measures
the loader before it starts. This prevents malicious
code from imitating the DRTM process by inserting
secure loader’s code measurement into the PCR. The
DRTM is useful for bootstrapping security-critical
code, such as a VMM kernel, when a system’s security
is di"cult to assess at boot time.

Proof-of-Concept Installation
We created our netROTI proof-of-concept
implementation as a series of scripts that automates
the installation process. The scripts are packed into
an 11-Mbyte ext2 (second external) RAM disk that is
downloaded along with a modi!ed Linux 2.6.18 kernel
and the Oslo (open source loader) bootloader.9 Oslo is
a specialized bootloader that implements the DRTM
functionality in AMD processors. We use Oslo to
launch the installer kernel in a secure environment.

Before installation begins, the administrator
con!gures the BIOS to boot from the PXE !rmware.
The administrator must also clear the TPM of any
previous administrative passwords and keys so that the
installer can create its own. This corresponds to our
design’s preinstall phase.

In the gather phase, the !rmware initiates the
PXE protocol to obtain the boot server’s location.
The client then downloads the pxelinux.0 NBP

via the TFTP, which automatically retrieves the Oslo
bootloader, Linux kernel, and installer RAM disk.

The system then enters the bootstrap phase (see
Figure 4). First, the NBP constructs a multiboot header
indicating the installer !le addresses in memory and
then executes the Oslo bootloader. Oslo consists of
three executable and linkable format (ELF) binaries
that perform separate stages of the DRTM process.
The !rst binary prepares the system for the DRTM
process by shutting down all but the primary CPU
core and loads the second-stage binary into the secure
loader block (SLB). The AMD DRTM instruction,
skinit, is invoked with the SLB’s entry point address
as its only argument. The CPU then sets the DRTM
PCRs in the TPM to 0, sets the device exclusion
vector (DEV) to enable memory protection for the
SLB, and sends a measurement of the SLB to the TPM.
Finally, the CPU jumps to the SLB entry point that
measures the installer Linux kernel, RAM disk, and
boot parameters in the multiboot header, restarts the

Initial Ramdisk

Linux kernel

Munich

Pamplona

Secure loader

TFTP
service

Proxy
DHCP
service

Boot server

DHCP
service

DHCP server

Step 6:
Executive loader

Step 7:
Measure
installer

!les

Step 5:
Measure
loader

Step 2:
Get

bootstap
program

Step 3:
Download

NBP binaries

Step 4:
SKINIT to launch

secure loader

OSLO

PXELinux.0

PXE client

BIOS

TPM

Figure 4. Proof-of-concept netROTI system. After the client follows the PXE
protocol and contacts the boot server, it downloads and executes Oslo. This calls
the skinit instruction to measure the secure loader block (SLB), which contains
Oslo’s helper binaries, Pamplona and Munich, which set up the protected
installer environment. The installer kernel and initrd are then executed.

Engineering Secure Systems

24 IEEE SECURITY & PRIVACY JANUARY/FEBRUARY 2011

other CPU cores, and disables the DEV protection.
Finally, Oslo launches the third-stage binary that
imitates a normal grand uni!ed bootloader (GRUB)
and launches the Linux kernel.

Once the installer has been bootstrapped, the
installer kernel unpacks the RAM disk into memory
and executes the installation script. This sets up basic
device support, such as the console and networking, and
starts the download phase by running a partimage
client. This contacts a precon!gured partimaged
server, veri!es its Secure Sockets Layer (SSL) certi!cate
against the Certi!cate Authority (CA) certi!cate in
the RAM disk, establishes an SSL connection, and
downloads the disk image. The installer then measures
the image and writes it to the hard disk.

In the con!gure phase, the installer scripts
con!gure machine-speci!c !les, including updating
devices for new hardware, networking con!gurations,
!rewall rules, and !le system table entries; creating a
swap partition, regenerating SSH host keys, and so on.
The installer then sets new administrative credentials
in the TPM and generates a fresh AIK. The TPM
endorses the AIK by creating a certi!cate that signs
the AIK’s public key with the TPM’s EK. The installer
also installs a simple network-facing python service
we wrote that acts as the attestation daemon, which
services requests for attestations. The initial RAM disk
is modi!ed by the installer to generate a manifest of the
!le system at every boot. This manifest contains a hash
of every !le and is included with future attestations.

In the proof phase, the installer takes a Secure
Hash Algorithm-1 (SHA-1) hash of each !le on disk
that has changed or was added since writing the disk
image. The !nal step generates the ROTI proof by
producing a TPM quote with PCRs containing every

measurement taken during the installation process.
This quote is signed with the newly created AIK from
the con!gure phase. We use a hash of the system’s
hostname as the nonce because we are not concerned
with the quote’s freshness and care only that the ROTI
proof correctly identi!es the installer and disk image
for this system. We tar and gzip the quote with the
!le manifest and list of measurements taken during
installation to create the !nal ROTI proof !le.

Proof-of-Concept Verification
Before the veri!cation protocol between a system
installed by netROTI (the proving system) and a remote
veri!er begins, the proving system boots into its initial
RAM disk and then executes the measurement script
inserted during installation. This script generates a
manifest of the entire !le system with corresponding
hashes for each !le. The system resumes the boot process
and starts the attestation daemon. When a veri!er sends
a nonce to the daemon, the daemon takes a SHA-1 hash
of the nonce and requests a TPM quote signed by the
TPM’s AIK. The quote’s PCRs contain a hash of the
!le-system manifest taken at boot time and the nonce.
The quote is then returned to the veri!er with the
ROTI proof !le (corresponding to R in the attestation
A (described earlier), the !le-system manifests taken
at boot (F’) and during installation (F), and the AIK’s
certi!cate (the veri!er has the nonce N already).

Upon receiving the attestation, the veri!er !rst
validates the quote and ROTI proof signatures. It
then checks that the AIK’s certi!cate is signed by the
expected TPM’s EK. Next, the veri!er assesses the
trustworthiness of the installer and disk image by
extracting them from the ROTI proof and matching
them against a list of acceptable measurements. If these
are found to be trustworthy, the veri!er compares the
!le-system manifests to see if any !les have changed
since installation. If no security-critical !les are
modi!ed, the veri!er accepts the proving system as
having booted into a !le system installed by a trusted
installer and disk image.

Proof-of-Concept Evaluation
We used the proof-of-concept netROTI system to
assess its overall impact network installation and how
it addresses attacks on the installation process.

Performance
To evaluate the netROTI’s overhead on installation,
we performed 10 installations of a Eucalyptus cloud
node’s disk image across 10 systems. We created an
image to be installed by manually con!guring an
Ubuntu server cloud in our Eucalyptus on a Dell
PowerEdge M605 blade with 8-core, 2.3-GHz
Opteron CPUs and 16 Gbytes of RAM on a quiescent

Table 1. Breakdown of the installation time averaged over
10 installations of a Eucalyptus cloud node.

Type Operation Time (seconds)

Install Download and write disk image 64.000

Install Con!guration 18.644

Subtotal 82.644

netROT netROTI con!guration 6.740

netROTI Measure image 1.900

netROTI Generate TPM quote 0.890

netROTI Measure modi!ed !les 0.390

Subtotal 9.920

Optional TPM setup 45.400

Optional Generate AIK 11.220

Subtotal 56.620

Total install 149.184

Engineering Secure Systems

 www.computer.org/security 25

gigabit network. We then created a 387-Mbyte
gzipped disk image of the 1.3-Gbyte !le system.

Table 1 shows the times for each operation
performed during installation. Normal installation
took 82.644 seconds or 55.34 percent of the overall
time. The disk-image-related operations (such as
downloading, writing, and measuring the image)
are a function of the disk image’s size, which can
be improved through more e"cient compression
algorithms. In particular, we found our hardware
could perform SHA-1 hashes at 132 Mbytes per
second, which resulted in a 1.9-second disk-image
measurement time.

TPM-related operations are inherently slow due
to the TPM’s bus speed (33 MHz) and its low-power
design. Although netROTI-speci!c operations added
time to the install, two operations—namely, generat-
ing a new AIK and TPM setup—account for 37.95
percent of that overhead. We note that these steps cre-
ate keys that could be reused across multiple installa-
tions as long as the encrypted public portions of the
AIK and SRK (created in the TPM setup operation)
are retained during reinstallation. Thus, an adminis-
trator could copy those encrypted !les and redistrib-
ute them in the installer or have the installer copy
them from the local disk before overwriting it.

Ultimately, we !nd the netROTI overhead to be
a !xed cost of about 8 seconds plus about a 3 percent
overhead for measuring the image when the optional
TPM setup and AIK creation steps are reused from
previous installations.

Security Evaluation
Table 2 lists a comparison of several security
mechanisms and their ability to handle a range of
attacks on the network installation process.

In addition to our netROTI design, we consider
the Oslo bootloader alone, the !le-system auditing
tool Tripwire,10 and the Windows Bitlocker !le-en-
cryption scheme.11 Oslo uses the DRTM process both
to measure malicious installer code and to defeat root-
kits the system might boot into before installation, but
it cannot address any other attacks. Tripwire is an au-
diting tool that creates a digitally signed log of the

installed !le system that administrators can query to
detect changes. This prevents attacks that change the
disk contents after installation, but it cannot guaran-
tee anything about the !le system during installation.
Bitlocker encrypts the !le system and optionally uses
the TPM to verify that the early boot phase has not
been modi!ed before decrypting the disk. This pre-
vents o%ine attacks but not modi!cations to the disk
after decryption. The netROTI uses Oslo for protec-
tion against rootkits and to record malicious installers.
It also measures disk images before installation and
uses the ROTI proof combined with boot-time !le-
system measurements to detect changes. However,
none of these approaches directly address attacks on
the installed system at runtime.

The key advantage of the netROTI over these
other approaches is its ability to provide an attestation
of not only the !le system but also the installation
environment that produced it. The other solutions in
our comparison prevent attacks at various stages of the
installation process, but none of them can speak for the
trustworthiness of the installer that produced them.
By using secure hardware to measure before using
each critical component during installation, netROTI
creates a veri!able proof of the !le system’s origin.

O ur evaluation demonstrated the netROTI protects
against a variety of attacks on the installation pro-

cess and introduces only minimal overhead when opti-
mizations are taken into account. Using the netROTI
approach, administrators can deploy systems via net-
work installation and verify those systems have booted
into a !le system produced by the desired sources.

Acknowledgments
This work was supported by NSF grants CNS-0931914 and
CNS-0627551. We also thank Luke St. Clair for his e$orts
in designing Root-of-Trust Installer, Erik Steigler and Mark
Tamminga for their insights into network installation, and
Bernhard Kauer for his design of and assistance using Oslo.

References
1. R.P. Gallagher, “A Guide to Understanding Trusted

Table 2. A comparison of several mechanisms’ ability to detect or prevent several classes of
attack on an installation.
Attack Type OSLO Tripwire Bitlocker netROTI

Rootkits before install Yes No No Yes

Malicious installer code Yes No No Yes

Malicious disk image No No No Yes

Modi!ed data after install No Yes Partial Yes

Runtime attacks No No No No

Engineering Secure Systems

26 IEEE SECURITY & PRIVACY JANUARY/FEBRUARY 2011

Distribution in Trusted Systems,” tech. guidelines
NCSC-TG-008, Nat’l Computer Security Center,
1988; www.fas.org/irp/nsa/rainbow/tg008.htm.

2. D. Nurmi et al., “The Eucalyptus Open-Source
Cloud-Computing System,” Proc. 9th Int’l Symp.
Cluster Computing and the Grid, IEEE CS Press, 2009,
pp. 124–131.

3. Preboot Execution Environment (PXE) Speci!cation (version
2.1), Intel, 20 Sept. 1999; www.intel.com/design/
archives/wfm/downloads/pxespec.htm.

4. A. Triulzi, “The Jedi Packet Trick takes over the
Deathstar,” slide presentation, CanSecWest 2010;
www.alchemistowl.org/arrigo/Papers/Arrigo-Triulzi-
CANSEC10-Project-Maux-III.pdf.

5. B. Parno, J.M. McCune, and A. Perrig, “Bootstrapping
Trust in Commodity Computers,” Proc. IEEE 31st
Symp. on Security and Privacy (S&P 2010), IEEE CS
Press, 2010, pp. 414–429.

6. L.S. Clair et al., “Establishing and Sustaining System
Integrity via Root of Trust Installation,” Proc. 2nd Ann.
Conf. Computer Security Applications, ACM Press, 2007,
pp. 19–29.

7. E. Brickell, J. Camenisch, and L. Chen, “Direct
Anonymous Attestation,” Proc. 11th Conf. Computer and
Communications Security, ACM Press, 2004, pp. 132–145.

8. Processor-based virtualization, amd64 style. http://
developer.amd.com/document at ion/a r t ic le s/
pages/630200615.aspx.

9. B. Kauer, “Oslo: Improving the Security of Trusted
Computing,” Proc. 16th Usenix Security Symp. Usenix
Assoc., 2007, pp. 1–9.

10. 10. G.H. Kim and E.H. Spa$ord, “The Design and
Implementation of Tripwire: A File System Integrity
Checker,” Proc. 2nd Conf. Computer and Communications
Security, ACM Press, 1994, pp. 18–29.

11. 11. BitLocker Drive Encryption Technical Overview,
Microsoft, 2009; http://technet.microsoft.com/en-us/
library/cc732774(WS.10).aspx.

Joshua Schiffman is a PhD candidate in Pennsylvania State
University’s Computer Science and Engineering Department
and the lead graduate student of the Systems and Internet
Infrastructure Laboratory. His research interests include oper-
ating systems security, virtual machine security, trusted com-
puting, and cloud computing security. Schiffman has an MS
in computer science and engineering from Pennsylvania State
University. Contact him at jschiffman@cse.psu.edu.

Thomas Moyer is a PhD candidate in Pennsylvania State Uni-
versity’s Computer Science and Engineering Department and
a researcher in the Systems and Internet Infrastructure Labo-
ratory. His research interests include web security, systems
security, cloud computing security, and large-scale network
con!guration. Moyer has an MS in computer science and en-
gineering from Pennsylvania State University. Contact him at

//email//.

Trent Jaeger is an associate professor in Pennsylvania State
University’s Computer Science and Engineering Department
and co-director of the Systems and Internet Infrastructure Se-
curity Lab. His research interests include operating systems
security, access control, and source code and policy analysis
tools. Jaeger has and a PhD in computer science and engi-
neering from the University of Michigan, Ann Arbor. He’s the
author of Operating Systems Security (Morgan & Claypool,
2008) and an associate editor with ACM Transactions on In-
ternet Technology. Contact him at //email//.

Patrick McDaniel is an associate professor in Pennsylvania
State University’s Department of Computer Science and En-
gineering and co-director of the Systems and Internet Infra-
structure Security Laboratory. His research interests include
systems and network security, telecommunications security,
and security policy. McDaniel has a PhD in computer science
from the University of Michigan. Contact him at //email//.

Selected CS articles and columns are also available for
free at http://ComputingNow.computer.org.

