
Scalable Web Content Attestation
Thomas Moyer, Kevin Butler, Member, IEEE, Joshua Schiffman, Student Member, IEEE,

Patrick McDaniel, Senior Member, IEEE, and Trent Jaeger, Member, IEEE

Abstract—The web is a primary means of information sharing for most organizations and people. Currently, a recipient of web content

knows nothing about the environment in which that information was generated other than the specific server from whence it came (and

even that information can be unreliable). In this paper, we develop and evaluate the Spork system that uses the Trusted Platform

Module (TPM) to tie the web server integrity state to the web content delivered to browsers, thus allowing a client to verify that the

origin of the content was functioning properly when the received content was generated and/or delivered. We discuss the design and

implementation of the Spork service and its browser-side Firefox validation extension. In particular, we explore the challenges and

solutions of scaling the delivery of mixed static and dynamic content to a large number of clients using exceptionally slow TPM

hardware. We perform an in-depth empirical analysis of the Spork system within Apache web servers. This analysis shows Spork can

deliver nearly 8,000 static or over 6,500 dynamic integrity-measured web objects per second. More broadly, we identify how TPM-

based content web services can scale to large client loads with manageable overheads and deliver integrity-measured content with

manageable overhead.

Index Terms—Trusted computing, integrity measurement, web system, scalable attestation.

Ç

1 INTRODUCTION

THE web has changed the way users and enterprises share
information. Where once we shared documents via

physical mail or through specialized applications, the web
enables sharing content through open protocols. Web server
validation, if done at all, is performed via SSL certificates [1].
The certificate indicates that the server (really the private
key) has been vouched for by an authority, e.g., Verisign.

What is missing is a mechanism that offers security
guarantees on the content itself. Approaches like per-
document XML signatures [2] provide document authenti-
cation, but only work where the data is static and the
signing authority is separate from the web server, i.e., the
user must either engage external signing authorities or trust
the web server to create/handle the content correctly.
Ideally, content receivers desire to know 1) the origin of
content and 2) that the origin was functioning properly
when the content was generated and delivered. This latter
requirement asks for proof of the server integrity state at the
time of use, and also proofs from other systems involved in
generating output, e.g., a database.

Consider an online banking application. Users of the
system provide credentials, account information, and other
sensitive data to the web server as part of its use. For this
reason, users need to know more than the identity of the

server it is communicating with (as provided by SSL). The
users desire some assurance that the server has not been
compromised. Similar requirements exist for any web
application using sensitive data over untrusted networks,
e.g., online auction systems, e-voting systems, online medical
applications. Many of these applications must support
thousands or millions of clients. Thus, an implicit require-
ment largely unaddressed by current integrity management
approaches is that they scale to large communities.

Augmenting these applications with content integrity
information will provide a means to detect and prevent real-
world attacks. For example, if a server is compromised with
malware, like the Mood-NT kernel rootkit [3], the proof of
the system integrity will reveal the presence of the malicious
software to the browser. Further, when bound to the content,
the integrity proof exposes “in-flight” page changes [4],
including advertisement injection, advertisement removal,
and URL replacement, independent of whether the man-in-
the-middle is present on the server, network, or web cache.

In their seminal paper on integrity measurement
systems, Marchesini et al. speak directly to the require-
ments of building and deploying secure web systems [5].
They state, “[t]he promise of responsibly maintaining a
secure site requires that the executable suite, considered as
a whole, be dynamic.” Here they highlight the need for
more than simple boot time integrity (such as that provided
by stored-sealed configurations and systems), but mandate
the integrity measurement must be ongoing. They further
expand to state any system providing secure content must
provide a binding between this evolving system state and
the content being served.

The Trusted Platform Module (TPM) [6] provides
hardware support that enables remote parties (such as
content-receiving browsers) to securely identify the soft-
ware running on the host, i.e., to measure the integrity state
of the system by identifying its software. Along with the
TPM, some form of integrity measurement system, such as
the Linux Integrity Measurement Architecture [7], is needed

686 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 5, MAY 2012

. T. Moyer is with MIT Lincoln Laboratory, 244 Wood St., Lexington, MA
02176. E-mail: tmmoyer@cse.psu.edu.

. K. Butler is with the Department of Computer and Information Science,
University of Oregon, 245 Deschutes Hall, 1202 University of Oregon,
Eugene, OR 97403-1212. E-mail: butler@cs.uoregon.edu.

. J. Schiffman, P. McDaniel, and T. Jaeger are with the Computer Science
and Engineering Department, Pennsylvania State University, IST
Building, University Park, PA 16802.
E-mail: {jschiffm, mcdaniel, tjaeger}@cse.psu.edu.

Manuscript received 11 Feb. 2010; revised 26 July 2010; accepted 15 Feb.
2011; published online 17 Mar. 11.
Recommended for acceptance by M. Eltoweissy.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-2010-02-0104.
Digital Object Identifier no. 10.1109/TC.2011.60.

0018-9340/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society
Authorized licensed use limited to: University of Wisconsin. Downloaded on May 12,2023 at 13:40:19 UTC from IEEE Xplore. Restrictions apply.

to create full attestations of the running system state. The
mechanism used by the TPM to provide integrity state is the
quote operation [6]. Each quote provides an iterative hash
of the code loaded as recorded by the tamper-resistant
hardware platform configuration registers (PCRs). The TPM
signs the PCR state and a 20-byte challenge using a public
key associated with the host. The challenge provides
freshness of the quote (the remote party offers a challenge
as a nonce). We observe that the quote challenge can be used for
other purposes such as binding data to the integrity state of the
server that created or delivered it.

In this paper, we explore the requirements and design of
the Spork1 web server service that supports scalable2

delivery of web content from integrity-measured web
servers. Web documents are cryptographically bound to a
TPM-based integrity state proof of the server software. The
proof is generated from a cryptographic hash of the content,
a timestamp retrieved from an integrity-verified time
service, and other meta-information. Client browsers (in
practice, a Firefox extension) retrieve proofs by acquiring a
document indicated in the target page’s meta-information
and validate them using the appropriate authority keys.

A naive implementation of this approach, which generates
a fresh proof for each client request, would not work well in
practice. The cost of performing a TPM quote per request is
extraordinarily high—on the order of 900 msec—limiting the
throughput of the web server dramatically. We address this
limitation by using cryptographic dictionaries to efficiently
generate content proofs. Cryptographic dictionaries requir-
ing only a single integrity quote are created periodically.
Succinct proofs are extracted from the dictionary and
delivered to requesting clients. Because such dictionaries
can be created frequently (in under a second), proofs for both
dynamic and static content can be created efficiently and
delivered to clients.

A detailed analysis of the performance of the Spork system
illustrates the costs associated with the delivery of proofs for
static and dynamic web pages. Here, we explore optimiza-
tions that reduce the “bytes-on-the-wire” and computational
overheads. Our experiments show that the Spork system can
deliver static documents with integrity proofs with manage-
able overhead, where the throughput of an integrity
measured web server reaches nearly 8,000 web objects per
second—within 17 percent of an unmodified Apache server’s
throughput. Moreover, we show empirically that the same
content can be delivered with as little as 2.7 msec latency.
Because dynamic documents must be bound to the current
state of the system at the time it is requested (they cannot be
pre-computed), their delivery is limited by the TPM. We
introduce optimizations to amortize these costs across
requests and over embedded objects within the same web
page. Further experiments demonstrate that a single Spork-
enabled web server serving dynamic pages from a database
can sustain over 6,500 web objects per second.

2 BACKGROUND

Content served over unsecured HTTP provides no indica-
tion as to whether the server or the communication channel

have been compromised. If the content is served over an
SSL connection, either directly or via a proxy [8], the
security is predicated on a certificate that vouches for the
authenticity of the web server. The guarantees are linked to
the machine rather than to the content, thus leaving no
method of knowing whether the content has been manipu-
lated, e.g., by a rootkit or corrupt update.

Providing guarantees on a system’s state requires
measurement of the system’s integrity. Many efforts for
ensuring system integrity exist, including Pioneer [9], CASS
Security Kernels [10], TrustedBox [11], Copilot [12], and
LKIM [13] among others. Secure processors such as AEGIS
[14] and the IBM 4758 [15] provide a secure execution
environment that can be used as a basis for deploying secure
services. What these systems and hardware lack is a clear
binding to the content they host. As an example, we examine
integrity management using the Linux Integrity Measure-
ment Architecture (IMA) [7], and its extension the Policy
Reduced Integrity Measurement Architecture (PRIMA) [16],
for attesting the state of the code executed and running on a
system, as IMA does not require changes to programs and its
only hardware requirement is the presence of a commodity
TPM, which is readily available on desktop and server
systems. In brief, the system is measured by taking a SHA-1
hash over every pertinent executable file, a process that
begins at system startup, when the BIOS and boot loader are
measured. The measurement process continues during the
boot process to include the operating system kernel and
loaded modules, and upon boot includes all executed
applications and supporting libraries. These hashes are
collected into a measurement list, which provides an
ordered history of system execution.

The measurement list is stored in kernel memory but to
prevent tampering, the aggregated hash value is stored on a
TPM, which provides protected registers known as Plat-
form Configuration Registers (PCRs). These can only be
modified by either rebooting the system, which clears the
PCR values to 0, or by the extend function, which aggregates
the current content of the PCR with the hash of the
executable to be included, hashing these values together
and storing the resulting hash back in the PCR. The TPM
provides reporting of PCR values through the quote
operation. To prevent replay of the measurement, the
requester issues a 160-bit random nonce to the attesting
system, creating a challenge. The TPM has a Storage Root
Key stored inside it, which only it knows. It uses this key to
generate an Attestation Identity Key (AIK), which com-
prises an RSA key pair, the public portion of which (AIKpub)
is available through a key management interface. The TPM
is bootstrapped by loading the private portion of the AIK
pair (AIKpriv) and performs the Quote function, where it
signs a message containing the values of one or more PCRs
and the nonce with AIKpriv. The attesting party can verify
the integrity of the message using AIKpub, and then every
element of the measurement list up to the value stored in
the PCR may be validated.

Measurements of the system detect deviations from
known good software. For example, the Random JavaScript
Toolkit is a rootkit that affects Linux-based Apache servers
[17]. It contains a small web server that modifies Apache’s
output, by injecting malicious JavaScript, before it is
transmitted to the victim. Under IMA, the binary would be

MOYER ET AL.: SCALABLE WEB CONTENT ATTESTATION 687

1. Not just a web service, not just a security service, but a mesh of the
two.

2. In this work, we address the scalability in terms of number of requests
processed per second.

Authorized licensed use limited to: University of Wisconsin. Downloaded on May 12,2023 at 13:40:19 UTC from IEEE Xplore. Restrictions apply.

added to the measurement list when it was loaded, and this
new binary measurement would not be in the list of known-
good hashes. Similarly, if a malicious patch was made to a
system binary, or if an unapproved or outdated binary was
being used, these would be discovered through measure-
ment and comparison with the known good hashes.

A byproduct of the content integrity information is that it
also protects against “in-flight” page modifications, e.g.,
within web caches. In [4], the authors show that the content
of web pages is modified in a number of different ways
including advertisement injection, such as provided by the
NebuAd service [18]. Our system is able to ensure that “in-
flight” page changes are discovered. The authors identify
several other classes of modifications, including page
modifications such as image distillation [19] or advertise-
ment removal by a proxy [20], and also types of malware
that modified pages viewed by the user, such as the
Adware.LinkMaker [21] which creates links in the page that
the publisher did not include, or W32.Arpiframe [22], which
injects content into HTTP streams on a local subnet.

2.1 Protecting Content Integrity

Several proposals have looked at providing content
integrity “proofs” for web systems. Systems, such as SINE
[23] and DSSA [24] provide integrity guarantees to the end-
user. SINE is a system that provides integrity for web
documents, while still allowing the use of caching servers
on the network. DSSA is a server-side system that protects
the end-user from maliciously changed documents, by
checking server responses against a set of known good
responses. If the response is found to be incorrect, the client
receives either a backup copy, or is informed that the
content is not currently available. These two systems tell the
client nothing about the state of the system hosting the
content. The client is still required to trust that the server is
not compromised with no basis for establishing this trust.

Other systems have leveraged advances in trusted
hardware to provide integrity guarantees for the system
as well as the content. Two such proposals include
WebALPS [25], [26], and [27]. WebALPS utilizes the IBM
4758 [15], a secure co-processor developed by IBM to
protect the integrity of client-server interactions when the
server accesses sensitive user data. In [27], the authors
propose a trusted reference monitor, TRM, that protects the
authenticity and integrity of peer-to-peer, P2P, systems. The
TRM depends on all systems to have a trusted platform
module, TPM, and run secure kernels such as Microsoft’s
NGSCB [28]. Such proposals have seen relatively little
adoption, due to the requirements for expensive hardware,
or requiring clients to install new operating systems.

3 DESIGN

In this section, we provide a detailed description of an
architecture for scalable web content attestation. A central
observation is that to date, attestation-based systems
present a challenge to the TPM in the form of a randomized
nonce, in order to receive a TPM quote. The nonce ensures
the freshness of the quote but provides no additional
semantics. In our system, by contrast, we directly bind
content to the system’s integrity state through the use of a
cryptographic proof system that succinctly represents the

content served; this is used along with the current time as a
challenge to the TPM. In this manner, we provide stronger
guarantees about content origin, and when it was served,
than in past proposals.

3.1 System Overview

An overview of the basic system architecture is shown in
Fig. 1. The core elements of the system are 1) a web server
that generates static or dynamic web content and provides
clients with content integrity proofs, 2) a time server that
supplies the web server with an attestation of the current
time, providing bounds on when the web server’s attesta-
tions were generated, and 3) a web browser to which we
have added an extension that verifies the proofs received
from the web server and can securely query the time server
to independently verify its attestation. The system operates
as follows:

. A client requests a page from the web server, which
returns the content and a URL to the content
attestation.

. The server hashes TPM quotes from the time server
and database concatenated with a cryptographic
proof system similar to an authenticated dictionary
[29]. It uses the resulting hash as a challenge to the
TPM to generate a system attestation.

. The client acquires and validates attestations from
the web server and the time server, and computes the
root of the cryptographic proof system based on the
proof received from the server.

The rest of this section describes how content proofs are
generated and scheduled, and in the next section, we
describe in greater detail how each of the system compo-
nents are implemented and how they operate.

3.2 Content Proofs

Each document received by a client is tied to the integrity
state of the web server via its content proof. Ideally, we desire
a proof with the following semantics: the proof should state
1) that a particular page was served by a given web server,
2) that the web server and supporting backend systems had
a verifiable integrity state (which can be assessed for
validity), and 3) that the binding between the page and
integrity state occurred at a verifiably known time. For ease
of exposition, we begin with a simple proof and build
toward more semantically rich and efficient constructions
that provide these properties.

688 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 5, MAY 2012

Fig. 1. An overview of the system architecture for asynchronous attested
content. The time server provides an attested timestamp to the web
server, which uses this to provide integrity-measured content to the
clients. The web browser can directly verify the current time from the
time server.

Authorized licensed use limited to: University of Wisconsin. Downloaded on May 12,2023 at 13:40:19 UTC from IEEE Xplore. Restrictions apply.

First, let us introduce the notation used throughout. The
function hðdÞ denotes a cryptographic hash over some data
d, and concatenation of different data elements is denoted
as j. The quoting hosts are denoted Hw for the web server
and HTS for the time server. pcri denotes the integrity state
of host i. A TPM quote is denoted QuoteðH; s; cÞ, where H is
the host identity performing the quote, s is the PCR state,
and c is the quote challenge.3 The served pages are denoted
pi, where each i represents a unique page. ti is a time epoch
returned from a hardware clock on the time server. Lastly,
described below, CPSr represents the root node of a
cryptographic proof system and PfðpiÞ is a succinct proof
for page pi from that system.

Consider a simple content proof to be received by a client
from a server for a page pi, as follows:

QuoteðHw; pcrHw
; hðpiÞÞ:

The quote operation provides a clear binding: document pi
was generated by (or is at least present on or known to) Hw

with PCR state pcrHw
. Of course, the proof is not tied to any

particular time. In tangible terms, properties 1 (web server
identity) and 2 (integrity state) from above are provided.
What is missing from the simple proof is 3 (the element of
time), and any statement about the other backend systems
that assisted in the content’s generation. Thus any page
delivered to a client at any time could be replayed forever,
i.e., a compromised server delivering stale content could not
be detected.

Fig. 2 describes a more semantically rich content proof
construction that simultaneously ties content to both the
host and time. In this, the time server acts as a root of trust,
providing a self-certified timestamp (that uses the time
itself as the quote challenge). The time server is trusted to
provide the correct time (by definition of a root of trust
[30]), and its quote mechanism is a means of tying a specific
timestamp to that service. We revisit design and security
issues of the time service in Section 4.2.

During the validation process, the client acquires a
timestamp from the time server directly (or uses a suitably
fresh timestamp from its cache). The client will then judge
whether the content is too stale to trust, i.e., the difference
between the timestamp in the proof and that received from
the time service is too great. Because the time service is
trusted, the client can securely make judgments on content
validity based on loose clock synchronization, e.g., as seen
in Kerberos [31]. Thus, we have provided a proof whose
semantics provide all of the required properties.

The central limitation of the proposed content proof
construction is cost. Web servers may receive many
hundreds or thousands of requests per second (RPS). The

above proof would take about a second to generate on

commodity hardware (including the round-trip time (RTT)

delay to acquire the timestamp and the 900 msec for the

quote operation in our test environment). Because a unique

proof is needed per page/timestamp, the web server would not

be able to serve content at a reasonable rate, i.e., the web server

throughput would be �1 request per second. What is a needed is

a means to amortize quote costs.
A cryptographic proof system is a construction used to

efficiently authenticate collections of objects using one or

more cryptographic operations. Objects can be validated by

extracting succinct proofs from the proof system. These

succinct proofs are generally significantly smaller than the

proof system as a whole. Thus, authentication costs are

amortized over collections of objects. While more sophisti-

cated techniques exist [29], [32], we concentrate on a

conceptually simple proof system based on Merkle hash

trees [33]. We create a proof system for all of the documents

that will be served by the web server. Assume for the

moment that the web server has a static collection of pages

that it delivers to clients (we extend our solution to dynamic

content generation in the next section). To create the proof

system for these static documents, all of the documents are

arranged as an ordered sequence of pages p1 . . . pn. As

shown in Fig. 3, a binary tree is initially constructed by

assigning the hash of each page hðpiÞ as a leaf, and each

interior node is the hash of the concatenation of both its

children. The root node is CPSr. The succinct proof for

page pi, denoted PfðpiÞ, consists of the root node and all of

the siblings on the path to the root. For example, the proof

system for page p3 in Fig. 3 is fhðp4Þ; hðhðp1Þjhðp2ÞÞ; CPSr ¼
hðhðhðp1Þjhðp2ÞÞjhðhðp3Þjhðp4ÞÞÞg. A proof recipient can

then validate the content by hashing the file and computing

the p3 leaf and interior nodes on the path to the root. If the

computed hash root is the same as in the proof, then the

page is the one used in the original proof system. The proofs

are succinct in the sense that they grow logarithmically in the

number of documents in the proof system, i.e., the size of the proof

is ððlog2 nÞ þ 1Þ �H þ S, where H and S are the sizes of the hash

and signature, respectively.

MOYER ET AL.: SCALABLE WEB CONTENT ATTESTATION 689

Fig. 2. A content proof construction that ties content to both the originating host and the time.

Fig. 3. A Merkle hash tree base for the cryptographic proof system. The
leaf nodes are hashes of the pages served to clients.

3. In practice, the quote mechanism uses attestation identity key (or simply
the signing key) to perform the quote. Thus, the key acts as a proxy for the
host. For the purposes of this section, we blur this distinction between the
host and the signing key.

Authorized licensed use limited to: University of Wisconsin. Downloaded on May 12,2023 at 13:40:19 UTC from IEEE Xplore. Restrictions apply.

The proof system used to generate an extended content
proof for page pi is shown in Fig. 4. The two differences
between this construction and the preceding one are that the
CPSr is used as the challenge (instead of a document hash),
and that a succinct proof for pi is included. Because a single
quote is used to bind any number of pages to the time quote
and host integrity state, we can efficiently support serving a
large body of pages. As we discuss below, the challenge is
knowing exactly what the body of documents is.

An interesting aspect of Spork content proofs is that
they can be used asynchronously. Proofs acquired from the
web server can be cached with the content itself, e.g., in a
Squid cache [34]. Because each proof includes a timestamp
acquired from a globally accessible time service, the
browser can make a policy decision on whether the cached
proof is stale or not. If it is not, the content and proof
can be used as if they were obtained from the server.
Otherwise, they can be discarded and new ones acquired
from the web server. Note also that such policies can be
transparently implemented by web proxies via time to live,
TTL, policies.

3.3 Proof Scheduling

Content proofs are delivered to browsers through integrity
proof pages. The web server inserts an extension X-Attest-

URL HTTP header in each delivered page whose URL
points to a proof for that page. The browser parses the
header, retrieves the proof from the web server, and
validates the proof. If the validation fails, the browser can
log the error, notify the user, or perform other actions
deemed appropriate. We discuss the design and operation
of the Firefox extension in Section 6.

Determining what pages should be included in a proof
system is essential to supporting the browsing community.
Static web pages represent the simplest case. As illustrated
in Fig. 5, the web server generates a Merkle hash tree of all
pages it will be serving to clients. The web server will then
generate proofs at the rate at which the TPM can generate
quotes, e.g., once a second. When a browser asks for a proof

for a given page, the succinct proof is extracted from the
most recent proof system completed and returned to the
browser, as shown in Fig. 6. A proof is always available
because the content is unchanging. Thus, the latency
induced by the integrity proofs is bounded by the proof
acquisition (a web page GET) and browser validation costs.

Dynamic content presents other challenges. Centrally, the
page content only becomes available after the request arrives
from a client. For example, consider a .php [35] web page.
PHP allows the web designer to create content program-
matically. The inputs to this process include referrer page,
URL, query strings, database contents, cookies, and other
information. Because the inputs are unknowable, precom-
putation of pages is infeasible in many cases, and the web
server must create integrity proofs in real time.

As illustrated in Fig. 7, our approach is to exploit the
periodicity of quote generation. The web server creates and
delivers content through dynamic generation interfaces,
e.g., PHP, as in normal operation. However, the proof
identified in the X-Attest-URL header identifies a proof that
does not yet exist. The generated content is hashed and this
hash is added to a cache. This cache contains the hashes of
content that was generated between the last TPM quote
operation and the pending quote operation. As soon as the
TPM becomes available (by completing a previous quote), a
hash tree of recent dynamic content is generated and used
as the challenge to the TPM. The cache containing the
hashes of dynamic content is then cleared and the process
repeats. The proof system is available as soon as the quote
operation completes.

The browser will observe additional latency when
receiving dynamic content. Assuming a 900 msec quote

690 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 5, MAY 2012

Fig. 4. Extended content proof that uses a cryptographic proof system as the challenge rather than a document hash. A succinct page proof is also
included.

Fig. 5. Server quote generation—The server requests the most recent
timestamp from the time server (Q(t0)), and then generates a quote
using the most recent hash tree computed (CPSr).

Fig. 6. Static page scheduling—For static pages, the server provides the
most recently generated quote (Q0) to all incoming requests while it is
generating the next quote. Once the next quote is generated (Q1), this
new quote is provided to each incoming request.

Fig. 7. Dynamic page scheduling—Incoming requests for an integrity
proof page are delayed until the quote including the page is ready. At
this point, a hash tree is generated that includes the cached requests
(GET1 and GET2) and the hash tree is used to generate the next quote
(Q1).

Authorized licensed use limited to: University of Wisconsin. Downloaded on May 12,2023 at 13:40:19 UTC from IEEE Xplore. Restrictions apply.

operation (which is the case in our test environment4) and
uniform distribution of arrivals, the expected latency would
be about 1,350 msec plus the time to deliver the quote itself
(which is network dependent). More specifically, the
expected arrival in the previous quote epoch is 0:5 � 900 ¼
450 msec plus the quote cost itself 900 msec is the expected
delay observed by a browser. Note that this will be
interleaved with the delivery (and possibly rendering) of
the content itself, and thus the observed delay may be
somewhat less. As the quote operation time is reduced, the
latency is also reduced.

Most web servers simultaneously support static and
dynamic content. The above processes can support this
operation by simply joining the static and dynamic hash trees
at the root, and using the resulting hash as the challenge. In
all other respects, the web content is processed as before—
proofs for static content can be extracted from the most recent
proof system, while proofs for dynamic pages will become
available at the completion of the following quote epoch. No
other modifications to the web server are needed.

3.4 Supporting Backend Systems

In a typical web system, a database provides backend
storage for the web application. If the web server uses data
from a database to generate content for a client, the integrity
of the generated content depends on the integrity of both
the web server and the database, as shown in Fig. 8. As such
the proof must cover both the web server and the database.
One property still missing from the proof in Fig. 4 is the
proofs from any supporting systems, such as a database.
The client has no means of verifying the integrity of
backend systems used to generate the dynamic content. To
provide the client with the necessary information to verify
the integrity of the backend systems, the web server
contacts the database server that provided data to generate
the response and retrieves a proof of the database host’s
integrity state. The database proof is constructed as shown in
Fig. 9. This quote is bound the time using a time server,
much like the web server’s proof. This allows the database
to serve many servers with a single proof, instead of
generating fresh quotes for each server that requests a
proof. The database hashes the quote from the time server
and uses this as the challenge for its own quote, binding the
quote to a recent timestamp. Note that no database content
is included in this quote: it simply attests to the current
integrity state of the database server.

The web server includes the database attestation in the
proof that is sent to the client. To do so, the web server
binds the proof to its own quote in much the same way as
the time server proof is included. The web server hashes the
concatenation of the time server and database quotes and
the root of the cryptographic proof system. This becomes
the challenge to the web server’s TPM. The database quote
is also appended to the attestation returned to the client by
the web server. Fig. 10 shows the full attestation that the
client receives.

4 IMPLEMENTATION

We have developed a version of the architecture detailed in
the preceding sections that supports static, dynamic, and
mixed content. Fig. 11 shows the structure of the basic Spork
web environment. In addition to external clients and the time
service, there are two functional elements processing the
requests on the web host: the web server and Spork daemon.

4.1 Proof-Generating Web Server

As directed by the requested URL, the Apache web server
supporting Spork directs all client requests (1 in Fig. 11) to
Spork threads processing requests running in the httpd

address space. If the request is for a static page, the content is
retrieved from the local filesystem. A URL to a proof page
(which may not yet exist) is inserted into the X-Attest-

URL header of the retrieved page, and the result is returned
to the client (6 in Fig. 11). Dynamic requests occur in
substantially the same way except that the content is
generated using the appropriate content generation code,
e.g., ASP [36], instead of being retrieved from the filesystem.

If the received request is for a proof, the Spork request
processing thread passes proof identity information to a
Spork master thread (one per Apache process) which passes
the proof request to the Spork daemon over standard UNIX
IPC (2 in Fig. 11) (i.e., sockets). The processing thread then
sleeps waiting for a “proof ready” event. When the requested
proof (5 in Fig. 11) is received by the master thread from the
Spork daemon (see below), it wakes the processing thread,
which then returns the proof to the client (6 in Fig. 11).

The Spork daemon generates the content proofs by
interleaving a number of utility threads. The main thread
receives requests from Apache, extracts and marshals the
succinct proofs from available proof systems, and returns
the result to the main Spork thread in Apache (5 in Fig. 11).
The remaining threads update the internal state from which
the proof systems are constructed. A TPM thread schedules
and executes quote operations (4 in Fig. 11) as governed by
the algorithms defined in Section 3.3, and separate threads
similarly retrieve time attestations (3 in Fig. 11) and
database attestations (12 in Fig. 12), if a database is present.
Separate threads maintain the dictionary of static docu-
ments (by monitoring the filesystem) and the current set of
dynamic pages awaiting proof generation.

Client browsers receive the content proof from the web
server (6 in Fig. 11) and acquire time attestations from the
time server (7 in Fig. 11). If the proofs validate correctly, the
page may be rendered. Note that it is a matter of policy of
what to do when a proof validation fails; the browser may
block rendering, warn the user, confirm the rendering, or

MOYER ET AL.: SCALABLE WEB CONTENT ATTESTATION 691

Fig. 8. Adding a database to the system architecture. By having
additional backend systems, the client must verify that all systems are
high integrity, not just the database.

4. TPMs from different manufacturers have different optimizations,
leading to different times of operation.

Authorized licensed use limited to: University of Wisconsin. Downloaded on May 12,2023 at 13:40:19 UTC from IEEE Xplore. Restrictions apply.

place visual indicators on the display, e.g., icons or red
shading over failed objects. We briefly touch on this policy
further in the description of the browser extension in
Section 6.

4.2 Time Server

The time service uses a hash of the current hardware
timestamp as a challenge to the TPM (8 in Fig. 11). This time
attestation is provided to requesters such as the web servers
for inclusion in content proofs or to clients for clock
synchronization, e.g., to detect replay attacks.

The time server plays a critical role in operation of the
system, because of the importance of freshness to verifying
attestations, i.e., the client can be sure that a compromised
server will be detected within a short window, since the
current time can be validated without relying on the web
server. While the web server has a file system that is
mutable, due to the ability to add, delete, or modify web

files to be served, the time server’s file system can become
largely static after it is installed. As a result, we can provide
deeper validation than what is afforded with typical
integrity measurement. We provide trust guarantees from
the system clock all the way to the software, forming a time
root of trust in a similar manner to how a root of trust
installer fully guarantees the system from installation up to
applications [30]. This approach provides a smaller base of
components that need to be trusted: the BIOS core root of
trust measurement (CRTM), the TPM, and the clock.

Another requirement solved by this approach is the
ability for the client to directly verify the attestation from the
time server itself. If the client establishes an SSL connection
with the time server, it can receive the same time update that
is presented to the web server, allowing confirmation of the
validity of the time attestation and verification of function-
ality. Once the client has established trust with the time
server, it can rely on attestations that are carried in the
HTML document presented to it by the web server.

4.3 Database

Most web applications rely on a backend database that is
often hosted on a different server, for performance and
security reasons. In order to account for this structure, we
have augmented a database server with the ability to
provide proofs of the database’s integrity state. Fig. 12
shows the extended system structure that includes the
database system. The database hosts data that is retrieved
by the web server and used to generate the final output for
the client (9 in Fig. 12). The database has a daemon that
generates periodic attestations using the database system’s
TPM. The database daemon fetches a recent time quote
from the time service (10 in Fig. 12) and hashes this as the
challenge for the database system’s TPM (11 in Fig. 12). This
quote is cached to service later requests (12 in Fig. 12).

5 EVALUATION

In this section, we empirically evaluate the performance
and scalability of the Spork system presented in the
preceding sections. We begin by measuring the throughput
and latency of the system compared to an unmodified
Apache web server, and expose the underlying costs via
microbenchmarking.5 We propose a number of optimiza-
tions and evaluate the performance impact.

All tests were performed on Dell PowerEdge M605 blades
with 8-core 2.3 GHz Dual Quad-core AMD Opteron
processors, 16 GB RAM, and 2x73 GB SAS Drives (RAID 1).
Six blades running Ubuntu 8.04.1 LTS Linux kernel version
2.6.24 were connected over a Gigabit Ethernet switch on a
quiescent network. One blade ran Apache web servers (one
normal install and one running the integrity proof system
described in the preceding sections). One blade ran the time
server, and four were used for simulated clients. All

692 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 5, MAY 2012

Fig. 12. The extended Spork system that includes a database serving
data to the web server. The database resides on a separate system,
which is common in web application development.

Fig. 10. Full content proof sent to the client, including quotes from the

database and time server, and the succinct page proof.

Fig. 11. An overview of the Spork system architecture—The time server

provides an attested timestamp to the web server, which is bound to the

content delivered to the browser and local software integrity information.

Fig. 9. A database proof construction that is bound to a recent timestamp.

5. Here we use a single client, and not the full client load determined
below.

Authorized licensed use limited to: University of Wisconsin. Downloaded on May 12,2023 at 13:40:19 UTC from IEEE Xplore. Restrictions apply.

experiments use the Apache 2.2.8 server with mod_python

3.3.1 modules for dynamic content generation. The Spork
daemon is written in Python 2.5.2 and uses a custom TPM
integration library written in C. The server and client browser
extension exceeds 5,000 lines of code. All load tests were
performed using the Apache JMeter benchmarking tool.

A recent study of web pages indicated that the average
web page size is about 130 KB total, with an average HTML
source size of 25 KB and the average non-flash object being
just under 10 KB [37]. More focused studies of popular
websites indicate somewhat larger total sizes (�300KB)
[38]. The sizes of the component objects (e.g., images) in
popular websites is essentially the same as reported in the
broader study, with the increases in the number of
embedded objects accounting for the larger total page size.
Thus, we use 10 KB and 25 KB file sizes in all experiments.

An analysis of the test environment showed that the
maximum throughput of an unaltered Apache web server
can be reached with a relatively small number of clients (on
the order of 200-300) for static content. In dynamic
experiments, client requests are delayed a random period
(up to two times the TPM quote period, 1,900 msec) before
requesting another page. This ensures uniform arrival of
requests at the server,6 but necessitates significantly more
clients to sustain maximal throughput. After experimenting
with a number of different client community sizes, we
found the highest throughput could be achieved in static
experiments with 500 clients and dynamic experiments
with 8,000 clients without incurring significant latencies.
Thus we use 500 clients to drive all static tests and 8,000 for
all dynamic tests, in order to measure the maximum
achievable throughput of each system.

5.1 Benchmarks

Our first set of experiments sought to identify the over-
heads associated with the delivery of integrity proofs by
comparing operation of Spork with that of an unaltered web
server under heavy client loads. The static content and
dynamic content web servers use out-of-the-box installations
delivering static and dynamic content, respectively. The
dynamic content is generated using mod_python. The
integrity-measured web servers operate in substantially the
same way as the static and dynamic web servers, except
that each system creates and delivers integrity proofs with
the content. Clients in the integrity-measured experiments

receive the content as in normal web server operation, then
retrieve the associated proof from the web server as
indicated in the X-Attest-URL header. Thus, integrity
measured content consists of two serial requests—one each
for the content and the proof.

Fig. 13 shows throughput of an unaltered web server
measured in requests per second (RPS). The throughput of the
10 KB static content (average 10,770 RPS) has about 29 percent
higher throughput than the dynamic case (average 7,600 RPS)
for 10 KB web pages. Such throughput disparities are not
atypical in web systems. The additional overheads are due to
forking and using a mod_python interpreter. This disparity
is further amplified by the static content being delivered from
in-memory caches in all tests, i.e., the web server can easily
hold all experimental static content in memory. The through-
put of the web server serving non-integrity measured 25 KB
pages for dynamic content are 4,486 and 4,508 RPS for static
and dynamic content, respectively. The throughputs are
similar because the network is fully utilized.

A comparison of the relative throughput of the web
server in the static and dynamic content costs highlights the
bottlenecks associated with each content type. The number
of bytes sent per second by the web server serving static
content of both the 10 KB and 25 KB pages is essentially the
same:

10;770 � 10 ¼ 107;700 KB=s � 4;485 � 25 ¼ 112;125 KB=s;

where five percent more “bytes on the wire” are delivered
by serving larger web pages. This slight advantage can be
accounted for by overheads of processing individual
requests (there is 2.5 times more per-byte HTTP protocol
overhead in 10 KB web pages). This indicates that the
bottleneck in the static case is bandwidth. For dynamic
content, the performance does not change drastically from
when varying the file size until the network becomes
saturated. This indicates that dynamic content service is
bound by computation, not by bandwidth.

Illustrated in Fig. 14, the average throughput of the
integrity-measured web server hovers around 1,000 RPS, a
significant drop in throughput compared to the unaltered

MOYER ET AL.: SCALABLE WEB CONTENT ATTESTATION 693

Fig. 13. Unaltered web server throughput—Sustained requests per
second (RPS) during a 70 second experiment.

6. Failure to evenly distribute request arrivals in dynamic tests leads to
throughput oscillation. This oscillation causes client requests to arrive in
bursts that overwhelm queues and cause synchronized retransmissions.
Randomized arrivals of client proof requests will dampen oscillation.

Fig. 14. Integrity measured web server throughput—Sustained requests
per second (RPS) during a 70 second experiment.

Authorized licensed use limited to: University of Wisconsin. Downloaded on May 12,2023 at 13:40:19 UTC from IEEE Xplore. Restrictions apply.

server. The overheads relate to the creation and acquisition of
proofs by the Spork daemon and their insertion in response
web objects. In addition, each request involves serial requests
and responses. However, opportunities exist to amortize
these costs, discussed further in Sections 5.2 and 5.3.

Integrity-measured dynamic content shows an average
throughput of 1,100 RPS in both the 10 KB and 25 KB cases,
similar to the nonintegrity measured dynamic content where
computation, not bandwidth, is the bottleneck. Integrity-
measured dynamic content is bounded by the computation
of both the content and the proof. The integrity-measured
dynamic content also exhibits bursty behavior attributable to
the synchronizing effect of the TPM. Clients make a request
for dynamic content followed by a request for the corre-
sponding proof and are forced to wait while the TPM
generates the quote that includes their page. Once this quote
is generated, clients begin the process again by requesting
more content.

Table 1 shows minimum observed latency and average
throughput. To compute latency statistics, we averaged
measurements over 150 trials in a system with a single
client requesting a single page. The latency represents the
time from the first byte sent from the client to the reception
of the last byte of the response. Unaltered web latencies
range from 490 �sec to 5.4 msec. The latencies observed in
the static integrity measured case averaged about 3 msec,
where the additional latency can be attributed to multiple
HTTP round-trip-times, RTTs, and the costs of acquiring the
proof from the Spork daemon. The dynamic integrity
measured latencies were lower than expected values (as
discussed in Section 3.3), about 1,000 msec. These latencies
are a reflection of the random arrival of the request within
the periodic TPM quotations and the time required to create
a proof system encompassing the quoted material, e.g.,
TPM quote time.

Table 2 shows latency measurements for proof creation
in an integrity-measured web server. Recall that the proof
system is generated by collecting document, time, and
system information over which a TPM quote is taken. Such
operations are amortized over all requests during the proof
system period (as discussed in Section 3.2), and are not on
the critical path of any content delivery. Nearly 99 percent
of the latency involves the acquisition of the time quote and
the local quote operation.7 These operations are external to
the web server processing. The remaining operations are

insubstantial in terms of latency and computation. As a
result, proof system creation has little impact on the
throughput of the web server. Thus, our only hope at
improving web server throughput is to address the network
and computation bottlenecks within the content delivery
process itself.

5.2 Bandwidth Optimizations

Because we cannot modify the pages directly, we limit
bandwidth use by reducing the size of the returned proofs.
Recall that proofs are succinct in the sense that they grow
logarithmically in the number of documents in the proof
system, i.e., the size of the proof is ððlog2 nÞ þ 1Þ �H þ S,
where H and S are the sizes of the hash and signature,
respectively. However, the full proofs are large ASCII XML
structures in which the vast majority of content fields are
integrity hashes. Because the ASCII text is highly redun-
dant, compressing it could reduce the size of proofs
considerably. Conversely, the Policy-Reduced Integrity
Measurement Architecture (PRIMA) [16] provides for
smaller attestations by reducing the size of the measure-
ment list to include only the specific applications of interest,
and can thus be used to significantly reduce the number of
integrity hashes included in a quote.8 We consider the
performance of our web server under these strategies:
compressed IMA compresses the proofs described in the
preceding sections before transmitting to the client, PRIMA
implements PRIMA for proofs, and compressed PRIMA
compresses the PRIMA proof. We include the performance
of a web server delivering the proofs used in the preceding
experiments as full IMA.

The different optimizations reduce proof size as follows:
The baseline full IMA generates an 107 KB proof and the
full PRIMA reduces to 82 KB. The reason that the reduction
is not very large is that the test environment is already fairly
minimal, where the number of measurements needed is
smaller than in systems with more services, e.g., database
systems. Thus, the policy reduction only removes a handful
of services from measurements. Compressing the proof was
much more successful, where the IMA and PRIMA proofs
were reduced to 32 and 25 KB, respectively.

Returning to Table 1, the throughput of the web server
improves under these bandwidth optimizations. Compres-
sion of static content clearly improved throughput. Simply
compressing the proofs results in 10-57 percent increased
throughput, with compressed PRIMA proofs seeing a

694 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 5, MAY 2012

7. Recall that the time server simply returns the most recently created
time quote. Thus, the latency for acquiring a time proof is largely
determined by the RTT between the web and time servers, and not the
time to create the time attestation (964 msec).

8. Additional information about the XML structure and PRIMA can be
found in the Appendices of [39].

TABLE 1
Static and Dynamic System Measurements

Latencies are measured in milliseconds. The various forms of integrity measurement used are discussed in Section 2. Uncompressed and
compressed versions of each system are measured.

Authorized licensed use limited to: University of Wisconsin. Downloaded on May 12,2023 at 13:40:19 UTC from IEEE Xplore. Restrictions apply.

57 percent increase. These optimizations had negligible effect
on throughput of servers serving dynamic content because
bandwidth is not the bottleneck.

Compared to the delivery of static content on an
unaltered server, a web server delivering compressed
PRIMA proofs will still observe over 85 percent overhead
for 10 KB page and 65 percent in 25 KB pages. This is largely
due to every integrity-measured static page requiring the
processing and delivery of one static and one dynamic page:
one for the content and one for the proof. While compression
techniques mitigate the delivery of the dynamic page, it does
nothing to mitigate the computational costs of its creation.
Thus, our next best hope is to alter the relationship between
the number of requested pages and requested proofs.

5.3 Proof Amortization

Recall that prior studies of web pages show that an average
page has one root HTML page and just over 10 static 10 KB
embedded objects. As a matter of practice, a client requesting
that page will obtain the root page and all of its embedded
objects for rendering. This reality presents an opportunity: A
proof for a web page can be computed over the root document
and all embedded objects at once. Thus, we can amortize
proof generation over all elements of a web page, significantly
reducing the number of proofs requested by a client.

Consider a naive calculation of the expected per second
web server throughput under this discipline. The expected
throughput of a web server P can be computed in pages as:

P ¼ 1

ð10 � 1
�Þ þ 1

�

;

where � is the service time for a web server serving a 10 KB
static object and � is the service time for the web server
serving static (dynamic) 25 KB HTML files. The model
assumes that the unit “cost” per object on a hypothetical
throughout budget is fixed and independent of other
documents. For dynamic content, this model also assumes
that the root page is generated dynamically, but that the

supporting, embedded objects are static. In cases where
more than than just the root page is generated dynamically,
the browser would request each piece of content as before,
and then request a single proof covering all of the content
sent. There is the potential that the dynamic requests are
separated into multiple TPM quote windows, and large
proofs would be required to cover each batch of dynamic
requests. Exploring different mixes of static and dynamic
content is an area of future work.

Table 3 shows the expected and experimentally-mea-
sured “real” throughput of the amortized proofs. We show
the parameters in terms of throughput (i.e., the inverse of
the service time) for clarity, with the expected throughput
computed using the measurements presented in Table 1.
Interestingly, the model underestimates throughput con-
siderably in most cases. This is because the computation
fails to model both bottlenecks at the same time, and thus
misses the positive effect of interleaving requests for
content (limited by bandwidth) and content proof acquisi-
tion (limited by computation). Practically speaking, the
costs of finding and delivering proofs from the Spork
daemon to the web server are hidden by bottlenecked
delivery of content. Thus, a web server providing integrity
measured content can achieve web object throughputs
within 13 percent of the maximum web server.

5.4 Adding a Second System

In order to understand the impact that Spork has on
systems providing backend support, i.e., the database, we
added a second system to our experimental setup. This
second system hosts a MySQL database that provides data
for the web server. Below, we examine the impact that this
change has on the throughput of the system.

For these experiments, we use the four client machines
described earlier in Section 5 with the same number of
dynamic clients (8,000). As before, mod_python is used to
generate and serve the dynamic content, but for these
experiments, the web server connects to the database,
fetches data from one table in the database, and returns the
content to the client. A pool of database connections is used
to reduce the impact of opening and closing connections
between the database and the web server.

Fig. 15 shows the throughput of the unaltered web
system. With 10 KB dynamic pages, the throughput
averages 5,887.5 RPS, while the 25 KB pages averages a
throughput of 3,549.4 RPS. The reduction in throughput
(�20%) from previous dynamic experiments is due to the
additional network overhead of contacting the database
system to retrieve data to service requests.

MOYER ET AL.: SCALABLE WEB CONTENT ATTESTATION 695

TABLE 2
Proof Creation Latency Measurements—Latency

of Proof System Generation Measured in Milliseconds

For the static content, a pool of 125 files was used.

TABLE 3
Proof Amortization Performance—The Expected and Measured Performance of the Amortized Proof Serving

Authorized licensed use limited to: University of Wisconsin. Downloaded on May 12,2023 at 13:40:19 UTC from IEEE Xplore. Restrictions apply.

When adding integrity proofs to each request, the
throughput of the web system drops dramatically. Fig. 16
shows the throughput of the web system using the uncom-
pressed IMA proof. The throughput averages 430 RPS in both
cases, an approximately 90 percent drop in throughput, as
compared to the web system serving dynamic content that
does not provide integrity proofs. As before, we turn to
compression and measurement list reduction (PRIMA) to
reduce the size of the integrity proofs, before looking at other
means of increasing the overall throughput of the system.

With the addition of a second host, the size of the
attestations grows. In addition to the two quotes already
included, a third integrity proof is added. The uncom-
pressed IMA proof for the web application is 180 KB. By
leveraging PRIMA, the proof is reduced to 148 KB.
Compressing the proofs leads to sizes of 54 KB and 44 KB,
respectively. With these smaller proofs, Table 4 shows the
throughput of the web application. Even with the smallest
proofs, the overhead induced by Spork is approximately
90 percent.

By requesting a single proof that includes proofs for each
object on the page instead of “per-object proofs,” we can
achieve acceptable throughputs. Table 5 shows the esti-
mated and actual throughputs using the simple model from
Section 5.3. The unaltered system was able to sustain just
under 8,000 RPS with the root page now being constructed
with data from the database. The uncompressed IMA proof
shows an average throughput of just over 3,600 while the
compressed PRIMA proof shows an average throughput of
just over 6,500 RPS, an overhead of 17.8 percent.

6 DISCUSSION

6.1 Client-Side Validation

Our Firefox extension validates content proofs acquired
from the modified web server at page load. The extension
examines the X-Attest-URL header after the page loads.
If this header is correctly formed, the associated content
proof is requested from the web server and validated. First,
the extension validates the system attestation from the web
server and the attestation from the time service. Once the
system and time attestations are validated, the succinct
content proof is checked by reconstructing the hash tree
from the provided nodes and the downloaded content.
Once the root of the tree is computed, it is compared to the
value provided in the signature. Once everything is
validated (or invalidated), the user is notified by simple
icons on the status bar of Firefox, similar to Privacy Bird
[40], or SSL.

The Firefox interface is modified as shown in Fig. 17. In
Fig. 17, we see a page that is loaded, and the user has been
notified via a dialog box that the validation of the content
proof has failed. The user is still shown the page, but is aware
that the page is invalid. One limitation of the current
prototype is the fact that the client still obtains the content
and can “click-through” the warnings, as is often the case
when errors happen [41]. This is not surprising given that
�73% of SSL-protected sites generates a validation warning
[42]. The behavior of our prototype is similar to Firefox’s
default operation of allowing a user to view a page even if the
server-side SSL certificate is invalid. When a page is valid, a
green check mark is shown instead of a red X. No other
prompting is used when the page is valid. One solution to
address this limitation is to adopt an approach similar to the
ForceHTTPS [43], where validation errors are treated as fatal,
preventing the user from obtaining the content.

The prototype requires that web server and the time server
TPMs keys and verification measurement lists be loaded at
installation. In real deployments, it is likely that the clients

696 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 5, MAY 2012

Fig. 15. Unaltered web system throughput—Sustained throughput
(requests per second, RPS) during a 70 second experiment. Note that
the database is on a different host for this experiment, leading to
reduced throughput.

Fig. 16. Integrity measured web server throughput—Sustained RPS
during a 70 second experiment, with the database on a separate
system, leading to a reduction in throughput compared to the single
server experiments.

TABLE 4
Throughput, Measured in Requests Per Second (RPS),

with the Database on a Separate Host System

Uncompressed and compressed versions of each system are
measured.

Authorized licensed use limited to: University of Wisconsin. Downloaded on May 12,2023 at 13:40:19 UTC from IEEE Xplore. Restrictions apply.

will be bootstrapped with a separate public measurement
signing key associated with the services they are measuring.
This key would be used to sign measurement lists provided
periodically by administrators and possibly provided
through the web server as separate URLs. Administrative
systems supporting integrity services are being actively
studied by the integrity measurement community, and we
will make use of these systems as they become available.

6.2 Multi-Tier Architectures

It is common for complex web systems to be deployed on a
number of different servers. For example, it is often common
to have the web server, or servers, interface with application
servers, which in turn will interface with the database
servers. Such multi-tier architectures present a challenge for
the current design of the Spork system, as each system
involved in the content generation process contributes an
integrity proof to the proof sent to the client. As the number of
systems grows, this can become a management nightmare.
We are actively investigating potential solutions that would
allow for smaller proof constructions that don’t reveal the
underlying architecture of the web system to the client. One
potential solution would be to introduce a verifier into the
web system similar to the verifier proposed in [44], where a
single trusted system monitors, and “vouches” for the
integrity of the individual systems comprising the overall
larger system.

6.3 Virtualization

As Spork requires access to the TPM, deploying Spork-
enabled web systems in virtual machines is not currently
possible. There is currently on-going to work to provide
virtual machines with virtual TPMs, such as work in the
Xen project [45], which we plan to leverage once the
technology is available. In addition, as a web system grows

in complexity, adding more servers, such as a load balancer
and more web servers and databases, the size of the
attestations sent to the client will grow as well. What is
needed is a means of ensuring that the backend systems
remain high integrity without requiring the client to verify
each and every backend system that contributed to the
generation of the client’s content. One solution, proposed by
Schiffman et al. [46] and [44], allows a VMM to monitor the
integrity of the virtual machines deployed on the system
and provide short proofs to the client. Integrating this
virtual machine verifier (VMV) with Spork reduces the size
of the attestations sent to the client, and also allows Spork to
be deployed in virtual machine environments. Integrating
the VMV and Spork is an area of future work.

7 CONCLUSIONS

This paper has introduced the Spork system. Spork uses the
Trusted Platform Module (TPM) to tie the web server
integrity state to the web content delivered to browsers. This
allows a client to verify that the origin of the content was
functioning properly when the received content was gener-
ated/delivered. We discussed the design and implementa-
tion of the Spork service and its browser-side Firefox
validation extension. In particular, we explored optimiza-
tions that enable us to mitigate the inherent bottlenecks of
delivering integrity-measured content. An in-depth empiri-
cal analysis of Spork confirmed the scalability of Spork to
large bodies communities. Spork delivered almost 8,000 static
or 6,500 dynamic integrity-measured objects per second.

We are just now beginning to understand the use of

integrity-measurement in web systems. In the future, we will

explore the extension of Spork to collections of web servers,

e.g., web farms, and as a mechanism to provide integrity

guarantees over services spanning administrative domains,

e.g., mash-ups. The system itself will also evolve, and we plan

to apply new cryptographic techniques to further reduce

overheads and increase the flexibility of the system, e.g.,

partial signatures. Lastly, we are in the processing of building

real web-applications that make use the Spork services and

study their use in deployed environments.

REFERENCES

[1] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W.
Polk, “Internet X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile,” http://www.ietf.org/
rfc/rfc5280.txt, May 2008.

[2] D. Eastlake 3rd, J. Reagle, and D. Solo, “(Extensible Markup
Language) XML-Signature Syntax and Processing,” http://
www.ietf.org/rfc/rfc3275.txt, Mar. 2002.

[3] DarkAngel, “Mood-NT,” http://darkangel.antifork.org/
codes.htm.

MOYER ET AL.: SCALABLE WEB CONTENT ATTESTATION 697

Fig. 17. Dialog notifying user of an invalid content proof.

TABLE 5
Amortized Proof Performance when the Database is on a Separate Host System

Authorized licensed use limited to: University of Wisconsin. Downloaded on May 12,2023 at 13:40:19 UTC from IEEE Xplore. Restrictions apply.

[4] C. Reis, S.D. Gribble, T. Kohno, and N.C. Weaver, “Detecting In-
Flight Page Changes with Web Tripwires,” Proc. Conf. Nat’l Spatial
Data Infrastructure (NSDI ’08), pp. 31-44, 2008.

[5] J. Marchesini, S. Smith, O. Wild, and R. MacDonald, “Experi-
menting with TCPA/TCG Hardware, Or: How I Learned to Stop
Worrying and Love the Bear,” Tech. Rep. TR2003-476, Dartmouth
College, Hanover, NH, 2003.

[6] Trusted Computing Group, “Trusted Platform Module Specifica-
tions,” http://www.trustedcomputinggroup.org/developers/
trusted_platform_module/specifications, 2011.

[7] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn, “Design and
Implementation of a TCG-based Integrity Measurement Architec-
ture,” Proc. USENIX Security Symp., pp. 223-238, Aug. 2004.

[8] C. Lesniewski-Lass and M.F. Kaashoek, “SSL Splitting: Securely
Serving Data from Untrusted Caches,” Computer Networks, vol. 48,
no. 5, pp. 763-779, Aug. 2005.

[9] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and P. Khosla,
“Pioneer: Verifying Code Integrity and Enforcing Untampered
Code Execution on Legacy Systems,” Proc. 20th ACM Symp.
Operating Systems Principles (SOSP ’05), pp. 1-16, 2005.

[10] G. Mohay and J. Zellers, “Kernel and Shell Based Applications
Integrity Assurance,” Proc. Ann. Computer Security Applications
Conf. (ACSAC ’97), pp. 34-43, Dec. 1997.

[11] P. Iglio, “TrustedBox: A Kernel-Level Integrity Checker,” Proc.
Ann. Computer Security Applications Conf. (ACSAC ’99), pp. 189-198,
Dec. 1999.

[12] N.L. Petroni, Jr., T. Fraser, J. Molina, and W.A. Arbaugh, “Copilot-
A Coprocessor-Based Kernel Runtime Integrity Monitor,” Proc.
USENIX Security Symp., p. 13, Aug. 2004.

[13] P.A. Loscocco, P.W. Wilson, J.A. Pendergrass, and C.D. McDo-
nell, “Linux Kernel Integrity Measurement Using Contextural
Inspection,” Proc. Second ACM Workshop Scalable Trusted Comput-
ing (STC ’07), pp. 21-29, Nov. 2007.

[14] E. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. Devadas,
“AEGIS: Architectures for Tamper-Evident and Tamper-Resistant
Processing,” Proc. 17th Int’l Conf. Supercomputing, pp. 160-171, June
2003.

[15] J.G. Dyer, M. Lindemann, R. Perez, R. Sailer, L. van Doorn, S.W.
Smith, and S. Weingart, “Building the IBM 4758 Secure Copro-
cessor,” Computer, vol. 34, no. 10, pp. 57-66, 2001.

[16] T. Jaeger, R. Sailer, and U. Shankar, “PRIMA: Policy-Reduced
Integrity Measurement Architecture,” Proc. ACM Symp. Access
Control Models and Technologies, (SACMAT ’06), June 2006.

[17] cPanel, “Components of Random JavaScript Toolkit Identified,”
http://blog.cpanel.net/?p=31, Jan. 2008.

[18] “NebuAd,” http://www.nebuad.org/, 2010.
[19] A. Fox and E.A. Brewer, “Reducing WWW Latency and

Bandwidth Requirements by Real-Time Distillation,” Proc. Fifth
Int’l World Wide Web Conf. Computer Networks and ISDN Systems,
pp. 1445-1456, 1996.

[20] “Ad Muncher: The Ultimate Popup and Advertising Blocker,”
http://www.admuncher.com/, 2010.

[21] Symantec.com, “Adware.LinkMaker,” http://www.symantec.
com/security_response/writeup.jsp?docid=2005-030218-4635-99,
2007.

[22] Symantec.com, “W32.Arpiframe,” http://www.symantec.com/
security_response/writeup.jsp?docid=2007-061222-0609-99, 2007.

[23] C. Gaspard, S. Goldberg, W. Itani, E. Bertino, and C. Nita-
Rotaru, “Sine: Cache-Friendly Integrity for the Web,” Proc.
Fifth IEEE Workshop Secure Network Protocols (NPSec ’09). pp. 7-
12, 2009.

[24] S. Sedaghat, J. Pieprzyk, and E. Vossough, “On-the-Fly Web
Content Integrity Check Boosts Users’ Confidence,” Comm. ACM,
vol. 45, no. 11, pp. 33-37, 2002.

[25] S. Jiang, S. Smith, and K. Minami, “Securing Web Servers Against
Insider Attack,” Proc. 17th Ann. Computer Security Applications
Conf. (ACSAC ’01), p. 265, 2001.

[26] S. Jiang, “WebALPS Implementation and Performance Analysis:
Using Trusted Co-servers to Enhance Privacy and Security of Web
Interactions,” Master’s thesis, Dartmouth College, Hanover, NH,
2001.

[27] X. Zhang, S. Chen, and R. Sandhu, “Enhancing Data Authenticity
and Integrity in p2p Systems,” IEEE Internet Computing, vol. 9,
pp. 18-25, 2005.

[28] M. Corporation, “Microsoft Next-Generation Secure Computing
Base,” http://www.microsoft.com/resources/ngscb/
default.mspx, 2010.

[29] M. Noar and K. Nassim, “Certificate Revocation and Certificate
Update,” Proc. USENIX Security Symp., pp. 217-228, Jan. 1998.

[30] L. St. Clair, J. Schiffman, T. Jaeger, and P. McDaniel, “Establishing
and Sustaining System Integrity via Root of Trust Installation,”
Proc. Ann. Computer Security Applications Conf. (ACSAC ’07),
pp. 19-29, Dec. 2007.

[31] B.C. Neuman and T. Ts’o, “Kerberos: An Authentication Service
for Computer Networks,” Proc. IEEE Communications Conf., pp. 33-
38, Sept. 1994.

[32] M.T. Goodrich, “Implementation of an Authenticated Dictionary
with Skip Lists and Commutative Hashing,” Proc. 2001 DARPA
Information Survivability Conf. and Exposition, pp. 68-82, 2001.

[33] R. Merkle, “Protocols for Public Key Cryptosystems,” Proc. IEEE
Symp. Research in Security and Privacy, pp. 122-134, Apr. 1980.

[34] “Squid:Optimising Web Delivery,” http://www.squid-cache.org,
2010.

[35] “PHP: Hypertext Preprocessor,” http://www.php.net, Sept. 2008.
[36] M. Corporation, “Active Server Pages,” http://msdn.microsoft.

com/en-us/library/aa286483.aspx, 2010.
[37] A. King, “The Average Web Page,” http://www.

optimizationweek.com/reviews/average-web-page/, 2008.
[38] A. King, “Average Web Page Size Triples Since 2003,” http://

www.websiteoptimization.com/speed/tweak/average-web-
page/, 2008.

[39] T. Moyer, K. Butler, J. Schiffman, P. McDaniel, and T. Jaeger,
“Scalable Asynchronous Web Content Attestation,” Tech. Rep.
NAS-TR-0095-2008, Network and Security Research Center, Dept.
of Computer Science and Eng., Pennslyvania State Univ.,
University Park, PA, Sept. 2008.

[40] L. Cranor, “Privacy Bird,” http://www.privacybird.org/, 2010.
[41] S.E. Schechter, R. Dhamija, A. Ozment, and I. Fischer, “The

Emperor’s New Security Indicators,” Proc. 2007 IEEE Symp.
Security and Privacy (SP ’07), pp. 51-65, 2007.

[42] Security Space, “Secure Server Survey,” http://www.
securityspace.com/s_survey/sdata/200906/certca.html, June
2009.

[43] C. Jackson and A. Barth, “ForceHTTPS: Protecting High-Security
Web Sites from Network Attacks,” Proc. 17th Int’l Conf. World Wide
Web (WWW ’08), pp. 525-534, 2008.

[44] J. Schiffman, T. Moyer, H. Vijayakumar, T. Jaeger, and P.
McDaniel, “Seeding Clouds with Trust Anchors,” Tech. Rep.
NAS-TR-0127-2010, Network and Security Research Center, Dept.
Computer Science and Eng., Pennsylvania State Univ., University
Park, PA, Apr. 2010.

[45] S. Berger, R. Cáceres, K.A. Goldman, R. Perez, R. Sailer, and L. van
Doorn, “vtpm: Virtualizing the Trusted Platform Module,” Proc.
15th Conf. USENIX Security Symp. (USENIX-SS ’06), vol. 15, 2006.

[46] J. Schiffman, T. Moyer, C. Shal, T. Jaeger, and P. McDaniel,
“Justifying Integrity Using a Virtual Machine Verifier,” Proc. 2009
Ann. Computer Security Applications Conf., ACSAC ’09, pp. 83-92,
Dec. 2009.

Thomas Moyer received the MS degree in
computer science and engineering from Penn-
sylvania State University, University Park, where
he is working toward the PhD degree. He is a
researcher in the Systems and Internet Infra-
structure Laboratory of Pennsylvania State
University Computer Science and Engineering
Department. His research interests include web
security, systems security, cloud computing
security, and large-scale network configuration.
He can be contacted at tmmoyer@cse.psu.edu.

698 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 5, MAY 2012

Authorized licensed use limited to: University of Wisconsin. Downloaded on May 12,2023 at 13:40:19 UTC from IEEE Xplore. Restrictions apply.

Kevin Butler received the BSc and MS degrees
in electrical engineering from Queen’s Univer-
sity, and Columbia University, in 1999, and
2003, respectively. He worked in the Secure
Systems Group at AT&T Labs-Research. He is
an assistant professor in the Department of
Computer and Information Science at the Uni-
versity of Oregon, Eugene. His research focuses
on the security of storage, large-scale systems,
and networks. He has also examined malware

propagation and web systems, and was a member of the EVEREST
study of voting machines for the State of Ohio. He also has industrial
experience in network operations and research. He is a member of the
IEEE. He can be contacted at butler@cs.uoregon.edu.

Joshua Schiffman received the MS degree in
computer science and engineering from Penn-
sylvania State University, University Park, where
he is working toward the PhD degree, and is the
lead graduate student of the Systems and
Internet Infrastructure Laboratory, at Computer
Science and Engineering Department. His re-
search interests include operating systems and
virtual machine security, trusted computing, and
cloud computing. He is a student member of the

IEEE. He can be contacted at jschiffman@cse.psu.edu.

Patrick McDaniel received the PhD degree, in
1996, from the University of Michigan, Ann
Arbor. He is an associate professor in the
Computer Science and Engineering Department
at the Pennsylvania State University and codir-
ector of the Systems and Internet Infrastructure
Security Laboratory, Computer Science and
Engineering Department of Pennsylvania State
University, University Park. Patrick’s research
efforts centrally focus on network, telecommu-

nications, and systems security, language-based security, and technical
public policy. Earlier, he was a software architect and program manager
in the telecommunications industry. He is the editor-in-chief of the ACM
Journal Transactions on Internet Technology (TOIT), and serves as
associate editor of the journals ACM Transactions on Information and
System Security, IEEE Transactions on Software Engineering, and
IEEE Transactions on Computers. He has chaired several top
conferences in security including, among others, the 2007 and 2008
IEEE Symposium on Security and Privacy and the 2005 USENIX
Security Symposium. He is a senior member of the IEEE. He can be
contacted at mcdaniel@ cse.psu.edu.

Trent Jaeger is an associate professor in the
Computer Science and Engineering Department
at Pennsylvania State University and the codir-
ector of the Systems and Internet Infrastructure
Security (SIIS) Lab, Computer Science and
Engineering Department, Pennsylvania State
University, University Park. He joined the Penn
State after working for IBM Research for nine
years in operating systems and system security
research groups. His research interests include

operating systems security, access control, and source code and policy
analysis tools. He has published more than 90 refereed research papers
on these subjects. Trent has made a variety of contributions to open
source systems security, particularly to the Linux Security Modules
framework, the SELinux module and policy development, integrity
measurement in Linux, and the Xen security architecture. He is the
author of the book “Operating Systems Security,” which examines the
principles and designs of secure operating systems. He is active in the
security research community, having been a member of the program
committees of all the major security conferences, and the program chair
of the ACM CCS Government and Industry Track, as well as chairing
several workshops. He is an associate editor with ACM Transactions on
Internet Technology and has been a guest editor of the ACM
Transactions on Information and System Security. He is a member of
the IEEE. He can be contacted at tjaeger@cse.psu.edu.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

MOYER ET AL.: SCALABLE WEB CONTENT ATTESTATION 699

Authorized licensed use limited to: University of Wisconsin. Downloaded on May 12,2023 at 13:40:19 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

