
Cyber Deception:

Virtual Networks to Defend Insider Reconnaissance

Stefan Achleitner

stefan.achleitner@cse.psu.edu

Thomas La Porta

tlp@cse.psu.edu

Patrick McDaniel

mcdaniel@cse.psu.edu

Computer Science and Engineering

The Pennsylvania State University

University Park, PA 16802

Shridatt Sugrim

ssugrim@appcomsci.com

Applied Communication

Sciences

Basking Ridge, NJ 07920

Srikanth V. Krishnamurthy

krish@cs.ucr.edu

Computer Science and

Engineering

University of California,

Riverside

Riverside, CA 92521

Ritu Chadha

rchadha@appcomsci.com

Applied Communication

Sciences

Basking Ridge, NJ 07920

ABSTRACT
Advanced targeted cyber attacks often rely on reconnais-
sance missions to gather information about potential tar-
gets and their location in a networked environment to iden-
tify vulnerabilities which can be exploited for further attack
maneuvers. Advanced network scanning techniques are of-
ten used for this purpose and are automatically executed
by malware infected hosts. In this paper we formally de-
fine network deception to defend reconnaissance and develop
RDS (Reconnaissance Deception System), which is based
on SDN (Software Defined Networking), to achieve decep-
tion by simulating virtual network topologies. Our system
thwarts network reconnaissance by delaying the scanning
techniques of adversaries and invalidating their collected in-
formation, while minimizing the performance impact on be-
nign network tra�c. We introduce approaches to defend
malicious network discovery and reconnaissance in computer
networks, which are required for targeted cyber attacks such
as Advanced Persistent Threats (APT). We show, that our
system is able to invalidate an attackers information, de-
lay the process of finding vulnerable hosts and identify the
source of adversarial reconnaissance within a network, while
only causing a minuscule performance overhead of 0.2 mil-
liseconds per packet flow on average.

1. INTRODUCTION
The static nature of computer networks enables adver-

saries to perform network reconnaissance and identify vul-
nerabilities which can be exploited by advanced targeted
cyber attacks. Network reconnaissance missions provide a
tactical advantage for attackers on cyber infrastructure by

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MIST’16, October 28 2016, Vienna, Austria
c� 2016 ACM. ISBN 978-1-4503-4571-2/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2995959.2995962

identifying potential targets and their vulnerabilities, as dis-
cussed in [16, 40, 32, 23, 27, 35]. In particular, insider adver-
saries are probing networked environments to identify hosts
and open ports and map their topology to find known and
zero-day vulnerabilities to perform further attack maneu-
vers.

Highly e↵ective scanning strategies for network reconnais-
sance are known and have been analyzed in the context of
computer worms such as in [37, 39, 18], and are precursors
to a high percentage of cyber attacks. In particular, the au-
thors of [28] conclude that up to 70% of attacks are preceded
by an adversarial scanning activity. Such reconnaissance
techniques are highly e↵ective by exploiting certain features
in networks, such as the uneven distribution of hosts in the
address space or the configuration and composition of net-
work topologies, to increase their e�ciency of identifying
potential targets. Sophisticated targeted attacks, such as
APT [35, 2, 1], depend on fingerprinting of organizational
networks to identify hosts and vulnerabilities necessary for
the development of a battle plan and the execution of fur-
ther attack maneuvers.

In this paper, we aim to deceive such malicious recon-
naissance and discovery techniques by showing a simulated
topological view of a networked system which hides its true
underlying network and its potential vulnerabilities that can
be exploited by attackers. The simulation of a virtual net-
work view invalidates the set of information an attacker col-
lects about a networked system and achieves the goal of sig-
nificantly delaying the rate of identifying vulnerable hosts.
This procedure gains additional time to identify a malicious
scanner and isolate it from the network.

Techniques such as social engineering, zero-day vulnera-
bilities, drive by downloads or manual infection [2, 35, 1, 14]
of hosts inside organizational networks are serious security
threats which can cause significant damage and are hard to
detect. In our threat model we consider such adversaries
that are present inside a network and have at least one host
infected with some sort of malware. Our proposed defense
system addresses adversarial reconnaissance and discovery
activity, which presents the third stage of an advanced cy-
ber attack as defined by Symantec [14].

To address threats caused by reconnaissance missions of
insider attackers, we define a formal deception approach
which identifies certain features of a networked system that
are modified by our RDS to invalidate the set of informa-
tion an attacker collects about the system. The challenge
in the design of such a system is to guarantee the network
functionality and minimize the performance impact for le-
gitimate tra�c, while maximizing the e↵ectiveness of the
defense strategy. A crucial part of our proposed defense so-
lution is the composition of virtual network views and the
placement of hosts and honeypots in virtual topologies to
delay attackers from identifying real hosts in a virtual topol-
ogy.

In our system, a di↵erent virtual network view can be
assigned to every host or to specific hosts. This makes our
defense approach independent of the source of malicious net-
work scans, which we assume is not known initially. The
implementation of our system ensures a clear separation be-
tween virtual network views, which are only visible to the
assigned hosts, and the remaining underlying network.

As our main contribution, we define a formal deception
approach and use this definition as the basis to design and
implement a RDS (Reconnaissance Deception System). Fur-
ther, we evaluate its goals of deceiving and detecting insider
adversaries, while minimizing the cost to achieve increased
security. We publish an open-source proof of concept pro-
totype of our system at [12]. In the evaluations we demon-
strate that our system increases the duration required to
identify vulnerable endpoints in a network up to a factor of
115 while minimizing the performance impact on legitimate
tra�c (0.2 milliseconds per connection on average compared
to standard SDN networks). In more detail, the following is
a summary of our contributions:

• Definition of a reconnaissance deception approach
We identify an information set collected by adversaries
during reconnaissance missions. To minimize the useful-
ness of this information for attackers, we define a set of
network features that have to be modified to deceive the
reconnaissance goal of an adversary. We discuss di↵er-
ent approaches and strategies for the generation of vir-
tual network topologies in which vulnerable entities are
strategically placed to minimize their detection likelihood
by adversaries.

• Design and implementation of a reconnaissance de-
ception system
To realize and evaluate the defined deception goals, we im-
plement a research prototype of RDS, based on SDN, to
simulate complete virtual network topologies. The com-
bined functionality of our deception server, SDN controller
and virtual topology generator achieves thorough network
deception, while maintaining the full network function-
ality for legitimate tra�c. As a key part of our sys-
tem, we introduce a defense view generator to create vir-
tual topologies and achieve an e↵ective defense strategy
against adversarial reconnaissance.

• Evaluation of defense e↵ectiveness and performance
By executing malicious scanning techniques on simulated
virtual topologies in our test environment we show that
our system is able to significantly delay the detection of
vulnerable hosts up to a factor of 115. We also demon-

strate that our solution has only a minuscule performance
impact of 0.2 milliseconds per packet flow on average.

• Identification of infected hosts in a network
Our SDN controller implementation dynamically analyzes
SDN flow rule statistics and is able to identify scanning
activity based on the distribution of network tra�c on
specific flow rules. We show in our experiments that our
system is able to identify malicious scanners before an
attacker is able to find vulnerable hosts in a network.

2. PROBLEM DEFINITION
In this section, we formally define what we mean by insider

reconnaissance. We also describe the threat model that we
apply in the remainder of the paper. As mentioned earlier,
our goal is to deceive an adversary who seeks to perform
insider reconnaissance.

2.1 Insider Reconnaissance
Adversarial reconnaissance is geared to gather informa-

tion about potential targets in networked systems. Scan-
ning strategies that perform active probing of addresses in
a network to identify online hosts and collect information
about them and their connectivities are typically used for
this purpose. One can represent the information gleaned
via reconnaissance as a set T , where:
T = {AV = Addresses of potentially vulnerable hosts, NS =
Network size, ST = System topology}
Insider attackers (e.g., malware programs) typically scan a
networked system at very low rates in order to stay unde-
tected. Once an information set T is obtained, it can be
further observed for exploitable targets, such as open ports
at hosts or network services with known vulnerabilities. The
goal is to increase the cardinality of T and execute parallel
kill chains on the multiple targets identified, to achieve the
highest rate of success.

To prevent such reconnaissance, one defense approach is
to minimize the cardinality of T . Our RDS framework seeks
to populate the set of T with fake information so that an
attacker is not able to determine what information in T is
virtual and what is real.

2.2 Threat Model
We consider insider adversaries who have placed them-

selves in the network (on one or more hosts), using tech-
niques such as social engineering, exploiting zero-day vul-
nerabilities, via drive by downloads or by manual infection
[2, 14, 35, 1, 15, 42]. Our defense approach is based on
measuring the reconnaissance information a strong insider
is able to gather in the information set T . Based on that,
RDS aims to minimize the usefulness of T by transforming it
into a di↵erent set T 0. Planning of sophisticated targeted at-
tacks (e.g., Advanced Persistent Threats or APTs) requires
a high granularity of insider information T which our solu-
tion prevents with providing T 0 to an adversary.

We assume that the location of an attacker inside the net-
work is unknown initially. With RDS, a di↵erent virtual
network view can be assigned to every host in a network
to make our defense approach independent of the source of
malicious scanning tra�c.

For securing the SDN controller from attacks, numerous
solutions have recently been published (e.g. [34, 29, 24, 42,
38]), which can be deployed to protect the SDN control in-
frastructure from being compromised. For the purposes of

our analysis, we do not consider attackers penetrating the
SDN controller or outside scanners which are addressed by
mechanisms such as Firewalls or Intrusion Detection Sys-
tems, and have inherently less information than insiders.

2.3 Reconnaissance Deception
Our key idea is to map a set of network features NF , to

a di↵erent set NF 0; this new set mis-informs the attacker
and provides a set T 0 which is populated with false infor-
mation. RDS achieves this by simulating a virtual network
which is the only view exposed to an attacker performing re-
connaissance. An attacker collects information to construct
a set T as defined previously. With RDS, the adversary will
populate T with information with regards to the simulated
virtual network instead of the real underlying network. The
composition of a virtual network is critical to ensure that
the information collected by an attacker is useless for fur-
ther attack planning. Let the set of network features that
RDS wants to hide be:
NF = {TL = Topological location of hosts, NH = Number
of hosts, AH = Addresses of hosts, CH = Connectivity be-
tween hosts}
These network featuresNF , are transformed into a new (vir-
tual) set of features NF 0. With NF 0, the attacker generates
a new set T 0 that is quite di↵erent from T i.e., T is now
transformed into T 0:
Stated formally,
NF 0 = {TL0, NH 0, AH 0, CH 0} ! T 0 = {AV 0, NS0, ST 0}
Towards achieving the above transformation, RDS performs
a set of agile maneuvers. These maneuvers can be seen as a
function, T 0 = f(NF 0), which result in T 0. Performing these
transformations will significantly delay adversarial scanners,
invalidate any collected information by the adversary and
allows the quick identification of infected hosts. These ma-
neuvers are:

• Dynamic address translation (AV 0 = f(AH 0)): Our
system performs on-the-fly packet header rewriting to hide
the real host addresses and make the overall address space
of a network appear larger. The translation of the real un-
derlying network’s address space into a significantly larger
virtual address space increases the search space for adver-
sarial scanners. Since the addresses of potentially vulner-
able hosts are changing with every assignment of a new
virtual network view, as we discuss in more detail in Sec-
tion 3.2, previously collected addresses of potential targets
are invalidated.

• Route mutation (ST 0 = f(TL0, CH 0)): We introduce
virtual routers with our deception system and simulate
virtual paths spanning multiple hops from a source to a
destination host. This maneuver enables RDS to alter
the topology of di↵erent network views so that a scanner
is not able to draw conclusions about the real network
topology.

• Vulnerable host placement (ST 0 = f(TL0, CH 0)): Dy-
namic address translation in combination with route mu-
tation allows us to simulate virtual topologies consisting
of multiple subnets. By placing vulnerable hosts in vir-
tual subnets according to di↵erent strategies we discuss
in Section 3.2, RDS aims to increase the duration a mali-
cious scanner takes to identify them. We define vulnerable
hosts as real hosts of the underlying network which could
potentially be corrupted by a cyber attack.

• Honeypot placement (NS0 = f(TL0, AH 0, NH 0)): To
enlarge virtual networks we place honeypots which act as
decoys and are closely monitored to detect malicious ac-
tivity. By placing honeypots, we increase the number of
potential targets for an attacker. Hereby, dynamic address
translation allows RDS to make a single honeypot server
appear as a target at many addresses and therefore signif-
icantly increases the search space for malicious scanners.
For the setup and generation of honeypots, we follow best
practices as introduced in previous publications such as
[41].

• Dynamic detection of malicious flows: By evaluating
the statistics of every flow rule in SDN switches, our de-
ception system is able to detect malicious flows which try
to establish connections to honeypots or protected hosts.
We demonstrate in Section 4.4, that RDS is able to detect
the location of adversarial scanners before they are able
to identify any vulnerable hosts in a virtual network view.

1

5

2

3
4

3
2

1

5

4

10.0.10.0/24

230.2.12.0/24
230.2.11.0/24

230.2.10.0/24

Figure 1: An example of network deception via the
projection of a virtual network which places critical
resources in a way to deceive adversaries.

To present a simple example of the defense approach we
achieve with RDS, we show a virtual topology in Figure 1
(top), which is deployed to be seen from the perspective of
node 3 and significantly di↵ers from the real network (bot-
tom). We refer to node 3 as the view node. The view node is
the node in the network to which a specific virtual network
view is given. The design of our system considers the as-
signment of di↵erent virtual network views to all or specific
hosts in a network, making this defense approach indepen-
dent of the source of malicious scans, which we assume is
not known initially.

Hosts 1, 2 and 5 are seen as vulnerable resources that have
to be protected. In case node 3 is performing an adversar-
ial network scan the placement of the vulnerable resources,
is critical. The location of vulnerable hosts, relative to the
position of an attacker, impacts their detection time, since
malicious scanning strategies often depend on locality as we
discuss in Section 4.3. Because host 4 in the virtual network
topology is not supposed to be contacted by host 3, the link
connecting it to the rest of the network is deactivated. The
remaining nodes in the virtual topology in Figure 1 are hon-
eypots and act as traps for potential adversaries.

Certain nodes in a network depend on the knowledge of
the real underlying network topology. Examples are schedul-
ing or load balancing algorithms that often choose geograph-
ically close nodes for load distribution, or applications that
perform automatic discovery for legitimate purposes of re-
sources and services in a network. A deception system, such
as ours, would interfere with legitimate network discovery
applications as listed. Therefore, nodes that require a real

view of the network topology have to be identified by a net-
work operator and should not have virtual network views
assigned that would deceive information collected by legit-
imate network discovery. To ensure this, we emphasize a
clear separation between virtual network views and the real
underlying topology in the implementation and design of our
system as we will explain in detail in Section 3.

3. SYSTEM DESIGN
In this section we introduce the implementation and de-

sign of our Reconnaissance Deception System in detail. The
core parts of RDS consist of a sophisticated system of SDN
flow rules generated by our SDN controller, which cooper-
ates with a deception server to manipulate the network traf-
fic in a way such that a network appears di↵erent than it
actually is.

Flow rule
Generator

Network View
Generator

Scanning host
detector

Defense
Strategy

ARP
Handler

Gateway
Simulator

Route
Simulator

DHCP
Handler

User
Policy

Deception Server

SDN Controller

SDN Network
ElementsSDN

 Control N
etw

ork
Physical (D

ata) N
etw

ork

DNS
Handler

ICMP
Handler

Figure 2: Architecture of RDS

3.1 System architecture overview
Our system comprises three main components, a SDN

controller responsible for dynamic generation and manage-
ment of the flow rules to steer and control the network traf-
fic, a deception server to manipulate the network tra�c and
simulate certain virtual network resources considering a spe-
cific user policy, and a virtual network view generator which
provides a machine readable description of the virtual net-
work components and their connectivity.

In the design of our system we consider a strict separa-
tion of the physical (data plane) network and the SDN con-
trol network which is established between SDN components.
This ensures that the SDN controller is protected from po-
tential threats emerging from the data plane and adds an
additional layer of security. Due to these design decisions
we do not inject packets from the SDN controller into the
data network. Generation and injection of packets is han-
dled entirely by our deception server. Using a deception
server, which is separated from the SDN controller, for han-
dling the virtual tra�c in our system is an important aspect
in terms of scalability since the deception server can be repli-
cated to distribute the load of network tra�c.

Our system is implemented in Python. We use the POX
framework [10] to implement our SDN controller and the
Scapy framework [13] to implement our deception server.
We tested our implementation in Mininet [5] which is the
current state-of-the-art SDN network emulator. Our SDN
environment supports OpenFlow [8] version 1.3, which serves
as the protocol for the communication between SDN con-

troller and SDN switch. In Figure 2 we show an architec-
tural overview of our RDS system.

1

10.0.17.0/24

10.0.18.0/24

10.0.19.0/24

3 2
5

4

1

10.3.26.0/24

10.3.27.0/24

10.3.28.0/24

2
5

4

3

10.0.20.0/24

Figure 3: Virtual Network view from the perspec-
tive of node 1 (top) and from the perspective of node
3 (bottom).

3.2 Virtual network view generator
As we discuss in Section 2.3, a virtual network view is a

topology that is exposed to a client and is significantly di↵er-
ent from the actual underlying network topology. A virtual
network view is specified by a machine readable description
of real hosts, honeypots and network paths between such
endpoints as defined in the set of features NF . In the de-
scription file of a virtual network view it can also be specified
if a real host in the underlying network is visible in the vir-
tual network view or not. This feature makes our system
also function as a distributed access control list, since dif-
ferent subsets of real hosts can be shown in a virtual view.
Each virtual network view is associated with a DHCP lease
that is o↵ered to a host in order to connect to the network.

As a simple example of a virtual topology, consider the
network views shown in Figure 3. The top virtual network
view shows a topology from the perspective of node 1. Be-
sides honeypots (unnumbered nodes), the real nodes 2, 3, 4
and 5 appear to be in a di↵erent subnet which is three hops
away. The real nodes can be considered as vulnerable and
therefore have to be protected from malicious scans. The
bottom part of Figure 3 shows the virtual network from the
perspective of node 3. Nodes 2, 4 and 5, which appeared to
be in the same subnet as 3 before, are in a di↵erent subnet
2 hops away from node 3 in this virtual network view. The
underlying real network topology is unchanged and contains
all nodes, 1-5, in one subnet.

An adversary probing the network from host 1 and from
host 3, would discover the other vulnerable nodes with a
significant delay since it first has to search through di↵erent
subnets. The performance of legitimate network tra�c with
virtual network views is approximately identical to the un-
derlying physical topology, as we will show in detail in Sec-
tion 5. We do not simulate delay on virtual network paths
since it would penalize legitimate tra�c. We are aware that
reconnaissance missions trying to map a network based on
features such as link delay are theoretically possible. In such
cases, our system is capable of simulating artificial delay by
forwarding a packet that passes through an SDN switch to
the controller and holding it for a specific duration. We will
discuss this in more detail in Section 6.

To generate virtual network views, our system creates a
machine readable description of a network topology. This
description is generated internally and only accessible to the
SDN controller and the deception server. For the generation
of virtual network views, the features NF as defined in Sec-

tion 2.3 are considered. We derive the following list of input
parameters and e↵ects which are specified in a virtual net-
work view to transform the set of features NF into NF 0:

• IPv4 address space of a virtual network
AH ! AH 0

• List of real hosts that are visible in a virtual network
CH ! CH 0

• Placement strategy of real hosts in a virtual network
AH ! AH 0, NH ! NH 0, TL ! TL0

• Number of simulated subnets in a virtual network
AH ! AH 0, NH ! NH 0, TL ! TL0

• Number of honeypots per subnet
NH ! NH 0, TL ! TL0

Specific user policies and access rules as well as strategy
specifications are considered for the defense against cyber at-
tacks using reconnaissance as an attack planning step. The
di↵erent strategies for the placement of vulnerable hosts in-
clude (i) random placement, (ii) placement in a subnet with
high hop and address distance from the view node, and (iii)
a placement to create a uniform distribution of nodes across
the simulated subnets. The selection of deceptive IP ad-
dresses for nodes in a virtual network view can be done ran-
domly within address bounds, or can be matched to specific
defense requirements. For the generation of virtual network
topologies we also consider critical locations of links and
nodes, as discussed in [33, 19]. Our network view generator
ensures that vulnerable nodes are not placed in critical lo-
cations of a network topology where they have a higher like-
lihood of being attacked. In particular, a machine readable
topology description contains the following information:

• Virtual network view node specification

• Port and address information of the deception server

• Real IP and MAC addresses of visible real hosts

• Real IP and MAC addresses of honeypots

• Deceptive IP addresses of real hosts and honeypots, as
they appear to the view node

• Virtual path information to real hosts and honeypots

The generation and deployment of a network view has a
delay in the order of seconds and can therefore be performed
on request as an agile defense maneuver.

3.3 Software Defined Networking controller
The main tasks of the SDN controller component is to dy-

namically generate flow rules which are pushed to an SDN
switch to steer and control the network tra�c. An additional
task of the SDN controller is to analyze the flow statistics
of the switch rules and identify malicious behavior of the
network endpoints. To steer and control the network tra�c,
the SDN controller dynamically generates rules upon the ar-
rival of a packet that does not match any current flow rule in
the SDN switch. For reasons of system scalability we chose
a re-active rule generation approach versus a pro-active ap-
proach which we will explain in more detail in Section 3.3.1.
Our SDN controller constructs the following flow rules based
on the provided virtual network view description:

• Forward ARP requests to deception server: Handling
ARP packets is a crucial part in our deception system.
ARP requests are usually flooded into the network to dis-
cover hosts and match IP to MAC addresses. In our sys-

tem the deception server handles all ARP requests and
sends the appropriate response packets. This way we can
ensure that hosts which are not supposed to be discovered
stay hidden. We are also able to introduce honeypots into
the system by sending appropriate ARP responses.

• Send packets with specific TTL to deception server:
Our SDN controller generates rules to match packets with
specific TTL (Time To Live) values. This is an important
part for route mutation and the introduction of virtual
routers. With this function our system is able to deceive
network mapping functions such as traceroute and make
paths appear di↵erent than they actually are.

• On the fly adjustment of TTL fields: An important
part of deceptive route mutation is to adjust the TTL field
of response packets appropriately. This can be done on the
fly with specific SDN rules in the switch when packets are
passing through.

• Forwarding of ICMP error packets to the deception
server: ICMP error packets, such as Destination Un-
reachable contain a nested packet which reflect the origi-
nal packet received by the sender. The information in a
nested packet is not automatically adjusted when it passes
through a SDN switch and would therefore bleed infor-
mation from the real network into the virtual network.
Therefore ICMP error messages are forwarded to the de-
ception server in our system and the information in nested
packets is adjusted appropriately before it is delivered to
its destination host.

• Routing of DHCP packets: As we discuss in Section
3.2, a virtual network view is associated with a DHCP
lease. Therefore our deception server also serves as a
DHCP server and assigns a lease associated with a virtual
network view to a host that tries to connect to the net-
work. Our SDN controller installs rules to match DHCP
discover packets and forward them to the deception server.
Additional rules ensure that response packets are correctly
transmitted to the requesting host.

• Routing of DNS packets: To guarantee reachability of
legitimate services in a network, DNS requests are handled
by our deception server as we explain in Section 3.4. To
route DNS packets, the appropriate flow rules between
nodes and the deception server are established.

• Routing packets to and from honeypots: The use of
honeypots enables our system to make a network appear
significantly larger than it actually is. Honeypots are also
used as decoys for adversaries. With the use of dynamic
header rewriting (explained later), we are able to make
one honeypot appear as many di↵erent network endpoints
to a scanner. The flows from and to honeypots are mon-
itored and flow statistics are analyzed by the SDN con-
troller for the identification of malicious hosts.

• Dynamic address translation: To hide the real ad-
dresses in a virtual network view, our system rewrites
packet headers on-the-fly according to the specification of
a virtual network view. Hereby we di↵erentiate between
the real IP address, which is seen in the real underlying
network and the deception IP address which is only seen
by a host that has a specific virtual network view assigned.
By performing dynamic address translation we ensure a
clear separation of a virtual network, which is only visi-

ble to a specific host, and the remaining underlying real
network.

By using SDN flow rules to steer and control the network
tra�c, RDS also acts as a distributed access control list. If a
view node tries to send packets to a host that is set as being
invisible in the virtual network view, the packet is silently
dropped and not forwarded. Besides constructing SDN flow
rules based on the virtual network view description, our SDN
controller also analyzes flow statistics to detect malicious
activity. Upon the identification of a host with scanning
activity, based on its transmitting tra�c pattern, the SDN
controller notifies an administrator and removes the appro-
priate flow rules from the switch to isolate a malicious host.
We further discuss this in Section 4.4.

3.3.1 SDN rule scalability
Since a core part of our defense approach is a sophisticated

system of flow rules, we analyze the scalability of the num-
ber of required SDN sules. Contrary information is found in
the research community versus industry about the number
of rules modern SDN switches can support. While sources
such as [20, 7] claim that 64k-512k flow rules can be handled
by a modern SDN switch, SDN hardware vendors such as
Brocade state that most of their products only support a
maximum number of 3k flow rules while their heavy duty
products support 12k-65k flow rules [3, 4]. Further, it is
unclear how a growing number of flow rules impacts the
performance of a SDN switch; contradictary information is
provided by di↵erent hardware vendors.

Considering the di↵erences in rule scalability of di↵erent
SDN network elements, we decided to implement the RDS
SDN controller with a re-active approach so that flow rules
are dynamically generated and automatically removed from
the switch after an idle timeout threshold. Upon the arrival
of a packet in a SDN switch, the packet is matched with
the flow rules currently present in the switch memory. If
no appropriate match is found, the packet is forwarded to
the controller by default. If a packet arrives at our SDN
controller, the packet meta-information is compared to the
policy specified in the network view description and a flow
rule is generated, pushed into the switch and the packet is
appropriately forwarded. All following packets belonging to
this flow will match the generated flow rule and can be han-
dled directly on the switch.

Such a re-active approach is currently used by most o↵-
the-shelf SDN controller implementations such as POX, Open-
DayLight or Floodlight. In our implementation we set the
default idle rule timeout to 30 seconds. This threshold can
be adjusted appropriately by a network operator to ensure
that flow rules are removed fast enough to release space in
the switch memory after they are idle for a while. In Sec-
tion 5 we evaluate that only a negligible delay overhead is
introduced by re-active rule generation and show data of
the number of flow rules stored in a SDN switch memory
per unit of time during the operation of our deception sys-
tem.

The benefit of a pro-active approach, where all flow rules
are pre-calculated and directly pushed into a switch, would
be a slightly decreased network latency during operations.
We calculated that simulating a virtual network view with
10 subnets connected in a line with 50 nodes per subnet
for one client-host in the network, would require 3762 flow
rules. This shows that a pro-active approach is not sustain-

able in our system due to the high number of required SDN
flow rules to cover all network functionality. This is the
case for most SDN applications, therefore pro-active SDN
approaches where all rules are pre-calculated and directly
stored in the switch, are rarely seen in real world implemen-
tations.

3.4 Deception server
To process the tra�c forwarded through the flow rules to

our deception server, we implement di↵erent handlers which
receive packets from nodes connected to the network and
craft responses according to the specification of a virtual
network view. The complexity level of the deception server
is kept simple. It has six main components that are essential
for deceiving malicious scanners as introduced as follows:

• DHCP Handler: The DHCP handler component acts
similar to a DHCP server and is responsible for assign-
ing DHCP leases to nodes which want to connect to the
network. Every virtual network view is associated with
a DHCP lease that is assigned for a specific duration to
a node connecting to the network. Our deception system
has a pre-defined list of nodes and their privileges which
are reflected in the description file of a virtual network
view. If a device sends a request for a DHCP lease to our
deception server, the deception server looks up the node
privileges and notifies the view generator which triggers
the creation of a virtual network view and assigns a DHCP
lease.

• ARP Handler: All transmitted ARP requests are for-
warded by appropriate flow rules to our deception server.
Based on the specifications in a virtual network view file,
our deception server crafts an ARP response packet and
sends it to the requesting node. If the requesting node
is not allowed to connect to the address requested in an
ARP packet, the deception server will not send a response.
In case the virtual network view specification places the
requested node outside of the requester’s subnet, an ARP
packet with the address of the according virtual gate-
way/router is sent in response.

• ICMP Handler: ICMP error messages are forwarded
by specific flow rules to our deception server. Packets
such as a Destination Unreachable messages often contain
nested packets with the original information received by
the transmitting host. The information in nested packets
is not automatically updated in SDN switches, therefore
we are forwarding such packets to our deception server
where the information in nested packets is adjusted ac-
cording to the specified virtual network view before the
packet is delivered to its destination.

• DNS Handler: To guarantee the reachability of legiti-
mate services, our deception server also handles DNS re-
quests, and creates appropriate responses. Hereby, the
DNS entries are specific to network views assigned to
nodes and are removed with the expiration of virtual net-
work views. In RDS, the overhead caused by updating
DNS entries is acceptable since it only has to be done with
the assignment of a new network view, which duration is
usually between a few hours to multiple days.

• Gateway Simulator: To appear realistic, some endpoints
are simulated by our deception server which sends appro-
priate response packets if a probing packet is received.
Certain components of a virtual network view do not have

an actual endpoint. Such endpoints are for example vir-
tual routers or gateways that connect virtual subnetworks.

• Route Simulator: The route simulator is responsible
for the deception of network mapping functions such as
traceroute. If a malicious scanner is sending probing pack-
ets to a specific node with TTL values lower than the
number of hops specified in the virtual network view,
our deception server answers on behalf of a virtual gate-
way/router that is on the path between the scanning source
and destination. With this functionality our deception
system has the ability to simulate paths over multiple hops
between two nodes in a virtual network view.

With the introduced functionality of our deception server
in collaboration with the SDN controller, RDS is able to
simulate complete virtual network topologies and deceive
malicious reconnaissance and discovery.

3.5 System prototype
We release a proof of concept prototype implementation of

RDS at [12] as open-source. The protoype can be tested in
standard SDN emulators, such as Mininet, and on hardware
platforms that support the required OpenFlow functions.
We would like to point out that the implementation of our
system we release is a research prototype that gives a proof
of concept of the introduced deception techniques and was
used in the experiments we discuss in the evaluation section.
The released software is not at a status that is ready for the
market or can directly be deployed in a production network.
We are in contact with a company that is interested in the
implementation of such a system as an actual product.

4. EVALUATION
In the following we present our test network where we

evaluate a number of scenarios to show that RDS can be
applied as a defense strategy and show experimental results
about its performance.

4.1 Test environment
To evaluate our system in a real world setting and measure

its performance, we emulate a SDN based enterprise network
as shown in Figure 4. Our test network consists of multiple
connected subnetworks, where the nodes in each subnetwork
are connected with an instance of OpenVSwitch [9] which is
controlled by a SDN controller. To emulate the functional-
ity of our test-network we use Mininet [5]. All hosts in our
test-network are running Ubuntu Linux 14.04. The topol-
ogy of the test-network, we use for our experiments, is a
medium-size enterprise network with four subnetworks that
contain di↵erent servers providing services to the clients on
the network. The servers host services such as web-servers,
printer server, database server and shared network directo-
ries which are constantly used by the clients.

Multiple client endpoints in our test-network have virtual
network views simulated (we visualize two in Figure 4), and
therefore see a di↵erent network than the real underlying
network and have access to a subset of the endpoints and
services provided in the real network. The simulation of vir-
tual network views for hosts does not impact the function-
ality of services provided over the network besides a minor
performance overhead as we further discuss in Section 5.

In Figure 4 we also show how our system can be deployed
in a distributed manner. Deployment of distributed SDN
controllers is an ongoing research topic, for the purpose of

this work to evaluate the introduced defense techniques, we
implemented the required functionalities in our SDN con-
troller to forward network tra�c appropriately between dif-
ferent connected subnetworks. Two of the SDN controllers
that control the subnetworks where nodes have virtual net-
work views simulated, are the RDS controllers. The remain-
ing SDN controllers steer the network tra�c in two subnets
where currently no nodes have virtual network views simu-
lated. These controllers can be o↵-the-shelf such as layer 2
learning switches implemented in platforms like POX, Open-
DayLight or Floodlight. Figure 4 also shows the deployment
of our deception servers; each deception server handles the
simulation of the virtual network views in a subnetwork. We
want to demonstrate with this setup that our system can be
deployed in a distributed manner and is therefore able to
scale to larger networked systems (since our deception sys-
tem has no influence on the underlying core network).

4.2 Invalidation of attacker information
Many targeted cyber attacks, such as Advanced Persistent

Threats (APT) [1, 2, 15, 42], depend on network reconnais-
sance and discovery missions where the internal topology of
a network is mapped. The purpose of an attacker with such
missions is to gather the set of information T (as discussed
in Seciton 2.1) for further attack planning.

As discussed in Section 3, RDS generates a new virtual
network view with every assignment of a DHCP lease to a
host in a network. The duration of a DHCP lease can be
adjusted by network administrators and can be in the order
of a few hours to multiple days. RDS is able to assign a
di↵erent virtual network view to every host in a network.
Using RDS, the features of the real network NF are trans-
formed into the feature set of a virtual network view NF 0;
this will invalidate the information collected by an attacker,
by transforming T into T 0. This is periodically achieved with
every assignment of a new DHCP lease that is correlated to
a di↵erent virtual network view. In a newly assigned virtual
network view the topology, network size and address space,
honeypot and host placement has changed after the assign-
ment of a new DHCP lease and the connecting host sees a
new network topology that is significantly di↵erent than the
previous one. Targeted cyber attacks, such as APT, which
depend on collecting information over long periods of time
about the composition of a network are not able to gather
consistent information about the system infrastructure nec-
essary to plan further attack steps.

To show that our system achieves deception and makes
an attacker believe a virtual network topology is real, we
evaluated our deception system with NMAP [6] and mul-
tiple adversarial scanning strategies we discuss in the next
section. We performed hundreds of NMAP scans in vir-
tual network topologies simulated by our deception system.
All matched the exact specification of the virtual network
view, thus achieving complete deception and minimizing the
amount of useful information an attacker gathers in the set
T 0. We also evaluated virtual network views generated by
our system with the recently proposed open source tool De-
greaser [17]. Degreaser is designed to detect network decep-
tion techniques. We tested multiple virtual network views
with di↵erent strategies and configurations, Degreaser did
not label any hosts or honeypots in these views as being a
decoy. This shows that our system is able to make virtual
network views appear realistic and believable.

Virtual Network
127.168.*.*

RDS SDN Controller Off-the-shelf
SDN Controller

Off-the-shelf
SDN Controller

RDS SDN Controller

Virtual Network
230.77.*.*

Honeypot
Server

Virtual Node

Real Node

Real Network
10.0.*.*

Deception
Server

Deception
Server127.168.12.234

230.77.15.24

Figure 4: Emulated enterprise test network

In addition to invalidating the collected information of
adversaries, we will show in the following that our system
significantly delays the detection rate of vulnerable hosts by
attackers and show how the gained time is used to identify
the source of malicious reconnaissance tra�c.

4.3 Defending malicious network scanning
To evaluate the e↵ectiveness of RDS against network scans

we implemented a number of common network scanning
techniques which are discussed in the literature and are
known to be used in malware as discussed in [39, 37, 16,
23, 22]. To implement these scanning strategies we used
the python library libnmap [11], which provides an API to
NMAP [6], as well as the python framework Scapy [13].

As discussed in [39], an adversarial scanner selects a scan-
ning space (⌦) which denotes the IP address space that is
considered for selecting addresses to probe. In an enterprise
network, the considered scanning space is usually selected
based on the IP address prefix of the network an adversary
aims to probe. Also the address distance (�), which speci-
fies the numerical di↵erence between the IP addresses of a
scanner and its scanned target, has an impact on the per-
formance of a scanning technique. The following introduced
scanning techniques actively probe a network for its features
NF to retrieve an information set T which can be used for
further attack planning.

Uniform scanning probes random hosts within the scan-
ning space ⌦. Each probe transmitted by a scanner, has an
equal probability to detect a potentially vulnerable host in
the network. The detection time of vulnerable hosts in this
scanning strategy depends on the size of the overall scan-
ning space ⌦. IP addresses to probe are chosen randomly,
therefore every probe transmitted by a scanner has an equal

chance of
n

⌦
to hit a vulnerable host h if a network contains

n vulnerable hosts.
Local-preference scanning, as discussed in [22] and

[39], is a biased scanning technique where certain regions
of a network are chosen based on information that can be
retrieved from the local host. In current state-of-the-art
networks, hosts are not uniformly distributed within the ad-
dress space. An adversarial scanner can increase the speed
to detect vulnerable hosts when it scans the IP space where
hosts are more densely distributed as explained in [39]. Lo-
cal preference scanning takes advantage of this and scans
IP addresses that are closer to its own local address and

therefore have a smaller address distance �(h), with higher
probability.

Preference sequential scanning probes the IP address
space sequentially, i.e. in an additive way. In preference se-
quential scanning we assume that a scanner is using local
preference and selects a start IP address with a small ad-
dress distance �(h) to its host IP address.

Non-preference sequential scanning is similar to pref-
erence sequential scanning, but selects its starting IP ad-
dress in a random manner within the scanning space ⌦. Se-
quential scanning without local preference can show a better
performance than preference sequential scanning, since the
selected start IP address can be closer to addresses of vul-
nerable hosts than the local address of the scanning host.

Preference parallel is a technique which is using par-
allelism that can significantly increase the performance of a
scanning method, but has the drawback of causing a large
amount of network tra�c which makes it easy to detect.
This technique can also be seen as a simulation of a type of
cooperative scanning or divide-and-conquer scanning where
multiple hosts cooperate with each other to find vulnerabil-
ities. With this strategy multiple probing messages are sent
out in parallel using local preference. We use 12 parallel
probing messages in our experiments.

4.3.1 Delaying adversarial scanners
To show the e↵ectiveness of our deception system in de-

laying the identification of vulnerable (real) hosts by adver-
saries, we executed the introduced malicious scanning tech-
niques in the real underlying network without our system
in place and compare it to the performance of the scan-
ning techniques when virtual networks are simulated for the
nodes in the underlaying network. In our evaluation we
consider every “real” host that is visible in a virtual network
view as being a potential target that can be corrupted by a
cyber attack and is therefore vulnerable.

A simplified visualization of the test-network for this ex-
periment is shown in Figure 4. We measured the detection
ratio of vulnerable (real) hosts in relation to scanning time
over multiple iterations and show the averaged results. For
each scanning technique, the scanning performance is shown
with (RDS) and without (No RDS) our system deployed.

In Figure 5 and 6 we present experimental results when
the introduced adversarial scanning techniques are applied
in simulated virtual networks. In the shown charts, we

Figure 5: Average vulnerable host infection rate over time for the scanning strategies Preference Parallel,
Local Preference, Preference Sequential, Non-Preference Sequential, Uniform with and without our deception
system. Vulnerable hosts are distributed evenly over the address space in a virtual network view with 12
simulated virtual subnets.

Figure 6: Average vulnerable host infection rate over time for the scanning strategies Preference Parallel,
Local Preference, Preference Sequential, Non-Preference Sequential, Uniform with and without our deception
system. Vulnerable hosts are distributed evenly over the address space in a virtual network view with 25
simulated virtual subnets.

present the detection ratio of vulnerable (real) hosts which
are placed in a virtual network on the Y axis in relation to
the scanning time shown on the X axis.

The results presented in Figure 5 are measured when vir-
tual networks with 12 subnets and up to 25 hosts per sub-
network are simulated and vulnerable (real) hosts are dis-
tributed evenly over the virtual network. RDS delays a ma-
licious scanner in our experimental scenario by ⇠40 minutes
on average. This delays attackers scanning for the network
for vulnerable hosts by a factor of 10 on average, which is
su�cient to identify a malicious scanner and isolate it from
the network as shown later in Section 4.4.

In Figure 6 we present the performance of the introduced
adversarial network scanning techniques when virtual net-
works with 25 subnets and up to 45 hosts per subnetwork are
simulated and vulnerable (real) hosts are distributed evenly
over the virtual network. Due to the simulation of virtual
networks that are significantly larger, our system is able to
delay an adversarial scanner by a factor of 22 on average
resulting in an additional ⇠100 minutes on average until an
attacker is able to identify a vulnerable host.

Delaying reconnaissance missions with our deception sys-
tem depends on the size of the simulated virtual network
and the placement of vulnerable hosts which is achieved by
transforming the feature set NF of the real network into the
feature set NF 0 of a virtual network as discussed in Section
2.3. In further experiments we were able to delay adversaries
seeking to identify vulnerable hosts of up to a factor of 115.
This can be achieved by simulating large enough virtual net-
works and using a strategy where vulnerable hosts are placed
with high address distance from the scanning source. This
shows that for the defense against adversarial network re-
connaissance and discovery, the principle: The bigger the
haystack, the longer the search is simple but very e↵ective.

4.4 Identification of malicious nodes
In a software defined network, the controller is able to re-

quest flow rule tra�c statistics from a switch. In our RDS,
the SDN controller monitors the flow rules between hon-
eypots and real hosts. We assume that in general benign
network nodes are not sending probing messages to random
addresses or establish connections to honeypots. In case a

node starts to send packets to honeypots a malicious activity
can be assumed and the transmitting node can be observed
more closely. In our RDS, the SDN controller periodically
requests flow statistics from the SDN switches to check how
many packets where transmitted to honeypots. If our con-
troller notices tra�c from a node to honeypots, we flag the
transmitting node as a potential scanner and isolate it from
the network. Using SDN flow statistics have already been
proven as being an e�cient technique for real time detection
of anomalies as discussed in [21].

Figure 7: Average time to detect a malicious scan-
ning source and remaining time until the first vul-
nerable host is identified by a scanner in a virtual
network with 12 subnets and 25 hosts per subnet

In Figure 7 we show the average identification times of a
malicious scanning host in a our test environment by our
SDN controller, and the remaining time until a scanning
node will detect the first vulnerable (real) host in a virtual
network. The virtual topologies used to evaluate these re-
sults have similar characteristics as used for the results pre-
sented in Figure 5.

As shown, by analyzing the SDN flow rule statistics our
system is able to identify a malicious scanning source be-
fore it detects any vulnerable hosts. Upon the detection of
a scanning node, our system is able to isolate a potentially
malicious host by updating the appropriate flow rules from
the SDN switch and notify an administrator. Updating flow
rules in SDN switches can be done in a fraction of a second
as discussed in [25]. As we present in Figure 7, in the test
environment RDS identifies scanning activity at least 30 sec-
onds before any vulnerable hosts will be detected, this gives
our system enough time to isolate a potentially malicious
host from the rest of the network.

5. EVALUATION OF RDS OVERHEAD
The increased security we seek to achieve with the simula-

tion of virtual networks, has associated costs. In the case of
RDS, the cost to defend malicious reconnaissance missions
can be quantified in terms of the latency overhead added to
legitimate tra�c and the number of required SDN flow rules
for the simulation of virtual networks.

To analyze the latency overhead reconnaissance deception
introduces into a network, we measure the response times of
hosts connected with a virtual network topology and com-
pare it to response times of the same hosts, without the
usage of RDS. We also measure the number of OpenFlow
rules in the switch memory per unit of time when RDS is
deployed.

In a SDN network that follows a re-active approach, the
biggest cause of delay compared to legacy networks, is the
dynamic construction of flow rules upon the arrival of a
packet that has no rule match in the current switch mem-
ory. This delay is usually of the order of milliseconds and is
experienced by the first few packets of a flow. To evaluate
the overhead in terms of the delay of our system we record
the response times of the first 100 packets of flows when our
system is deployed and simulates di↵erent sizes of virtual
networks, and compare it to the delay of the first 100 pack-
ets when an o↵-the-shelf SDN learning switch (we used the
layer 2 learning switch of the POX framework) is used in
the same networks. On average, we measured an increased
response time of 0.2 milliseconds per packet flow when our
deception system simulates a virtual network topology. This
slightly increased initial delay of a flow can be explained by
the lookup operation that has to be performed on the vir-
tual network view description by our SDN controller for the
construction of a new flow rule, rather than constructing
flow rules only based on packet header information. We also
measured the additional time overhead that is caused by the
dynamic rewriting of packet headers with SDN flow rules.
This delay overhead is only of the order of microseconds and
is therefore negligible.

To evaluate the overhead in terms of the number of SDN
rules generated by our system, we measured the current
number of rules in a switch’s memory per minute while our
system was deployed in a network. In Figure 8 we show
data collected over more than 100 hours of operation of our
system, while various scanning activity was performed by
multiple hosts that had virtual network views with 12 sub-
nets and 25 honeypots per subnet simulated. As shown,
the vast majority of the time, less than ten OpenFlow rules
where installed on the switch and overall more than 500 rules
where installed for less than 15 minutes during an operation
time of more than 100 hours. On average we measured 5.4
rules in a switch’s memory during more than 100 hours of
operation time of our system. As we discuss in Section 3.3.1,
a number of SDN rules of this magnitude can be handled by
modern SDN switches and should not cause any noticeable
performance impact.

Besides that, we are not expecting to see a significant
performance overhead since our deception system only ma-
nipulates the network tra�c in order to deceive malicious
scanners, but does not emulate the physical characteristics
of a virtual network topology. This means that the paths
to hosts which appear to be separated by multiple hops in
the virtual topology, actually show the same network per-
formance as in the real underlying topology. In our solution

we do not introduce artificial delay on virtual paths, which
would penalize legitimate tra�c on the network. We discuss
the pros and cons of this design decision in Section 6.1.

The overhead for assigning a new DHCP lease to a con-
nected host, which involves the generation and deployment
of a new virtual network view, can be done in the order of
seconds.

Figure 8: Average number of OpenFlow rules in a
SDN switch per minutes of system operation time
over 100 hours

5.1 Comparison to current defense approaches
Current approaches to defend against adversarial scanning

su↵er from high overheads which we avoid in our solution
and are not able to dynamically detect the source of scan-
ning tra�c that our solution achieves by simulating entire
virtual topologies. One of the most recent defense systems
is discussed in [23] and its successor publication [22]. Here
the authors follow a moving target defense approach and
perform very fast randomization of the address space (every
1-5 seconds) to match the scanning rate of adversaries like
computer worms. This approach is e↵ective against known
scanning strategies (besides uniform scanning approaches),
but introduces significant performance overhead. In partic-
ular, the introduced system in [22] relies on DNS queries
which have to be performed for every new connection to a
legitimate host that is established within a new randomiza-
tion interval (usually 1-5 seconds). In addition to sending a
DNS request in the proposed system, the DNS reply message
is intercepted by the SDN controller and rewritten to match
the address randomization strategy. The authors of [22] omit
detailed results for brevity about the performance of their
system. To evaluate their system performance, we imple-
mented the proposed DNS protocol which requires 51.6ms
on average to resolve a name which has to be done every 1-5
seconds if a new connection to a host is established. Our sys-
tem in comparison only takes 16.7ms on average to resolve
a name. In addition, our RDS has to perform name resolu-
tion only with the deployment of a new virtual network view
which is typically done every few hours with the assignment
of a new DHCP lease. Considering this, the proposed sys-
tem in [22] will have a significant performance impact, that
we are able to avoid in our solution.

In [22] Jafarian et al. show the e↵ectiveness of their de-
fense system in the first 1000 seconds after an adversary
starts the scanning process. Within this time frame our
system shows equal or better performance, depending on
the defense strategy used in virtual network views. In Sec-
tion 4.4 we also demonstrate that RDS is able to identify
the source of malicious scanning tra�c by analyzing the
flow statistics of SDN flow rules used to simulate virtual
topologies. Current defense approaches do not consider such
techniques to identify and isolate the source of adversarial
scanning tra�c. This gives our proposed system an advan-

tage over current approaches by minimizing the performance
overhead while e↵ectively defending and identifying an ad-
versary performing reconnaissance.

6. DISCUSSION

6.1 Design decisions
In this section we discuss the design decisions we made for

the defense of malicious scans with virtual network views.
One can argue that an adversary with insider information
can adjust a scanning strategy with counter active measures
against our defense approach. This may involve scanning
the network with a start address that has a high address
distance � and probe the address space in reverse. If we
place all vulnerable hosts with a high address distance from
the view node, this would be e↵ective for an attacker. In
such a case, we are still able to use a defense strategy where
vulnerable hosts are distributed evenly over multiple sub-
nets. With this approach, scanning the address space in
reverse would not help an attacker, and we would still be
able to delay the detection time of vulnerable hosts as we
show in the results in Figure 5 and 6.

There are certain legitimate tasks which rely on the knowl-
edge of the real network topology for administrative pur-
poses. For example certain schedulers select nodes with close
proximity for load distribution. For hosts performing tasks
that rely on the true view of a network, no virtual network
view should be assigned to such a node as we discuss in
Section 2.3. Network administrators, have to identify such
hosts prior to deploying our system, since the assignment of
a virtual network view would interfere with tasks relying on
the knowledge of the true underlying network.

Another important design decision we made is not to sim-
ulate the physical characteristics of virtual network paths by
introducing artificial delay. As we explain in Section 3.2, our
system is capable of simulating delay on links but we choose
not to, since it would penalize legitimate tra�c. One can
think of an advanced adversary who determines that decep-
tion is used in a network by comparing the observed topology
to its physical characteristics. In such a case an adversary
still has to scan the whole virtual network since the locations
of vulnerable hosts are unknown, and experience the same
host detection delays as an attacker who is not aware of the
deception system. Security measures always come with some
cost; the simulation of physical characteristics in virtual net-
work views would result in an almost perfect deception of a
network topology, but would also come with a higher price
regarding to performance. In the design decisions we made
in our system we try to find a good balance for the trade-o↵
between security and performance.

6.2 Adaptive adversaries
Considering an advanced adaptive attacker who stays on a

host and records a number of virtual network views, we ask
the question if it would be possible to compare these views,
estimate the used defense strategy and determine real and
virtual components. In case of a coordinated adversary, who
compromises multiple hosts, collects their views and com-
pares them it is theoretically possible that such a colluding
attacker can conclude that it has been deceived. In such a
case, an attacker would still not be able to make conclusions
about the underlying system, since it cannot be determined
what information in the provided set T 0 is fake and what is

real. Assuming such an attacker, the generation of virtual
network views has to be done with caution, such as alternat-
ing di↵erent host placement strategies. We leave a detailed
analysis of adaptive coordinated adversaries for future work,
but argue that our system is able to defend against such an
attacker, since we show that malicious scanning hosts can
be detected and isolated before they find vulnerable hosts.

7. RELATED WORK
In recent publications [22, 23, 16], the authors introduce a

system that performs dynamic address space randomization
based on Software Defined Networking (SDN) technologies
to defend against adversarial scanners, such as worms. The
evaluations in these papers show that dynamic address space
randomization is an e↵ective defense technique against re-
connaissance strategies such as local-preference or sequen-
tial scanning. The authors of [22, 23, 16] observe that their
technique is ine↵ective against a uniform scanning strategy.
Although they do not give details about their system over-
head, we show in Section 5.1 that the performance overhead
of their system is significant. Our RDS minimizes the over-
head by using complete virtual network topologies as a de-
fense strategy. We also show that our system is e↵ective
against all scanning techniques including uniform scanning.

In [36] the authors propose techniques to deceive network
reconnaissance focused on mapping a network topology by
using the standard traceroute function. The authors espe-
cially focus on the defense of critical routers and links in a
network topology. They propose defense techniques follow-
ing a random and an intelligent approach to deceive network
scans. The authors give little details about the evaluated re-
sults of their system and do not show how this technique can
be used to defend against an actual cyber attack depending
on topology mapping.

The authors of [31] discuss a SDN based approach for cy-
ber deception. In the paper, an overview of the design of a
cyber deception system is presented, but no specific defense
strategies on attacks depending on reconnaissance missions
are evaluated.

Honeypots are an essential component in our RDS for
the simulation of virtual network views. We use honeypots
as traps and decoys in virtual networks to detect malicious
scanning tra�c and identify adversarial hosts. For the usage
and configuration of honeypots we follow best practices as
defined in well cited publications such as [41] and [30].

We consider a number of well cited publications [37, 39,
26] for the analysis and implementation of malicious net-
work scanning strategies which have been initially observed
in computer worms. To evaluate our RDS we implemented
adversarial scanning strategies for network reconnaissance
as discussed in these papers.

8. CONCLUSION
In this paper we define a deception approach as a de-

fense strategy against network reconnaissance and introduce
the design and implementation of a Reconnaissance Decep-
tion System (RDS). Our solution is able to manipulate net-
work tra�c to show a virtual topology to an internal adver-
sary gathering information inside organizational networks,
required for planning and executing of targeted cyber at-
tacks such as Advanced Persistent Threats (APT). We in-
troduce a generator to create virtual network views, based
on our defined deception approach, to camouflage critical

resources and place vulnerable endpoints at locations in a
virtual network topology to significantly increase their de-
tection time by an adversary. By analyzing the tra�c flows,
our system is able to identify the source of adversarial re-
connaissance tra�c and isolate a malicious host from the
network. The experimental evaluation we present in this
work shows that our system is able to delay malicious net-
work scans up to a factor of 115, while minimizing the per-
formance impact on legitimate tra�c on the network to 0.2
milliseconds per packet flow.

Acknowledgment
The e↵ort described in this article was sponsored by the U.S.
Army Research Laboratory Cyber Security Collaborative
Research Alliance under Cooperative Agreement W911NF-
13-2-0045. The views and conclusions contained in this doc-
ument are those of the authors, and should not be inter-
preted as representing the o�cial policies, either expressed
or implied, of the Army Research Laboratory or the U.S.
Government. The U.S. Government is authorized to re-
produce and distribute reprints for Government purposes,
notwithstanding any copyright notation hereon.

9. REFERENCES
[1] Advanced persistent threats - attack and defense (infosec

institute. http://resources.infosecinstitute.com/
advanced-persistent-threats-attack-and-defense/. Accessed:
2016-04-01.

[2] Advanced persistent threats (2011). http://www.symantec.
com/content/en/us/enterprise/white papers/b-advanced
persistent threats WP 21215957.en-us.pdf. Accessed:
2016-03-30.

[3] Brocade flow optimizer. http://www.brocade.com/content/
brocade/en/backend-content/pdf-page.html?/content/
dam/common/documents/content-types/user-guide/
flowoptimizer-1.1.0-userguide.pdf. Accessed: 2016-03-27.

[4] Fastiron ethernet switch software defined networking (sdn).
http://www.brocade.com/content/dam/common/
documents/content-types/configuration-guide/
fastiron-08030-sdnguide.pdf. Accessed: 2016-03-27.

[5] Mininet - realistic virtual sdn network emulator.
http://mininet.org/.

[6] Nmap network scanner. https://nmap.org/.
[7] Openflow - can it scale?

www.sdxcentral.com/articles/contributed/openflow-
sdn/2013/06/.

[8] Openflow protocol.
https://www.opennetworking.org/sdn-resources/openflow.

[9] Openvswitch. http://openvswitch.org/.
[10] Pox - python based sdn controller framework.

http://www.noxrepo.org/pox/about-pox/.
[11] Python library for the nmap network scanner.

https://libnmap.readthedocs.org/.
[12] Reconnaissance deception system prototype

implementation.
https://github.com/deceptionsystem/master.

[13] Scapy - python framework for packet crafting and
manipulation. http://www.secdev.org/projects/scapy/.

[14] Stages of a cyber attack. http://www.symantec.com/
content/en/us/enterprise/other resources/
b-preparing-for-a-cyber-attack-interactive-SYM285k
050913.pdf. Accessed: 2016-03-30.

[15] Eric Baize. Developing secure products in the age of
advanced persistent threats. IEEE S&P 2012.

[16] Al-Shaer et al. Random host mutation for moving target
defense. In Security and Privacy in Communication
Networks. 2013.

[17] Alt et al. Uncovering network tarpits with degreaser. In
Proceedings of the 30th Annual Computer Security
Applications Conference, 2014.

[18] Antonatos et al. Defending against hitlist worms using
network address space randomization. Computer Networks,
2007.

[19] Arulselvan et al. Detecting critical nodes in sparse graphs.
Computers & Operations Research.

[20] Chiba et al. Source flow: handling millions of flows on
flow-based nodes. ACM SIGCOMM 2011.

[21] Giotis et al. Combining openflow and sflow for an e↵ective
and scalable anomaly detection and mitigation mechanism
on sdn environments. Computer Networks, 2014.

[22] Jafarian et al. Adversary-aware ip address randomization
for proactive agility against sophisticated attackers. In
INFOCOM 2015.

[23] Jafarian et al. Openflow random host mutation:
transparent moving target defense using software defined
networking. In HotSDN 2012.

[24] Kreutz et al. Towards secure and dependable
software-defined networks. In Proceedings of the second
ACM SIGCOMM workshop on Hot topics in software
defined networking, 2013.

[25] Kuzniar et al. What you need to know about sdn flow
tables. In Passive and Active Measurement, 2015.

[26] Li et al. Understanding divide-conquer-scanning worms. In
Performance, IPCCC 2008.

[27] McClure et al. Hacking exposed: network security secrets
and solutions. 2009.

[28] Panjwani et al. An experimental evaluation to determine if
port scans are precursors to an attack. In Dependable
Systems and Networks, DSN 2005.

[29] Porras et al. A security enforcement kernel for openflow
networks. In Proceedings of the first workshop on Hot
topics in software defined networks. ACM, 2012.

[30] Provos et al. A virtual honeypot framework. In USENIX
Security Symposium 2004.

[31] Robertson et al. Cindam: Customized information
networks for deception and attack mitigation. In SASO
Workshop, 2015.

[32] Shaikh et al. Network reconnaissance. Network Security,
2008.

[33] Shen et al. On the discovery of critical links and nodes for
assessing network vulnerability. IEEE/ACM Transactions
on Networking (TON), 2013.

[34] Shin et al. Avant-guard: Scalable and vigilant switch flow
management in software-defined networks. In Proceedings
of the 2013 ACM SIGSAC conference on Computer &
communications security.

[35] Sood et al. Targeted cyberattacks: a superset of advanced
persistent threats. IEEE security & privacy, 2013.

[36] Trassare et al. A technique for network topology deception.
In MILCOM 2013.

[37] Weaver et al. A taxonomy of computer worms. In
Proceedings of the 2003 ACM workshop on Rapid malcode.

[38] Zaalouk et al. Orchsec: An orchestrator-based architecture
for enhancing network-security using network monitoring
and sdn control functions. In Network Operations and
Management Symposium (NOMS), 2014 IEEE.

[39] Zou et al. On the performance of internet worm scanning
strategies. Performance Evaluation, 2006.

[40] Erwan Le Malcot. Mitibox: camouflage and deception for
network scan mitigation. In HotSec 2009.

[41] Niels Provos. Honeyd-a virtual honeypot daemon. In 10th
DFN-CERT Workshop, Hamburg, Germany, 2003.

[42] Andrew Vance. Flow based analysis of advanced persistent
threats detecting targeted attacks in cloud computing. In
Problems of Infocommunications Science and Technology,
2014 First International Scientific-Practical Conference.

