
Mapping Sample Scenarios to Operational Models

Z. Berkay Celik∗, Nan Hu∗, Yun Li†, Nicolas Papernot∗, Patrick McDaniel∗, Robert Walls∗, Jeff Rowe†, Karl Levitt†,
Novella Bartolini∗, Thomas F. La Porta∗, and Ritu Chadha‡

∗Department of Computer Science and Engineering, The Pennsylvania State University
Email: {zbc102, nqh5045, ngp5056, mcdaniel, rjwalls, nub15, tlp}@cse.psu.edu

†Department of Computer Science, University of California, Davis
Email: {yunli, rowe, levitt}@cs.ucdavis.edu

‡Applied Communication Sciences, Basking Ridge, NJ, USA
Email: rchadha@appcomsci.com

Abstract—Achieving mission objectives in complex and increas-
ingly adversarial networks is difficult even under the best of
circumstances. Currently, there are few tools for reasoning about
how to react to rapid changes in a given network’s environmental
state; that is, we do not know how to cope with adversarial actions
in hostile environments. In this paper, we consider a preliminary
operational model that combines the states, detection outputs,
and agility maneuvers associated with a cyber-operation in hostile
networks. The goal is positing the development of an operational
model to aid in the successful completion of mission objectives
with a minimal maneuver cost. We present a host remediation
case study that explores the efficacy of the proposed model in
aiding operation completion.

I. INTRODUCTION

The growth and complexity of information systems come
with increased necessity for network supervision and admin-
istration, so as to prevent the attacks and malicious use of
the security and network infrastructure. However, networks or
systems constructed in these systems are neither guaranteed to
be in a consistent state or to have a uncompromised capability.
A lack of knowledge of the states of the infrastructure, users,
and adversary creates many challenges.

Many challenges arise in cyber-decision making—what is the
best action (maneuver) to take in a given environment based on
understanding of the current state (situational awareness) and
mission needs? Proper responses to changes in system states,
detection outputs, and agility maneuvers are necessary in order
to achieve mission objectives. However, today’s conventional
cyber-defense mostly considers static attack responses in each
interval of a finite horizon. In this paper, we ask the essential
question how do defenders select maneuvers to optimize the
security outcomes in uncertain environments? To address
this question, we present a graphical representation of an
operational model. This representation incorporates nodes
(states), transitions, and control variables. We define detection
and agility as they pertain to the proposed model. These
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areas, in concert with the model we have described, form
the grounding necessary to reason through a policy that must
be created to guide the best action to take for minimizing the
overall attack response costs.

The operational model includes the notion of partial neu-
tralization of attacks and estimation of total costs for future
decisions from successful, partially successful, and unsuccessful
actions of attackers at various attack stages. The goal of the
operational model is to take formally into account detection
outputs and maneuver capability to enable cost-effective cyber
decision-making. The uncertainty of detection systems can
trigger unnecessary and costly maneuvers. Thus, a key problem
is taking the cost sensitive actions that enhance system security
at a minimal cost. This helps us to make real-time decisions
that require a keen understanding of the resources required
for different maneuvers as well as the relationships and
dependencies between the mission controls and cyber assets.

The application of the proposed model is demonstrated in
an example of host remediation scenario. We consider a set of
plausible threat scenarios and maneuver options. The results
help us illustrate the attack stages in more meaningful ways and
also provide more insight into the maneuvers. We demonstrate
that agility maneuvers are not always the best way of providing
strict security, but actions with seemingly poor immediate
effects can have better long term ramifications.

II. OPERATIONAL MODEL

Our initial model integrates detection output and maneuver
costs into a framework for optimal cyber decision-making. A
cyber operation is an operation performed in the cyberspace
domain. Cyber operations include a wide variety of tasks
and include both defensive and offensive maneuvers. Cyber
operations are defined for a particular scenario. A scenario is
a high-level description of a mission including a set of actors
and goals. The operational model of a scenario provides a
formal structure for reasoning about detection outputs, agility
maneuvers, and security goals.

For illustrative purposes, consider a scenario in which
command loses contact with warfighters carrying sensitive
devices. Detection mechanisms trigger a cyber operation to
secure the devices under potential threat. The goal of the
defender is to secure the devices and any impacted cyber
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assets such as internal networks or servers. The state of the
environment plays an important role in selecting the appropriate
maneuvers. For instance, there are many possible reasons for
the loss of communication—such as enemy capture or loss of
signal—and each has different risks and responses. Remotely
disabling the device reduces the risk of data exfiltration, but it
denies the warfighter an important asset; the device may be just
out of communication range. Here, the defender must decide
the best course of action based on the risks, payouts, and costs.
The operational model formalizes this decision process using
detection state (situational awareness) and measurements of
risk and payout (value to user or network).

The operation model represents a formal specification of
a cyber-scenario, e.g., the actions needed to complete an
online task as described in the preceding section. We model
an operation as a directed graph where the nodes are the
states of the operation, and the edges are the state transitions
needed to complete the mission. Each transition can represent
atomic actions, abstractions for sub-operations or discrete time
intervals. However, based on the scenario, a choice of several
maneuvers is possible. One cannot predict with certainty the
consequence of these maneuvers given the current system state,
but may model it as a stochastic event with many possible
outcomes. For that reason, we formalize the operational model
as discrete-time, finite-horizon Markov Decision Processes
(MDP) [1], [2]. This model enables to obtain maneuver
sequences to make an optimal decision of maneuver costs
that terminates operation under various attacks.

Several have modeled operations using business process lan-
guages such as business process modeling notation (BPMN) [3],
[4]. However, such models are not sufficiently expressive for
our analytical needs. Attack models [5] are similar to operation
models. While cyber attacks are a necessary component,
modeling every possible attack vector is both intractable and
unnecessary [3].

Instead, our model considers the effect, timing, and duration
of attacks. This formulation enables reasoning about the
situation and minimizing the expected maneuver costs to
accomplish the scenario. It is not practical to consider only a
stable system state by taking the most strict maneuver. While
this may put the operation in a secure state, the maneuver
costs can be expensive. More specifically, with the recent
complex environments and costly maneuvers, a defender needs
to analyze the operational behavior for various cases to make
optimal future decisions by considering the current view of
the scenario. To accomplish this task, it turns out that we need
to characterize system states completely, define the maneuver
costs and its transitions which we detail next.

III. FORMULATION

In this section, we deal with the problem of enforcing a
scenario to behave in the best possible way with a given
detection outputs and maneuvers. We discuss some choices
for measures of system performance. This is supported by a
proof of optimal decision process when a complete analytic
solution is possible.

Model Requirements: We consider a model of a system that
consists of two main features: (1) a discrete-time dynamic
system and (2) a cost function that is additive over time [1],
[2]. We define the operational model by the following variables,
relations, and probabilities:

xk+1 = fk(xk, uk, wk), k = 0, 1, . . . , N − 1 (1)

where
k indexes the discrete time,
xk is the state of the system that summarizes past information

that is relevant for future optimization,
uk is the control or decision variable to be selected at time

k,
wk is a random process, also called disturbance or noise

depending on the context,
N is the horizon length or the number of times control is

applied (which is greater than the attack horizon).
and fk is the function that describes the system and, in
particular, the mechanism by which the state is updated.

We define an additive cost function, so that the cost incurred
at time k, denoted by gk(xk, uk, wk), accumulates over time.
Thus, the total cost is defined as:

gN (xN ) +
N−1∑
k=0

gk(xk, uk, wk)

where gN (xN ) is a terminal cost incurred at the end of
the process. However, because of the presence of a random
parameter, wk, the cost is a random variable and cannot be
meaningfully optimized. We, therefore, formulate the problem
as an optimization of the expected cost

E(gN (xN ) +
N−1∑
k=0

gk(xk, uk, wk)),

where the expectation is with respect to the joint distribution
of the random variables involved. The optimization is over
the controls u0, u1, . . . , uN−1, and each control, uk, is chosen
based on the current state of the system, xk. This is called
closed loop optimization as opposed to open loop optimization
when all controls have to be decided at once at time 0 without
any knowledge of the state of the system at any time later [1].

Mathematically, in closed-loop optimization, we want to find
a sequence of functions, µk, k = 0, . . . , N − 1, mapping the
system state xk into a control uk which when applied to the
system minimizes the total expected cost. Thus uk ← µk(xk).
The sequence π = {µ0, . . . , µN−1} is referred to as a policy
or control law.

For each policy, π, the corresponding cost of a fixed initial
x0 is denoted by Jπ(x0). We want to minimize this for a given
x0 over all policies that satisfy the constraints of the problem.
The policy that does this is denoted by π∗ and minimizes the
corresponding cost, Jπ∗(x0). However, it is also possible to
find the policy that minimizes the cost of any state.

An introduction to a few notations are in order now. We
denote by Jk(xk) the cost-to-go from state xk at time k to
the final state at time N . Thus, JN (xN ) is the terminal cost
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and J0(x0) = Jπ(x0) is the total cost.

Optimal Policy Algorithm: An optimal total cost is given
by the last step of the following algorithm, which proceeds
backwards in time from period N − 1 to period 0:

JN (xN ) = gN (xN )

Jk(xk) = min
uk

E
wk

{
gk(xk, uk, wk) + Jk+1(xk+1)

}
where k = 0, 1, . . . , N − 1, and the expectation is taken with
respect to the probability distribution of wk, which depends
on xk and uk. Furthermore, if u∗k minimizes the right side of
Equation 2 for each xk and k, the corresponding policy π∗ is
optimal.

Example: We apply optimal control formulation to devise
a minimum cost agility strategy based upon our operational
model of a simplified scenario as depicted in Figure 1. For
illustration purposes, consider a machine or a network that
provides some service. This machine operates by executing a
sequence of tasks described as a linear sequence of states with
tasks as transitions. Also, this machine is vulnerable to attack,
so we also incorporate unknown insecure states; successful
attacks cause the system to transition to these unknown insecure
states. States corresponding to normal operation of the system
are Good states, each with corresponding insecure states are
Bad which we denote as Gk and Bk.

Furthermore, agility maneuvers are transitions that take the
machine to some safe state. We use a linear sequence of states,
where for each state we have two possible control decisions:
Continue or Abort. For state xk, we denote these as Ck and Ak
respectively. The uncertainty may be incorporated in two ways.
For instance, a priori likelihood of being attacked in a given
state, which can be derived from the system vulnerabilities.
We denote this as λk, which is simply the probability of being
attacked in state k which results in a transition from Gk to
Bk+1 if the control decision at time k is Ck. If the control
decision at time k is Ak, then the task will abort and return to
the state G0 regardless of whether there was an attack or not.

For this example, we assume the system never transitions
from a Bad to a Good state on its own. Only an Abort
control can recover the system from any Bad state back to the
Good starting point. We then have the following probabilities
conditioned on the control decision taken at that discrete time
interval, P (xk+1|uk).

P (Gk+1|Ck) = (1− λk) P (Bk+1|Ck) = λk

P (G0|Ak) = 1 P (Bk+1|Bk) = 1

If the information about states were perfect, then the control
decision would be trivial. Always Abort whenever a Bad state
is encountered. However, we only have estimates of which
state the system is in using an external attack detector which
is imperfect. This makes our formulation an optimal control
problem with uncertain information. This can be modeled with
random variables of detection systems. For instance, the false

G1

B1

G2

B2

G3

B3

. . . Terminal

I1 I2 I3

1-λ

λ λ

1-λ
continue

abort

Fig. 1: The states, control variables and transition probabil-
ities of an operational model: The model can be extended for
various states and control variables considering more complex
scenario requirements. This model is evaluated with the host
remediation study in Section IV.

positive and false negative rates as a vector of attack outputs
of the detector. We denote the contents of this vector with
detector information at time k as Ik. Note that Information I
can be defined at different levels of abstraction as we detail in
Section IV.

The optimal control problem now becomes, given imperfect
information (i.e., a vector of attack detection outputs), what
control decision will give the lowest expected cost. To do so,
the final component of the model is the configuration of cost.
We use a simple model with a single cost for the Abort control
decision, DA. The cost for Continuing and transitioning to
one of the Bad states is Dk, and the cost for Continuing and
transitioning to a Good state is DG. In practice, DG = 0 can be
chosen since it serves as an overall baseline normalization factor
in our simple case. This example model can be generalized
to a large number of states, transitions and cost assignments
based on the scenario.

Now, to solve the optimal control problem with imperfect
information, we need an expression for the recursive cost.
By setting the final cost to be arbitrary for an abstract, final
state, the recursive formula can be used to work backward
in time to generate the optimal control strategy for a given
attack detection vector at any point in the system process.
This minimal expected cost function, Jk(Ik) depends upon
the conditional probabilities described above and takes the
following form:

Jk(Ik) = min{
(P (Gk|Ik, Ck)DG + P (Bk|Ik, Ck)Dk + E{Jk+1(Ik+1)},
(P (Gk|Ik, Ak)DA + P (Bk|Ik, Ak)Ak + E{Jk+1(Ik+1)}}

This provides an expected cost for a given observed attack
detection vector. The probabilities in this expression are
computed using the detection outputs for each entry in the
vector. Selection of the minimum expectation costs provides
the optimal control policy for either Continuing or Aborting
back to a stable system state.
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IV. APPLICATION OF OPERATIONAL MODEL

To evaluate the operational model, we consider a host
remediation scenario in which a set of hosts is infected with
malware. An infected host attempts to contact a malicious
server for filtering data. The operation uses increasing evidence
to determine when to intercede and to perform mitigation on
internal networks, servers, and sensitive information.

In this particular scenario, there are many possible explana-
tions for the alarms generated for a host—such as host attempts
malicious behavior or false negatives—and each poses different
risks and may require a different response. A compromised host
may also provide an avenue of cyber-attack for the adversary.
Remotely disconnecting the host from network reduces the
risk of infection, but it denies the host as an important asset;
the host may not be infected, and the alarm may be a false
alarm. Other anomalies besides malicious activity may trigger
the detection system. For instance, the host may visit some
websites that were never visited previously, causing an outlier
in the history of the white domain list. Ultimately, when making
maneuver decisions, the mission objectives must be balanced
against the uncertainty.

Figure 1 presents the transition diagram outlining the
scenario. The number of states and control variables are selected
to illustrate the process of converting the host remediation
into an operational model. The state represents the current
environment state and is labeled with the properties that hold
in that state with the information provided. In this scenario,
we only consider three transitions that trigger the next state
operations: whether or not the compromised hosts are (i)
operating normally, (ii) quarantined from the rest of the network,
or (iii) permanently disabled. Each state represents the states in
a discrete time interval, and each transition is associated with a
maneuver cost. As mentioned previously, a state transition can
only be changed based on the attack probability (λ) obtained
from information vector (I). As such, a transition t from state
i to state j implies that the state of i meets the requirements
of the task and state j is the resulting outcome.

Note that we may be uncertain as to the outcome of a
particular attack vector. For example, we have two possible
states at the initial state. The a priori likelihood of being
attacked in a given state and the decisions that are represented as
out-going edges from each state except for final state. Intuitively,
this reflects whether or not the control process will proceed
with transitions till the termination of the scenario. We next
present an implementation of the proposed operational model
in a simulated network.

A. Simulation

We first characterize system states, define the maneuver costs
and its transitions in a host remediation scenario. Then, we
use the operational model to find an optimal attack response
for each state of the operation. We have implemented the
proposed operational model and a malware scenario in the
CyberVAN testbed [6]. CyberVAN is a platform for conducting
cyber security experiments. It supports a NS-3 based emulation
environment for running real applications on virtual machines.
The scenario includes public internet and private enterprise

Approach	
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Inter	Flow	Sta6s6cs	

Time	Interval,	t	

Flow	Features	

Applica6on	
Predic6on	

…	

1	

DNS	features	

Tim
e	Interval,	t	

…	
…	
… 2	

3	 Detec6on	

NXDOMAIN	
Response	
Predic6on	

Flow	2	Flow	1	 Flow	3	 Flow	n	

Fig. 2: An overview of proposed malware detection system for
host remediation.

computers. There are also enterprise and public name servers
to resolve and register the domain names.

The experimental network design includes enterprise hosts
that simultaneously generate various types of Markovian traffic
such as HTTP, SMTP, and FTP [7]. Each host is infected by
the assumption of a host tricked into downloading malware
over public internet and executing it. Then, malware generates
a domain name generation algorithm (DGA) to communicate
with the rendezvous point. Infected hosts are able to generate
a range of strings based on the current time and query the
public name server for each domain name. If the public name
server resolves any of the strings, the hosts use the resolved
address as a rendezvous point. The attacker periodically drops
rendezvous point and picks a new rendezvous point with the
following parameters to increase the granularity of the infected
host behavior:

• Minimum and Maximum Status: An infected host attempts
to send a status message to the C&C server for a random
period between min-status and max-status. This results in
name server lookup to find the current rendezvous point.

• Time Range: This is used to control the number of
candidate C&C servers that are generated by the host
for sending a status message.

These parameters provide us the control over the number
of infected hosts, which results in various detection outputs.
Therefore, we can evaluate the scenario under various attack
vectors. To characterize the model, we require the attack vector
estimations and maneuver cost assignments. We next show how
we define these so that we can use the model for minimizing
the expected cost of maneuvers.

B. Attack Vector Estimation

The model’s first task is to assess the situation. In other
words, the system must determine the current state of the
scenario. For example, such information (i.e., I vector) may
include latest activities of the hosts. Starting from an initial
state requires that the detection mechanism has identified some
anomaly in the system. We model the attack vector as a
probabilistic output of the information vector. Thus, instead of
directly observing the current state, the attack vector represents
the probability of a host involving a malicious behavior.

A detection system is implemented to infer the behavior of
a host that is at imminent risk of infection. In this way, we
are able to evaluate the hosts that are contacting a malicious
website, communicating with a C&C server, or filtering data
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Fig. 3: Example of maneuver policies for each time with attack estimations and cost assignments: a) Model behavior
under normal operation: no maneuvers are considered in 5-time intervals (π= {C,C,C,C,C}) b) Attack response with a high
probability of high attack estimation at time 3 (π= {C,C,C,A,C,C,C,C,C}) c) Malware infection of multiple hosts at time 1-3
(π= {C,C,C,,C,C,C,C,C,A}). C and A are used for continue and abort controls, respectively.

to previously unseen external destination. Such actions aimed
at revealing the members of a botnet that are controlled by an
attacker for malicious activities. The output is used to infer
the transitions as a function of system state (si) and attack
probability (λi) at a given time i.

The detection system is built on multiple sources of infor-
mation that are related to the scenario. Figure 2 presents the
three main steps of detection system implementation: from
flow traffic to the DNS level. The detection system aims to
find the infected hosts with malware that may run applications
that generate anomalous traffic and make DNS queries [8]. We
use flow statistics to identify the applications, and associate
the applications with the corresponding DNS traffic patterns,
and then we predict the number of NXDomain (Non-Existent
Domain) responses. Finally, we measure the confidence of
the actual number of NXDOMAINs on the predicted ones. If
the confidence level is low between the predicted and actual
number of NXDOMAIN responses, we flag compromised hosts
to report a potential security incident. We use the Support
Vector Machines (SVM) algorithm for application prediction,
and stochastic gradient descent regression to predict the number
of NXDOMAIN responses.

The detection output is used to obtain the attack vectors
(λ) for the operation of the network in that time interval. This
influences the transition probabilities for determining the next
states. Given a number of hosts, we can infer the transition
probabilities from i to j with a k control by tracking the
number of flows associated with each host:

λi,j,k =

∑d
l=1 fl∑n
l=1 fl

(2)

where d represents the number of hosts for which an alarm is
generated by the detector and n is the number of total hosts
their flows f are processed in a given time interval.

C. Maneuver Cost Assignments

Recall that the main goal of the operational model is
minimizing the expected cost of maneuvers under uncertainty.
The costs are determined by the attack response taken by the
defender and consider the actions taken to stop or remediate

the malware. Further, it may be formulated based on the costs
defined by equipment, development expenses, and labor, as
well as user satisfaction [9].

Specifying the cost function of an operational model is
crucial, requiring human assessment of the precise definition
of, and tradeoffs among, various states and controls [10]. In the
host remediation scenario, we consider three basic response
maneuvers that a defender may activate for remediation or
removal of the malware. These manage the cost of the state
transition and are defined as follows: (i) try to isolate the host
or hosts from network, possibly permanently disabling the host
(i.e., abort control variable) (ii) quarantine the host to limit
risk to other systems or other missions (i.e., continue control
variable with bad state transition), or (iii) observe the hosts
further before a quarantine is necessary (i.e., continue control
variable with good state transition).

We consider a centralized cost assignment that fits the
scenario to infer their impact on the operational model control
policies. We assign stationary costs for each transition at time i,
which corresponds to costs assigned independent of time. We
determine the costs as increasing values of defined maneuvers
and state transitions, e.g., cost of transiting good in continue
control is less than abort control, as abort requires more
work in isolating and removing the malware. We also foresee
more advanced cost assignments. For instance, a dynamic cost
function that assigns costs based on a function of attack vector
estimation outputs. This algorithm trusts the detection outputs
as a basis. If detection systems indicate high levels of malicious
activity, the remediation of hosts may incur more cost. The
cost assignments can be generalized to a broader definition of
the scenario and corresponding random or intelligent moving
target defense configurations [11].

V. EXPERIMENTAL RESULTS

We first present examples of the operational model to under-
stand better its capabilities. Figure 3 illustrates the examples
of states, their transitions, control variables, associated costs
and previously observed detection outputs.

Figure 3a illustrates the case of no malicious activity in the
network. This yields a detector generating perfect knowledge,
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t1 t2 t3 t4 t5
Case 1 0.2 0.3 0.5 0.8 terminal
Case 2 0.2 0.9 0.8 0.1 terminal

TABLE I: Attack probabilities (λ) governing state transitions

State Transition Cost Control
DGiGj

0 Continue
DGiBj

10 Continue
DBiBj

15 Continue
DBi

and DGi
20 Abort

TABLE II: Cost assignments of transitions for each operational
model control policy

i.e., the information vector produces almost 0% detection error.
By convention, we only observe properties that hold in each
state. As a result, the operation is terminated at the cost of 0,
as no additional maneuvers are considered.

Second, we introduce an attack at time interval t = 3 as
presented in Figure 3b. This results in successful infection of
a few hosts with malware. The model transits to a bad state
with the control variable continue. At time t = 8, we observe
that cost becomes 100 after the appropriate maneuvers are
taken. Then, the system switches to good state by the abort
control variable with a total cost of 120. However, if the system
state is changed to abort earlier, the cost increases, because
aborting and starting from the good state then switching to bad
state and aborting again incurs additional costs. This sequence
eliminates the optimal control decisions. For this particular
case, we found that keeping the system in the bad state for a
limited time is the best decision based on the maneuver costs
compared to aborting and recovering back to the good state.

Finally, Figure 3c presents malware propagation that results
in multiple host infection. The infection occurs at time t =
1− 3 with a high attack probability. In this case, a high-cost
optimal maneuver is taken to put system state in the good state.
The reason is to ensure that once a quarantined host resumes
communication, the malicious software must be removed before
continuing the communication. This represents the best control
policy to minimize the overall maneuver costs.

Now, we evaluate the operational model with previously
obtained detection outputs. Table I presents the two different
attack probabilities of five minute time intervals, t = 0 − 5
and so on. Table II presents the costs assignments for each
transition. The values are assigned considering the maneuvers
as described in Section IV-C. The goal of the model is to lead
the system to a good state at the terminal state by considering
continue and abort controls. We now apply the optimal control
model. The solution of the operational model outputs a policy
that specifies the best control to take for each state.

Table III presents the optimal controls obtained for each
state of good and bad at time ti to successfully terminate
the operation. For instance, in case 1, the system uses abort
control in Bad (s2) at time t1 and t2 . However, in case 2,
controls policy changes, and even we observe abort control
in good state. This is because the detection system reports a
high number of infected machines, as the attack probability
increases, the system attempts to abort to put the system in
good state to minimize the attack response. These results show

t1 t2 t3 t4 t5

Case 1 s1,t Continue Continue Continue Continue Continue
s2,t Abort Abort Continue Abort Continue

Case 2 s1,t Continue Continue Abort Continue Continue
s2,t Abort Continue Abort Abort Continue

TABLE III: Optimal control policies (π) obtained for each
state with the values in Table I and II.

the optimal decisions for each state, and states that if any
other control sequences are considered, the policy will be more
costly or the scenario will fail to terminate in good state.

Finally, we note that operational model enables various
assignments of the optimal policy of variables: system states
(sij , . . . , sin), attack vectors in following states (λ1, . . . , λn),
and maneuver cost assignments for each transition or state
(Dij, . . . ,Din). The model can be used with various values
of the variables to obtain the optimal attack response policies.
Building from this model, future work will consider more states
with their respective control loops and integration of risk in
transitions. From this basis, the model above may mature.

VI. CONCLUSION

Networks and systems are growing evermore complex. With
more complexity comes more difficulty in enforcing an optimal
attack response policy with various maneuvers. Currently, there
is no standardized model for reasoning about how to react to
rapid changes in a given threat. In this paper, we presented
an operational model that combines various aspects associated
with the completion of a cyber-operation. This is necessary for
the development of autonomic systems to aid in the successful
enforcement of a maneuver policy. We presented a scenario
to show the efficacy of the operational model in aiding the
analysis of host remediation.
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