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Abstract
Experimentation is critical to understanding the malware operation and to evaluating potential defenses. However, con-
structing the controlled environments needed for this experimentation is both time-consuming and error-prone. In this
study, we highlight several common mistakes made by researchers and conclude that existing evaluations of malware
detection techniques often lack in both flexibility and transparency. For instance, we show that small variations in the mal-
ware’s behavioral parameters can have a significant impact on the evaluation results. These variations, if unexplored, may
lead to overly optimistic conclusions and detection systems that are ineffective in practice. To overcome these issues,
we propose a framework to model malware behavior and guide systematic parameter selection. We evaluate our frame-
work using a synthetic botnet executed within the CyberVAN testbed. Our study is intended to foster critical evaluation
of proposed detection techniques and stymie unintentionally erroneous experimentation.
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1 Introduction

Malware experimentation is essential for researchers to

understand the malware operation and develop potential

defenses. To build effective defenses, detection systems

need to be evaluated through understanding the reactions

to parametrized real-world malware behaviors. However,

there are few publicly available malware-execution data-

sets. Researchers operate malware samples in a controlled

environment and observe the malware behavior.1–4

Although such an operation holds significance for the

community, constructing the controlled environments and

running the malware is an error-prone endeavor. Such

errors in experimental setup and malware implementation

can, and do, propagate to results and subsequent analyses.

In this paper, we build a malware experimentation pro-

cess and evaluate it with an execution of synthetic botnet

in a controlled testbed. The framework includes a sequen-

tial model for implementation of the malware and a valida-

tion procedure. Malware implementation covers a concrete

botnet example with parameters governing its behavior,

and validation procedure that aims at finding the impact

of the parameters on an evaluation of detection techniques.

In this manner, we evaluate systems through comprehen-

sive simulation of the malware with a parameterized

behavior.

We use a process to identify several common mistakes

researchers make and quantify the impact of those mis-

steps. We demonstrate that even a single parameter setting

in a malware configuration file changes the malware beha-

vior. The unnatural timing heterogeneity between legiti-

mate and malware traces example shows how defensive

mechanisms may lead to optimistic conclusions – results

in very few or even zero false positives. For the remedia-

tion of such fallacies, we present systematic parameter

selection to foster critical evaluation of proposed detection
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techniques and prevent erroneous experimentation.

Summarizing, we make the following contributions:

• We propose an experimentation framework for

operating the malware in a controlled environment

that aims at a prudent evaluation.
• The framework covers implementation and execu-

tion of a synthetic botnet to model parameterized

malware behavior.
• We propose a sensitivity analysis based validation

procedure. The procedure aims at avoiding optimis-

tic conclusions caused by unsystematic parameter

configuration.
• We present recommendations on the operation, and

experimentation of the malware that can be used by

the security community to foster their experiments.

2 Background

In general, malware is concerned with two phases: (1)

infection and (2) operation. In the infection phase, an

attacker runs a small snippet of code on the victim’s host

for instance via a malicious website. The exploit is suc-

cessful when a victim fetches and executes the code. In

the operation phase, the malware program starts running,

and it generates various malicious activities. These

phases mainly cover the behavior of the malware through

the configuration file, propagation techniques, and attack

strategy.

Researchers examine these phases by use of the real-

world traces in-the-wild or execute malware in a closed or

controlled environment, and collect system or network

level traces for assessing the proposed solutions. Real-

world malware traces are either limited due to the privacy

issues, being out of date, or have constraints on extending

new attacks to the existing malware variants. These limita-

tions lead researchers to obtain malware traces from a con-

trolled environment. For example, some researchers

attempt to solve the problem by obtaining the malware

traces from honeynet systems,5 others gather malware bin-

ary samples from repositories6 and execute in a controlled

lab environment.

For instance, BotMiner system executed two Internet

Relay Chat (IRC) and Hypertext Transfer Protocol

(HTTP) bot code (e.g., Spybot and Sdbot) in a controlled

virtual network.3 Livedas and Strayer et al. used a testbed

within the BBN company’s production network to obtain

the botnet traces.1,2 Similarly, Garcia et al. and Wurzinger

et al. executed and monitored the infected machines with

various malware families in a controlled laboratory.4,7

Further, some researchers use testbeds such as Emulab,8

PlanetLab,9 and DETER10 to execute and observe the mal-

ware characteristics in a closed environment.11,12

Although execution of malware using the ready-to-run

binaries appears to be straightforward, observing its beha-

vior under various parameters is a challenging task. Some

malware may use a simple configuration file, and this does

mutate its operation over time. For instance, recent mal-

ware variants dynamically change their port numbers for

filtering data, define a period of heartbeat message for

alive messages, and use different network protocols for

propagation.13,14 Such a file is a common practice among

the real-world captured malware to obfuscate its activity

and bypass filtering restrictions of the detection systems.

Therefore, it is necessary to generate a comprehensive set

of parameters in a controlled environment similar to those

found in-the-wild.

Our analysis of recently published existing research

results on controlled malware executions shows that their

evaluations lack modeling the parameterized malware

behavior.1–4,11,15 Our analysis leads to the following

observations: (a) the parameters that govern the malware’s

behavior is not often transparent, (b) malware binaries are

executed using the constant parameter values, (c) despite

the implementation differences of the malware, the detec-

tion rate is very high (very few or even zero false posi-

tives), and (d) the datasets used for the experimental

evaluations are not often publicly available. The above

observations create a gap of an appropriate level of detail

to replicate and validate the evaluation results.

To address these problems, we draw inspiration from

our experience in malware detection techniques.16–20 We

first present the requirements for an experimentation

framework for prudent evaluation. Using this, we imple-

ment and operate a botnet in a controlled environment

with a set of parameters that are used similarly to the para-

meters of the in the wild malware to model its behavior.

To demonstrate and avoid the potential experimentation

and parameter variability fallacies, we implement a valida-

tion procedure for operating the malware. We show exam-

ples of the parameters impacting the operation of a botnet

binary through various parameter configurations. Finally,

we present the details of the botnet implementation and

share the experimental and operational efforts to help

researchers to foster their evaluation of experimentation.

3 Experimental design requirements

We aim for malware experimentation in a controlled envi-

ronment with specific capabilities to be operated. To do

so, we investigate the recent malware reverse engineering

research efforts to cover the malware characteris-

tics.13,21–26 These efforts establish requirements for an

experimentation design that are critical to operating and

exploring the parameterized malware behavior. Without

such requirements, one may resort to a simple and
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imprecise experimentation. We summarize this process in

Figure 1 and discuss the details below.

1. Systematic approach– This represents the clear

purpose of the problem to be solved. Definition of

the problem helps to identify the correct adversar-

ial assumptions and malware parameters influen-

cing the overall implementation goals.

2. Valid assumptions– Evaluating a system’s robust-

ness in realistic, adversarial, and complex scenarios

requires explicitly listing the assumptions. Such

scenarios should match the environment through

motivated and skilled attackers. Otherwise, simpli-

fying assumptions need to be considered carefully,

as imprecise assumptions about an attacker and

malware capabilities may undermine the relevance.

3. Correct parameter space– This includes the mal-

ware execution under a various set of parameters,

because these parameters may impact the malware

behavior. The parameters include but are not lim-

ited to the number of infected hosts, propagation

patterns, and communication protocols. The flex-

ible setting of these parameter values and repeating

the experiments renders the conclusions valid, as

each of the parameters impacts the outcome of the

malware behavior and provides a fine granularity

of observations under different malware infections.

4. Flexibility– This refers to the ability for the imple-

mentation to adapt possible development, testing

changes in the rapid evolution of real-world

threats. The key is building a highly flexible mal-

ware design that is a loose coupling of malware

lifecycle. Generally speaking, it includes develop-

ing a solution that is not tightly integrated with

each component of infection, communication pro-

tocol, rally mechanism, evasion techniques, and

malicious activities. The flexibility makes it easier

for subsequent versions of the malware to update

its code, adapting techniques and creating new

variants.

5. Validation– The parameters and assumptions of

any implementation are subject to change and

error. Validation procedure is required for a reality

check and reliable statistics report, as it often

serves to challenge the implicit assumptions and

the parameter space. These are needed to present

the impacts on the conclusions to be drawn.

4 Botnet model and simulation

We present the details of the botnet design and its imple-

mentation in the Cyber Virtual Assured Network

(CyberVAN) testbed. Figure 2 illustrates an overview of

the five components of the malware design and a valida-

tion procedure. In this section, we present the design and

implementation details of the each component. We pro-

vide the major engineering obstacles that we overcame to

design the botnet. The implementation is made available

on the project website (https://cybervan.appcomsci.

com:9000/welcome). In Section 5, we run the botnet in the

CyberVAN testbed and collect data to validate its behavior

through a wide range of parameters governing its

behavior.

Testbed Environment – We implement and run the

malware in CyberVAN testbed.27 The testbed is designed

to enable functional testing and performance evaluation of

distributed applications for supporting cyber security

experimentation. It models hosts using various virtualiza-

tion mechanisms and networks using discrete event net-

work simulation. It supports a hybrid emulation

environment with hosts running applications that exchange

data over simulated wired and wireless networks. In con-

trast to other existing testbed facilities such as GENI,28

DETER,10 and National Cyber Range,29 CyberVAN pro-

vides a flexible experimentation environment both for

public and military networks. Further, it can be configur-

able to create a connection in the closed network nodes,

and nodes in the testbed can connect other nodes that are

out of the simulation environment through Internet IP

path. A complete description and features of the

CyberVAN are given in Chadha et al.30

Botnet Implementation – We present an implementa-

tion of a concrete botnet in which details are considered

from the reverse engineering of malware found in-the-

wild. The implementation includes the infection, opera-

tion, and propagation of a botnet developed to run in the

CyberVAN testbed. The implementation is flexible; it

Figure 1. Experimentation design requirements: Comprehensive goals are necessary to implement and operate realistic malware
in a controlled environment.
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allows both executing arbitrary commands on the infected

botnet victims and integrating additional vulnerabilities.

The implementation includes five components of a bot-

net architecture (see Figure 2). Each component is shown

in rectangles, with directed edges between them indicating

dependencies. The entire botnet design works sequentially,

and each component is dependent on the one preceding it.

(�, �), these components generalize assumptions and

attacker capabilities to form a sound foundation for the

implementation process to proceed. (�), a design compo-

nent covers the elements of the infection, rendezvous point

discovery, propagation and communication patterns. (�),

a component that captures various testbed and malware

configuration logs as well as the errors for diagnosis pro-

cess, and (�), a component includes static and dynamic

parameters to observe the malware’s behavioral variations.

We next detail these components.

4.1 Terminology

This section presents the definitions used in the subsequent

sections.

• Attacker: Human operating the botnet to perform

malicious activities.
• BotMaster: Software residing on the BotMaster

computer to provide an interface for the botnet.
• BotMaster computer: Computer used by an attacker

to run the BotMaster software.
• Victim: Computers under attacker’s control.
• Botnet victim: Computers infected with the

BotClient malware.
• Private name server computers: Computers on

which attacker has the ability to configure and

operate a lightweight name server application(e.g.,

Dnsmasq).
• Rendezvous point: Computers on which an attacker

uses to configure and run the rendezvous service.
• BotClient: Malicious software residing on the vic-

tim botnet member computers.

• Public name server: The underlying legitimate

name service infrastructure for resolving the host

name lookups.
• Rendezvous service: It is a software residing on a

rendezvous point computer that provides a bi-

directional relay service between BotCients and

BotMaster. Rendezvous service is an indirection

intended to enhance stealth and robustness.

Rendezvous service is not strictly required, as it

does not change the message flow. However,

BotClients can, if desired, communicate directly

with rendezvous service to alter the flow of the net-

work traffic.
• Control: Computer used to control the testbed sce-

nario. The control computer has a SSH access to

the testbed computers. In this way, the access to the

host is preserved even if there is a connection fail-

ure among the hosts.

4.2 Assumptions

This section presents the assumptions of the botnet imple-

mentation as follows:

• Attacker has the ability to change name server

entries for a few specific Domain Name System

(DNS) zones.
• At least one botnet victim has occasional network

connectivity to a rendezvous point.
• The rendezvous point have network connectivity to

BotMaster.
• Initial infection of the first victim is through social

engineering (e.g., an unsuspecting user is tricked

into downloading and executing the BotClient).
• Subsequent infection of additional victim comput-

ers is through the exploitation of vulnerabilities on

those computers and results in downloading and

executing the BotClient. We consider the following

BotClients that can be exploited to download files

and execute arbitrary commands:

Figure 2. Overview of malware experimentation process: The process includes implementation and operation of the malware with
various parameter configurations to explore the malware’s behavioral variations, and a validation procedure to address the
erroneous experimentation.
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- P2paa daemon. P2paa is a daemon written explicitly

to support the attack propagation. The p2paa configura-

tion file (known as peers) on each computer identifies

the p2paa peers of that computer and enables identifica-

tion of other botnet victims.

- SQL injection. The SQL database executing on

selected victims is vulnerable to SQL injection attacks.

- Shell shock. The shell executing on selected victims is

vulnerable to the shell shock attack.
• Once a victim is infected, BotClients are able to

self-propagate to other victims. Propagation

requires reconnaissance to discover potential vic-

tims. Two forms of reconnaissance are

implemented:

- Stubbed. The set of victims and their vulnerabilities

are listed in header files compiled into BotClient and

used to direct propagation from each victim. It corre-

sponds to a real attack in which the attacker has previ-

ously mapped the victim network and has tailored the

attack for that specific network.

- Automated. Victims actively scan for the new victims

using a network mapping tool nmap upon infection.

4.3 Capabilities of the attacker

We present the capabilities of an attacker through a

BotMaster as follows:

• Execute(): It specifies an arbitrary system com-

mand, which BotClients on all botnet victims exe-

cute. The results of the execution (stdout and
stderr) are streamed back to the BotMaster for

display.
• Download(): It specifies a source file with the

full path name of a file existing on the attacker’s

computer and a destination file. The source file is

downloaded to all victims and stored in the destina-

tion file.

The adjective system in execute command indicates

that the command is a binary executable file. For instance,

it is suitable as a parameter to the execve system call.

We note that all of the standard Linux commands (e.g.,

ls, tail, cat, etc.) are virtually executable binaries,

thus the limitation is minor. However, some shell scripts

command cannot be executed as they would be from the

command line. Rather, these commands must be executed

as arguments to their interpreter such as in bash. The abil-

ity to download and execute a file gives the attacker virtu-

ally unlimited access to the victims. For instance, a simple

exfiltration program that examines the victim file system

for confidential text files and sends them back to the

attacker is provided. The attacker can simply download

and execute this file to perform exfiltration. BotMaster

creates a separate Xterminal for each victim and routes

output among the windows for the victims involved with

the execution of a command.

The execute interface precludes the efficient use of

interactive commands (e.g., vi). BotMaster has no capabil-

ity to send additional input to an interactive command

after the command has started. Further, the stdout and

stderr streaming facility for returning results is unsuita-

ble for any commands that require terminal rendering cap-

abilities. We also collect periodic report status from

BotClients and display in the Xterminal.

4.4 Design

The bulk of BotMaster, BotClient, and rendezvous service

designs are trivial. It deals with mundane tasks such as

collecting input from an attacker, using socket-based com-

munication to move messages between the entities, and

internal logic to move messages within the entities.

However, four design objects are worth detailed treatment:

(1) rendezvous point agreement between BotClients and

BotMaster, (2) infection of BotClients to additional vic-

tims through vulnerabilities, (3) communication between

entities, and (4) persistence of BotClients. We show the

design objects in Figure 3 and discuss them in the follow-

ing subsections.

4.4.1 Rendezvous point discovery. As botnet victims are

infected with BotClient, they attempt to communicate with

BotMaster through a rendezvous point. BotMaster periodi-

cally moves the rendezvous point among a set of the avail-

able rendezvous point for stealth. Therefore, the

communication requires that BotMaster and BotClients

come to a dynamic agreement upon the current rendezvous

point. The agreement is reached by one of three different

methods. It is determined by BotMaster and given as an

argument before running the infected hosts as follows:

• Single Fast flux – BotMaster starts rendezvous ser-

vice on one of the rendezvous points and registers

it under a hard-coded name (notionally RPNAME)

with the public name server. BotClients query pub-

lic name server using RPNAME. If found, it uses the

resolved address as a rendezvous point.
• Double Fast flux – BotMaster starts rendezvous ser-

vice on one of the rendezvous points. Then, it starts

a private name server on one of the name servers

by registering RPNAME with the chosen rendezvous

point on the private name server. BotMaster regis-

ters the selected private name server under a hard-

coded name (notionally NSNAME) with the public

name server. BotClient queries public name server

Celik et al. 35



using NSNAME. If found, it uses the resolved

addresses as a private name server to resolve

RPNAME and the resolved address as the rendez-

vous point.
• Domain Name Generation Algorithm (DGA) –

BotMaster picks a name for the rendezvous point

using an algorithm that deterministically translates

the current time (down to hour granularity) into a

string. It selects a rendezvous point, starts rendez-

vous service on that and registers the string with

the public name server. In this manner, the string

resolves to the chosen rendezvous point. BotClient

generates a range of string based on the current

time plus and minus an interval and queries the

public name server for each string. Note that as if

the clocks on the victim and BotMaster are within

the range of each other, then the set of strings gen-

erated by BotClient contains the string registered

by BotMaster. If the public name service resolves

any of the strings, BotClient uses the resolved

address for that string as the rendezvous point.

We now detail the properties of the rendezvous point

that defines the capabilities of the BotMaster.

Rendezvous Point Alteration– BotMaster may peri-

odically stop the current rendezvous service, pick another

rendezvous point, start the rendezvous service on that

newly chosen rendezvous point and update the public and

private name server accordingly. Depending on the time of

last rendezvous service migration, the name server update

may or may not result in a new string. Stopping the current

rendezvous service causes communication failures that

prompt BotClients to repeat the rendezvous point discov-

ery steps.

Rendezvous Point Selection– The choice of method to

use is controlled by BotMaster. BotClients discover the

choice based on the results of public name server queries.

If RPNAMEis resolved, then BotClient knows that

BotMaster uses single fast flux. If NSNAME is resolved,

then BotClient knows that BotMaster is using double fast-

flux. If neither of them is resolved, BotClient assumes that

BotMaster uses DGA. When BotClient is triggered by

communication failures to rediscover the rendezvous

point, BotClient forgets the method it had been using. This

aims at giving flexibility to BotMaster changing the

method dynamically.

Rendezvous Point Failure– If a BotClient does not

have access to the public name server infrastructure, none

of the methods discover the rendezvous point. Further,

intermittent network and software faults may cause either

rendezvous point discovery or rendezvous service usage to

fail. When BotClient cannot discover a rendezvous service,

BotClient resorts to the parental linage for communication

with BotMaster. When a BotClient runs, it attempts to

infect other victims, and the BotClients on these victims are

considered the children of infecting BotClient. During the

infection step, the identity of the infecting BotClient (the

parent) communicates to the new victims (the children).

BotClients can perform store-and-forward relay service

for their children. They chose to contact BotMaster

through their parent’s store-and-forward service (if they

cannot find an usable rendezvous service as discussed pre-

viously). We note that the initial victim has no parent,

therefore, if the initial victim cannot use the rendezvous

service, the entire botnet will be unable to communicate

with BotMaster. If initial victim’s access to rendezvous

service fails because of an intermittent fault, its store-and-

forward capabilities allow subsequent recovery with mini-

mal message lost. However, if the failure is structural

(e.g., the initial victim cannot access the required public

name server, private name server, and rendezvous point),

botnet formation irrecoverably fails.

Figure 3. Diagram of the malware design objects.
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Rendezvous Point Recovery– In addition to communi-

cation failures triggering BotClients to attempt rendezvous

service rediscovery, BotClients periodically forget the cur-

rent mode of BotMaster communications and perform the

rendezvous service discovery steps again. Therefore, if a

BotClient uses parental lineage communication because of

an intermittent fault existing during rendezvous service

discovery, BotClient eventually reverts to using rendez-

vous service after the intermittent fault has cleared.

4.4.2 Propagation. This section presents the steps taken by

BotClient to find other victims and propagate to them.

Stubbed Reconnaissance– BotClient consults

compiled-in data structures to determine the set of victims

and their vulnerabilities. These data structures are pre-

pared ahead of time based on network topology of sce-

nario. We implement a utility program to help this task.

The utility program runs from the control computer and

determines the set of other computers that can be accessed

by each host. It builds a data structure – called the

connectivitySet – for each scenario using this infor-

mation. When BotClient is executed, it finds the

connectivitySet and attacks the computers listed in

it. The utility program does not determine which vulner-

ability to use for each computer; this is specified manually

by the creation of a data structure.

Automated Reconnaissance– When using the auto-

mated reconnaissance, BotClient uses nmap to discover

other reachable computers that have the p2paa, SQL data-

base, or open SSH ports. However, the propagation might

carry the danger of requiring an extremely long time to

find victims. To help ameliorate this risk, at compile time,

we use target specification using nmap’s host specification

format to limit the range of network mapping.

Infection– BotClient attacks computers using one of

the three exploits by using the attack method with the

given priority order of p2paa, SQL, and shell shock.

Infection consists of downloading a copy of BotClient to

the victim and executing it. BotClient essentially sends a

copy of the executable file to each victim. However, the

executable is modified slightly before being sent. The

modification includes a particular purpose binary editor

built into BotClient, which performs the following steps:

1. Update the parent structure in the executable so

that the current computer is listed as a parent. This

enables infected computers to know who their par-

ent is in the case of parental lineage communica-

tion is used.

2. Add all of the computers that the infecting

BotClient has discovered as new victims to the

victim’s list. This optimization aims at preventing

attempts to infect already infected computers.

BotClients do not attempt to infect computer listed

in the known victim’s list. This is enabled by a

mutex to prevent multiple instantiations.

Architecture Dependency– Experiment setting needs

to support the platforms that a victim uses. That is, if

BotClient executables are compiled for a particular archi-

tecture (i.e., different operating systems), it cannot be exe-

cuted on the other architectures. Therefore, BotClient

attempts to download each version to each victim and tries

to run both executables, knowing that only one succeeds.

An approach in which the infected host determines the

platform of the victim and downloads only the appropriate

version may appear more optimal, however, since the vic-

tim’s reconnaissance may discover new victims of any

platform, it is always necessary to download both versions.

4.4.3 Communication. The BotMaster use various commu-

nication channels to make the botnets resilient to blocking

or shutdown. Therefore, it is vital to consider the range of

C2 topologies and communication protocols that attackers

typically use. This section discusses communication chan-

nels required for the botnet lifecycle as presented in

Table 1.

All communications between BotClients, rendezvous

services, and BotMaster may prefer TCP, UDP or both.

For instance, BotClients and rendezvous service interface

may use port 80 to hide in HTTP traffic. The rendezvous

point knows the address of the BotMaster through a

Table 1. Malware communication channels.

Communication

Status messages from BotClients to BotMaster
Execute command messages from BotMaster to BotClients
Download command messages from BotMaster to BotClients
Inject attack messages from BotClients to p2paa on peer victims
BotMaster and BotClient interaction with public and private name servers
BotMaster and BotClient interaction with public and private name servers
BotMaster starting and stopping rendezvous service on chosen rendezvous point and private name server
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command line argument. Parental lineage communication

occurs over a specific port number in the upward direction

(child to parent), and another port number is assigned in

the downward direction (parent to child). Inject attack

messages occur on the p2paa port. The port numbers are

configurable, as dynamic port numbers can be assigned to

subsequent versions.

BotClients and BotMaster Communication –

Communication between BotMaster and BotClient is

BotClient driven. BotClients periodically send a status

message to BotMaster. Upon receipt of the status message

BotMaster responds with an acknowledgment message

that may contain a BotMaster command execute() or

download(). The acknowledgment contains the

BotMaster command if the attacker has entered a com-

mand that has not yet been sent to the specific BotClient.

This is indicated by a command serial number included in

the status message.

Results of execute() and download() commands

are conveyed from BotClient to BotMaster in the status

messages. It parses these fields out of the status message

and displays them on the BotClients Xterminal. An one-

time result is supplied for download commands, which

indicates that the download has completed. For exe-
cute() command multiple results occurring over a con-

siderable time span can be reported through status

messages depending on the executed command type. For

instance, free -s 1 command produce a status message

every second, whereas free command with no arguments

provides a single status message. When the commands are

used to convey download or execute results, BotClients

generate status messages on-demand, not strictly

periodically.

BotMaster and Name Server Communication –

BotMaster interaction with public name server is through

the Linux utility nsupdate, which is used to add and

remove entries from the public name server. It defines a

temporary file corresponding to nsupdate’s specifica-

tion and executes nsupdate command with that file as an

argument.

BotMaster interaction with the private name server is

through the scp (Secure Copy), ssh (Secure SHell) and

Dnsmasq utilities. Dnsmasq (DNS forwarder and

Dynamic Host Configuration Protocol (DHCP) server) is a

lightweight private name server used by BotMaster. It is

configured to resolve a single name through a configura-

tion file (which is identical in format to the standard /
etc/hosts file). BotMaster constructs the necessary

file, uses scp command to connect to the private name

server, and uses ssh command to that computer to start

Dnsmasq by specifying the file(s) as an argument. When

migrating to a different name server, it connects to the cur-

rent name server and uses pkill() to stop the running

Dnsmasq.

BotClient interaction with the public and private name

server is implemented through the getaddrinfo()
library call and Linux utility host, respectively. When

attempting to resolve a set of DGA names, BotClient uses

multiple threads to perform queries in parallel, since

queries are mostly I/O bound. Depending on the communi-

cation characteristics, the number of threads is adjusted to

achieve reasonable network and name server utilization

(controlled by a manifest constant in BotClient). For

instance, too many threads can congest slow networks or

low powered name servers, and too few threads can result

in excessive DGA rendezvous point discoveries.

4.4.4 Parameters. While our implementation covers the

design of the real-world malware, it is necessary to have a

parameter space that governs its behavior and activities.

We now elaborate these parameters. First, malware opera-

tion requires internal manifest constants that are set to rea-

sonable values for the experimentation. However, the

malware behavior can be changed dynamically by custo-

mizing the parameters in the manifest file. We categorize

these parameters as (1) rendezvous point discovery, (2)

communication, and (3) scenario size. Table 2 presents the

list of the parameters. The botnet executables need to be

re-built for parameter changes to take effect. As a conveni-

ence, a few of the parameters that the operator may be

more likely to change can be dynamically configured

through the use of configuration file at start up.

We remark that much real-world malware shares the

similar parameters. These parameters provide a valuable

perspective to their analysis. For instance, Zeus crimeware

toolkit employs both static and dynamic configuration

files. These files instruct an infected host to change its

behavior for becoming stealthy and efficiently facilitate its

criminal activities. We observe that Zeus includes similar

parameters as we have identified in our implementation.

For instance, it uses timer_logs parameter to specify

the time interval to upload the stolen data on infected

hosts. More advanced parameters such as file_webin
jects is also used. It includes a list of HTML code with

domain names that is used for stealing credentials.31

4.5 Persistence

Persistence makes the BotClient start automatically after a

previously infected node is rebooted. While most malware

attempts to achieve persistence, persistence can often be a

problem in an experimentation environment unless carefully

monitored, and this may result in inadvertent malware exe-

cution. Persistence is by default dynamically configurable.

If persistence is enabled through a dynamic configuration

option after startup, BotClient attempts to edit the config-

uration file on the infected node to add itself as a program
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that automatically starts after reboot. Persistence may not

always be successful since some infection vectors do not

obtain root privilege on the infected node. This is due to the

reason that root privilege is required to edit the configura-

tion file. We create a script allowing to run a BotClient code

after an infected host reboots.

4.6 Diagnostics

Testbed problems, botnet configurations, and operator

errors may result in execution failure of a BotClient.

Therefore, it is necessary to specify a correct diagnostics

to resolve such problems. We write logs to a file for all

components upon encountering an unexpected situation.

Each component writes a message to stderr, which

includes the C function name and line number, a human

readable description of the situation, and a human readable

rendering of any system error codes. Further, we write the

description of other significant non-error events (e.g., ren-

dezvous service migration) to stderr. When botnet code

starts the botnet component, the stderr stream of each

component is redirected into a file specific to that compo-

nent of P2paa, BotClient, BotMaster and rendezvous point

for quickly tracing back to the errors.

4.7 Other design issues

Extensibility Support– A typical use of a botnet is to

download and execute additional malicious code on the

Table 2. Parameters used to govern the botnet behavior.

Rendezvous Point Discovery Parameters

DOMAINLEN Length of the generated name for DGA-based botnets
TLD Top-level domain for all names queried or registered with the name server
RANGE Number of years/months/days/hours/minutes + /- the current year for generating the set of

DGA names for DGA BotClient
NSNAME For double fast flux specifies the name of the private name server registered with the public

name server
RPNAME For single and double fast flux specifies the name of the rendezvous point registered with the

public (single fast flux) or private (double fast flux) name server.
MAXT Number of parallel threads used for name server queries for DGA botnets (High values may

tend to flood network and name server, low values increase the rendezvous point discovery
time)

RPTTL Time-to-live in seconds for records added to the public and private name server, and the
period at which rendezvous service is migrated. (For double fast flux, the private name server
is migrated every cycle through the rendezvous points)

MAXRPS Maximum number of rendezvous points the BotMaster migrates the rendezvous service
among

MAXNSS Maximum number of private name server computers the BotMaster migrates the private name
server among

Communication Parameters
MIN_MAX_STATUS Time period of an infected host that attempts to send a status message to the rendezvous

point
MAX_BOTNET_ROUTES Maximum number of parents between BotMaster and BotClient for parental lineage

communication
CANDCUPPORT Port number used for child to parent parental lineage communications
CANDCDOWNPORT Port number used for parent to child parental lineage communications
MAX_COMMANDS Maximum number of commands from BotMaster to BotClients that may be stored awaiting

delivery through parental lineage communications
MAX_COMMAND_FDS The largest file descriptor that is used for the pipe in executing BotMaster issued commands
MAX_REPLIES Maximum number of command replies that may be buffered awaiting delivery from BotClient

to BotMaster
Scenario Size Parameters
MAX_PARENTS Maximum number of parents any BotClient binary edits into the BotClient executable during

propagation
MAX_KNOWN_VICTIMS Maximum number of victims the BotClient binary edits into the BotClient executable during

propagation
MAX_VICTIMS Maximum number of victims BotClient attacks
MAX_T Maximum number of concurrent threads that the rendezvous service may use for BotClient to

BotMaster communications
MAX_V Maximum number of BotClients the BotMaster can support
MAX_COMMANDS Maximum number of BotMaster commands the BotMaster stores that is pending delivery to

BotClients
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botnet victims. Any number of code can be saved under a

sub-directory of a BotCliet and the code is then can be

executed. We detail exfilClient malware that we integrate

to the BotClients. ExfilClient is a C program compiled

into a binary executable that performs exfiltration by

searching files on the victim. It looks for text files contain-

ing the sensitive words such as ‘‘secret’’ and upon finding

such a file, outputs the entire file to stdout.

ExfilClient is executed through the botnet by first

downloading (using the download() command) it from

the attacker computer to the botnet victims. Then exe-
cute() command is used to run it on the botnet victims.

This results exfiltrated files being displayed in real time

on the BotClient xterms. It is also recorded in the individ-

ual log files on the attacker’s computer to extract the exfil-

trated files contents at the attackers’ convenience.

ExfilClient is built by the make, and the resultant executa-

ble exfilClient is distributed to /tmp on the attacker’s

computer. BotMaster’s download command can be used to

distribute it to an arbitrary location on the botnet victim

computers (e.g., download /tmp/exfilClient, /
tmp/ex). Then, it can be executed using execute com-

mand /tmp/ex.

User Interface and Usability– To hide the complexity

of using the capabilities described previously, there is a

need for an automated toolkit to reduce the burden on the

experimenter. Therefore, we developed graphical user

interfaces (GUI), which is a pre-packaged experimental

environment that let a user load and modify the malware

binaries and monitor the errors. Figure 4 presents exam-

ples of interfaces allowing users to run malware, collect

data and enable its parameter tuning. The interface also

allows configuring the each experiment. An experimented

is able to define malware parameters and employ previ-

ously discussed parameters in an automated way.

5 Validation

In this section, we present a validation procedure to ana-

lyze the parameterized malware behavior. Dealing with

the parameters is a challenging problem, but ignoring them

may lead evaluations to provide misleading evidence.

Therefore, a complete, error-free experimentation for this

problem requires additional analysis. The procedure aims

at fostering the evaluation of detection techniques and pre-

venting erroneous experimentation. Additionally, we pres-

ent generating legitimate traffic from synthetic tools, and

publicly available traces to blend in malware traces for

analyzing their traffic characteristics.

5.1 Validation procedure

We introduce a validation procedure to overcome experi-

mentation and parameter variation fallacies while operat-

ing the malware. We note that even though the malware is

programmed correctly and generating no error logs, a para-

meter value variation or erroneous experimentation may

have an impact on evaluation results. To overcome these

issues, we present a sensitivity analysis of (1) raw files,

and (2) fine-grained behaviors. Figure 5 illustrates the

seven steps of the validation procedure. We next describe

these steps.

1. Experimental design: We run malware on a

CyberVAN testbed with a various number of inter-

connected hosts and network topology. We termi-

nate experiments after at least one hour of data

collection. All reported measurements are obtained

from infected and benign hosts, as this is the por-

tion that our framework attempts to validate.

2. System and network level data collection: We

collect system and network level raw files from a

subset of hosts. Our goal is having a nearly com-

prehensive snapshot of the host. Using a subset of

the hosts may affect some of our assessments. For

instance, we may miss a portion of the network

trace that includes an abnormal behavior, and this

fraction of traffic may change the resulting evalua-

tion. We address this problem in step 4 below.

3. Error logging: Error logs contain the critical error

records obtained from design components while

Figure 4. User interface showing the scenario, scenario resources, a connection to a host for data collection and a command
window enabling various operations on the host machine.
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running the malware. We write the description of

other significant non-error events to track the mal-

ware behavior. These errors help us to map a

record and the component that causes the error.

4. Fine-grained behavior processing: To have a

comprehensive view of the malware behavior, we

collect fine-grained behaviors both from network-

level and system-level activity. Network level

exploration includes inter and intra-flow based

attributes.32–35 These attributes are selected based

on the understanding of packet size distribution,

timing based statistics (e.g., packet inter-arrivals),

and packet/byte transfer rates. We also use DNS-

based features to reveal the DNS request behavior,

e.g., number of IP addresses, number of distinct

countries, and TTL value statistics. The system-

level properties – system state and running pro-

cesses activity of file system, memory, network,

and registry – are recorded with the sysdig chisels

that unifies the results of system tools such as

strace, tcpdump, htop, iftop, and lsof.36 A reader

can refer to complete list of behaviors: argus flow

analyzer for network level,1 sysdig filters for host-

level,2 and tshark for DNS filters.3

5. Filter: The malware behavior is compared with

the benign behavior based on filtering the charac-

teristics of malware and benign ground-truths. We

use correlation score filtering algorithm37 and var-

iance ratio.38 The aggregated score of these algo-

rithms gives the relevance of each feature as

having a minimal correlation between behaviors

but being highly correlated to a specific behavior.

Specifically, this helps to find a subset of attributes

that are identified as the most statistically different

ones between the malware and benign sample

behaviors.

6. Feature tracking: This component is used to

aggregate the results of correlation scores. The

results are associated with parameters that are

leading inter-class differences. We use this infor-

mation to validate the parameter space and imple-

mentation errors caused by the attribute variability

between malware and benign samples.

7. Sensitivity analysis: The scores given by feature

tracking component is used to repeat the experi-

ments. We change the parameters and start a new

independent experiment from step 1. We then

explore the parameter space to observe the effect

on the subsequent running outputs with the new

parameters. This process pinpoints the source of

significant differences between benign and mal-

ware behaviors and allows for analysis of inconsis-

tent or unclear behaviors or depict (unrealistically)

optimistic detection results.

We build a Random Forest classifier (RF) using the

attributes extracted at filtering step (step 5) for evaluating

the malware detection performance. We note that our goal

is neither optimizing feature selection nor detection tech-

nique. We would like to observe the classifier’s response

to the fine-grained feature space of the benign and mal-

ware ground-truths with various parameter settings. We

note that the outputs from feature tracking component

enable to repeat a broad range of scenarios. This allows us

to understand the impact of parameters on the malware

behavior and its detection results. In addition to the syn-

thetic traffic, we use the real-world traces and follow same

validation procedure. This uncovers the behavioral differ-

ences of the malware observed through benign real-world

traces performed at filtering step.

5.2 Legitimate traffic generation

It is a common practice to mix benign and malware traffic

to separate malicious and legitimate activities. We study

two common methodologies to generate legitimate traffic

1http://nsmwiki.org/index.php?title=Argus
2http://www.sysdig.org/wiki/sysdig-userguide/#filtering
3https://www.wireshark.org/docs/dfref/d/dns.html

Figure 5. Validation procedure: The steps are used to point and analyze the parameterized behavior of the malware.
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to compare their network characteristics with the malware

traffic: (1) traffic generation through synthetic modeling

of users based on their behaviors, (2) using real-world traf-

fic. We use these traffics to observe and find solutions for

the artifacts after blending with malware traces in the fol-

lowing section.

5.2.1 Modeling users. Our first approach is based on con-

trolled traffic generation tool called Markov Brain.

Markov Brain generates synthetic network traffic that is

captured from a real computing environment. It supports

hundreds or thousands of unique user profiles. We use

Markov Transition Matrix (MTM) for the set of com-

mands for a given user, where entries in the matrix encode

probabilities of switching from one user activity to

another. The major strength of the approach is generating

MTMs for different user behaviors. Existing systems

attempt to fill out the transition probabilities randomly.

Instead, we maintain a correspondence between the entries

and transition probabilities estimated from actual users.

The major shortcoming of this approach is the difficulties

in modeling the user behavior convergence and user

differentiation.

To address these problems, we start with the user com-

mand frequency distribution π0. π0 is the principal eigen-

vector of the MTM and is thereby an important

characteristic since the eigenvector points to the long-term

behavior of the user. By controlling the distance between

π0 for different users, we have a reliable way of ensuring

that this process prevents coalescing into the same user

over time.

The next problem is choosing π0 often for hundreds of

users. The correct values of π0 depends on the accurate

extraction of system process usage characteristics. With

this information, we define a closed-loop process that pro-

duces a simulated user who, in the long term, is similar to

the real user. The process includes three steps: (i) we

extract process usage statistics from real user activities;

(ii) we adjust π0 values for simulated user, and (iii) we

configure the MTM based on the new π0 values. This

approach allows a simulated pool of users that follows a

group of real users’ behavior so that the application usage

mimics the real user activity.

5.2.2 Background traffic. We discussed that Markov Brain

is able to generate traffic from the actions of the modeled

users. However, there is a need for using realistic back-

ground traffic that represents the traffic volumes seen by

network elements such as servers or firewalls. The genera-

tion of the background traffic may affect the real network

packet distributions, and packet inter-arrival times. To

solve this problem, we use the recently released DETER’s

Lego-TG (Lego Traffic Generator) toolset.39 Lego-TG

enables observation and modeling of real-world traffic for

future replay. It distinguishes itself from the prior art such

as TCPreplay, swing, bit-twist, and harpoon, by decom-

posing traffic generation into multiple Lego-style blocks.

Depending on the features of the traffic to be generated,

the blocks are used to aggregate traffic that matches the

desired background traffic.

5.2.3 Real-world traffic. One of the most important aspects

of the network-level malware detection is blending the

malware traffic with the real-world traffic. This process

needs caution, as the packet traces may lack some applica-

tion types. For instance, malware mimicking the FTP traf-

fic that is not found in legitimate traffic may yield

unrealistic results. To avoid such artifacts, we use a small

scale organization network recorded at the University of

Twente with around 35 employees and over 100 stu-

dents.40 Further, we use Lawrence Berkeley National

Laboratory (LBNL) traces that aim at capturing the char-

acteristics of the traffic patterns and applications recorded

in an enterprise network.41

6 Results

This section presents our findings while operating the mal-

ware in the testbed. Figure 6 shows a snapshot of analysis

results with a specific parameter configuration of the mal-

ware. The x-axis presents the 13 fine-grained behaviors,

and y-axis presents the frequency of that behavior ranked

as the most discriminating between malware and benign

ground-truths collected from multiple hosts (recall the

validation steps in the previous section). Table 4 describes

the 13 behaviors. We repeat the experiments by changing

the parameters. As shown in the right histogram plot, the

scores given by feature tracking is different for some attri-

butes. The resulting list of features is one of the many

examples used to pinpoint the fine-grained behaviors that

may cause this difference based on the parameter varia-

tions, and consequently are the reasons for high detection

rates.

In this way, we find the attributes yield a discriminative

behavior through parameters and allow systems to detect

the malware easily. These signals may help detect the mal-

ware, yet they might not be the generalized malware beha-

vior under various parameter configurations. Therefore, an

analysis of complete parameter space of malware is

required to observe the complete behavior of the malware

through different parameter settings. Our experiments

intended to outline the challenging nature of this problem.

We next discuss some of our results that we observe dur-

ing the parameterized malware operation in the testbed.

Wrong port configuration easily reveals the infected

hosts: We begin our evaluation with a simpler case in
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which we found that the detection mechanism may always

produce the perfect separation between the benign and

malware samples. In this set of evaluations, we salted the

benign traffic with the malware traffic and attempted to

detect the malware. We found that the main reason for the

perfect results is the port numbers used in the feature

space. This leads us to analyze the raw packet traces for

the application categories and their protocols. We found

that benign traffic does not include any port number asso-

ciated with any of the port numbers used by the malware

(see port number parameters of CANDCUPPORT and

CANDCDOWNPORT configurations). Therefore, mal-

ware samples are perfectly detected. However, the use of

port numbers as features might cause serious problems in

real systems, as malware may use the port numbers of

legitimate applications to obfuscate their activity and pass

through firewalls that block certain port number ranges.42

Increasing the application diversity camouflages mal-

ware activity: In our second set of experiments, we found

that elimination of port numbers from the feature space

increases the detection error from 0% to 3.2% which is

high for a basic detection system. We rerun the experi-

ments by increasing the application diversity using the

LBNL enterprise network traffic. Table 3 presents the pro-

tocol breakdown and corresponding applications of the

benign traffic composition. The detection error increases

to 12.4%. We found that malware packets are mostly clas-

sified as benign HTTP(S) traffic and vice versa. To better

understand the types of applications that might camouflage

malware, we run the experiments after blending with the

simpleWeb traffic. The detection error yields 9.2%. We

observed that simpleWeb traces include a vast variety of

chat services and less HTTP traffic that is different than

LBNL traces. Therefore, it is necessary to evaluate mal-

ware behavior by considering the various application

types.

Unnatural timing heterogeneity easily reveals the mal-

ware: In this set of experiments; we mix the packet traces

taken from malware execution and the real-world network

traffic. The feature tracking process reports the timing

based behaviors as the most discriminating ones after

Figure 6. Sensitivity analysis of parameters: (Right) Two figure shows the feature variations between legitimate and malware
ground-truth through parameter configurations. The 13 behaviors used for this analysis are listed in Table 4.

Table 3. Legitimate traffic applications and corresponding
protocol diversity in LBNL enterprise network traffic.41

Without such variety, the malware traffic can be easily detected.

App. Protocols

Backup dantz, veritas, connected-backup
Bulk FTP, HPSS
Email SMTP, IMAP4, IMAP/S,POP3, POP/S, LDAP
Interactive SSH, telnet, rlogin, X11
name-srv DNS, netbios-NS, SrvLoc
net-file NFS, NCP
net-mgnt DHCP, ident, NTP, SNMP, NAV-ping, SAP,

NetInfo-local
Web HTTP, HTTPS
Windows CIFS/SMB,DCE/RPC, Netbios-SSN, Netbios-

DGM
Misc Steltor, MetaSys, LPD, IPP, ORACLE-SQL,

MS-SQL
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elimination of port numbers. The timing-based features

are calculated based on the flow duration and goodput.

One might wonder at this point whether we restrict our-

selves to a set of representations that are too specific to be

useful in a malware detector. However, these features

explicitly include the inter-arrival time and Round Trip

Times (RTT) of the packets and show a positive impact on

any detection system.16 Figure 7 presents the RTT samples

of an example malware traffic and real-world traces. We

found that the malware timing-based features are signifi-

cantly shorter than those of benign traffic. The long delay

of benign communication could be due to several factors.

For instance, the stepping-stones of real-world links exhi-

bit high sensitivity to the bandwidth, connectivity, or pro-

cessing latency. To solve this problem, the unnatural

heterogeneity between timing characteristics of malware

and benign traffic needs to be calibrated using the samples

in real-world traffic to prevent inadvertent impacts on the

detection results.16,43

Parameter tuning decreases the malware signal: In

these set of experiments; we show how misconfiguration

of Non-existent Internet Domain Names (NXDOMAIN

responses in DNS packets) could easily reveal the infected

hosts. We first predict the number of NXDOMAINs of

hosts to observe the domain name generation (DGA) algo-

rithm used by the malware. This allows infected hosts to

evade the blacklists and signatures. Our goal is to find the

differences between legitimate DNS queries generated by

the legitimate users via application typos or errors and

those caused by the malware. To identify an appropriate

threshold for the number of NXDOMAINs, we examine

hosts over a time interval and count the number of such

domains per minute. Our intuition is to have the benign

hosts to be on the threshold of the NXDOMAIN responses

recorded at training time. We observe that infected hosts

tend to query large sets of domain names, yet few hosts

are able to resolve to the IP addresses of the C2 servers

successfully. After an investigation, we found that the

parameter MAXRPS is configured incorrectly in the mal-

ware code and it causes an outlier of non-existing domain

names. Figure 8 shows the parameter tuning impact on the

malicious and benign hosts. We find that few queries of

infected hosts to the rendezvous point are successful.

However, frequency-based statistical detection might be

ineffective to observe this behavior at a low number of

NXDOMAIN responses due to the low frequency of

NXDOMAIN responses generated by the infected hosts.

Lack of user interaction in malware infection: It is

essential to include user interaction mechanisms in mal-

ware execution traces based on the malware type. In these

Figure 8. Lack of parameter tuning in rendezvous point
discovery reveals the malware behavior: Infected machines
generate similar patterns over time to connect a rendezvous
point while attacker fails to register the domain (black). The
similar behavior for the benign traffic is illustrated between 60
and 90 seconds.

Figure 7. Comparison of the unnatural packet timing
heterogeneity between malware and legitimate traffic: Client to
server and server to client RTTs inadvertently signals malware.

Table 4. An example of behaviors used for parameter analysis.

# Description

1 Average number of packets client to server
2 Average number of packets server to client
3 Average number of unique destination ports
4 Time to live (TTL) of DNS packets
5 Round Trip Times (RTT)
6 Total number of bytes
7 Average jitter client to server
8 Average jitter server to client
9 Flow duration
10 Events for a specific process
11 Average number of distinct IPs in DNS packet
12 Protocol
13 Average number of NXDOMAIN responses
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experiments, we focus on how infected hosts download

and install the malware source code. We found that the

infected hosts lack user interaction at the infection phase.

More specifically, the initial infection occurs directly after

running the malware code at hosts, i.e., an attacker does

not trick users into downloading and executing the

BotClient software. This process may not be valid in real-

world captured malware traces. For instance, attackers

may send email messages that make users install the

attached malware programs or trick users into visiting a

malicious URL. Figure 9 shows the malware infection

times with arrows and the closest observation time of

bytes that shows the transmitted data in a log scale time

interval. Analyzing log records, we find that the packets

are generated as expected after infection, yet the infection

occurs without any packet transmissions, and infected

hosts directly start the malicious activity (i.e., exfiltrating

sensitive data). This limits the correct observation of sys-

tem and network behaviors.

7 Recommendations

Throughout this work, we showed a malware design and

parameters governing its behavior. We outlined a valida-

tion methodology and pointed out the fallacies made pos-

sible by the abuse of parameter configuration. Space limits

do not allow us to present our measurements exhaustively.

Instead, in this section, we present recommendations, both

nontechnical and technical, on malware modeling and

experimentation. Our recommendations outline the opera-

tional and experimental suggestions emerged from this

work with the hope that they will be helpful to the

researchers.

1. Malware modeling and experimentation is crucial

for evaluation of detection systems. In order to

have realistic results, its operation should include

an understanding of implementation details which

provides ground for its reproducibility and valida-

tion. For instance, before presenting the evaluation

results, parameters of its execution and capabilities

of the attacker should be undoubtedly presented.

2. Malware detection and remediation techniques are

effective when they present the assumptions of the

malware operation. In many cases, it may not be

possible to create a system to detect the complete

behavior of the malware. However, experimenta-

tion must discuss whether simplifying assumptions

changes the detection results in a meaningful way

or not.

3. The value of the experimentation results depends

on the exploration of malware behavior through its

execution with various parameters. The impact of

these parameters should not be evaluated with con-

stant parameters. Observation of malicious beha-

viors through various parameter configurations is

essential for understanding its complete behavior

over time.

4. The use of honeypot traces or executing malware

binaries that are obtained from malware reposi-

tories may limit the scope of malware execution to

particular software and hardware architectures.

However, the execution of malware must be evalu-

ated against reproducibility of its execution in dif-

ferent software and hardware. This is often

possible with its implementation and execution in

the testbed facilities.

5. Another problem of using ready-to-use malware

binaries is the lack of characterizing the emerging

or new variants of the malware. Malware imple-

mentation in a controlled environment may miti-

gate this issue and help for proactive

experimentation of uncovering new attack vectors

in subsequent malware variants.

6. While evaluating malware traffic detection, syn-

thetic malware traces and real-world traffic traces

should be blended properly. That is, it should

ensure that statistical consistency between traces is

identified and calibrated. For instance, lab experi-

mentations miss the processing overhead and

latency of stepping-stones found in the real net-

work traffic.

7. Another important point with mixing the legiti-

mate traces with malware traffic traces is that real

world traces must include various applications

obtained from both academic and enterprise net-

works. This is due to the reason that application

Figure 9. Initial botnet infection involves no end-user
interaction: The arrows show the infection times of a host.
Well-designed experiments needs to consider user interaction
depending on the malware type.
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types may impact the detection of malware traffic

from legitimate applications.

8. Finally, malware design and experimentation

require substantial human resources and time.

Researchers should release pre-packaged imple-

mentations and datasets publicly so that others

may benefit from them.

8 Related work

Emulab,8 PlanetLab,9 and DETER10 are the testbed experi-

mentation facilities enabling malware implementation.

Our design process and validation procedures can be easily

integrated into these platforms.

Our work is related to a number of works in malware

modeling and experimentation. Barford et al. presented

initial steps toward building a flexible and scalable labora-

tory testbed for botnets.12 Calvet et al. presented at-scale

botnet emulation in laboratory conditions and specifically

analyzed Waledac botnet.44 Allodi et al. presented

MalwareLab which is an isolated environment for testing

the exploit kits leaked from the markets.11 John et al. cre-

ated Botlab to monitor the behavior of spam-oriented

bots.45 Alwabel et al. provided a discussion of safe and

automated malware experimentation.46 Our goal is differ-

ent from these studies. We seek to build a flexible mal-

ware similar to in-the-wild malware based on reverse

engineering of its parameterized behavior. Other previous

works have attempted to emulate the malware. For

instance, Lee et al. and Jackson et al. focused on emula-

tion of the botnet protocols.47,48 These works are limited

to communication patterns. Therefore, they do not capture

the complete malware behavior. Instead, we analyze the

sensitivity of malware operation using various parameters

and analyze the parameters that may cause erroneous

experimentation.

9 Conclusion

We have presented a complete implementation of a botnet

command and control network using the techniques that

are in use by current botnets. The implementation supports

general capabilities that allow attackers to execute arbitrary

commands on the infected botnet victims. The implementa-

tion is flexible; it is written to allow easy integration of

additional exploits and vulnerabilities. Operating the syn-

thetic botnet in a testbed, we quantify and characterize the

malware operation by application of sensitivity analysis

based validation. Such analysis aims at fostering the critical

evaluation of proposed detection techniques and stymie

unintentionally erroneous experimentation. We found that

both design pitfalls and parameter configurations are an

indicator of the inadvertent mistakes in experiments. These

findings demonstrate that if parameter variations are not

explored, these variations may lead to overly optimistic

conclusions and detection systems that are ineffective in

practice. Finally, to help the research community with their

malware experiments, we have devised operational and

experimental recommendations. In the future, we will

explore a wide range of malware models and evaluate their

parameterized behavior to generalize our approach beyond

the botnet case study.
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