
U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

JCS ios2a v.2009/02/26 arttype:RA Prn:29/07/2009; 13:50 F:jcs383.tex; VTEX/Emilija p. 1

Journal of Computer Security 00 (2009) 1–39 1
DOI 10.3233/JCS-2009-0383
IOS Press

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Secure attribute-based systems

Matthew Pirretti a, Patrick Traynor b, Patrick McDaniel c and Brent Waters d

a Motorola Labs, USA
E-mail: Matthew.Pirretti@motorola.com
b College of Computing, Georgia Institute of Technology, USA
E-mail: traynor@cc.gatech.edu
c SIIS Laboratory, CSE, Pennsylvania State University, USA
E-mail: mcdaniel@cse.psu.edu
d SRI International, USA
E-mail: bwaters@csl.sri.com

Attributes define, classify, or annotate the datum to which they are assigned. However, traditional at-
tribute architectures and cryptosystems are ill-equipped to provide security in the face of diverse access
requirements and environments. In this paper, we introduce a novel secure information management ar-
chitecture based on emerging attribute-based encryption (ABE) primitives. A policy system that meets
the needs of complex policies is defined and illustrated. Based on the needs of those policies, we pro-
pose cryptographic optimizations that vastly improve enforcement efficiency. We further explore the use
of such policies in two proposed applications: a HIPAA compliant distributed file system and a social
network. A performance analysis and characterization of ABE primitives demonstrates the ability to re-
duce cryptographic costs by as much as 98% over previously proposed constructions. Through this, we
demonstrate that our attribute system is an efficient solution for securely managing information in large,
loosely-coupled, distributed systems.

1. Introduction

Attributes define, classify, or annotate the datum to which they are assigned. The
semantics of an attribute indicate some purpose or characteristic and, when used
within larger collections, enable efficient identification and classification of like ob-
jects. For example, individuals in enterprise systems are often segregated into groups
of common interest or duty based on a given set of attributes [36], e.g., function, de-
partment, university. These attributes are then used to associate sets of permissions
and tasks to the specified individuals. Existing systems principally rely on the as-
signment and subsequent enforcement of policies by trusted and often centralized
servers. However, these servers are acutely ill-equipped to deal with disconnected
and asynchronous clients. Reliance upon centralized servers further limits scalabil-
ity and mandates a single point of trust.

Attribute-based encryption (ABE) [35], a generalization of identity-based cryp-
tosystems, incorporates attributes as inputs to its cryptographic primitives. Objects

0926-227X/09/$17.00 © 2009 – IOS Press and the authors. All rights reserved

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

JCS ios2a v.2009/02/26 arttype:RA Prn:29/07/2009; 13:50 F:jcs383.tex; VTEX/Emilija p. 2

2 M. Pirretti et al. / Secure attribute-based systems

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

are encrypted using a set of attributes describing the intended receiver. A principal
possessing this subset as part of their pool of attributes can recover the original plain-
text. More flexible requirements are achievable through the use of a thresholding
primitive, for which only k-of-n attributes are necessary to perform decryption. Fur-
thermore, decryption under both the standard and threshold approaches is collusion-
resistant as multiple parties are unable to meaningfully pool attributes. Such cryp-
tographic mechanisms allow encryption to inextricably bind expressive, enforceable
access policy to objects.

Attribute-based systems have enormous potential for providing data security in
distributed environments. Peer-to-peer systems are an example of one such benefi-
ciary: individuals may publish documents that implicitly target those users who are
assigned the appropriate attributes. Moreover, such publishing can be completely
transparent to the peer-to-peer system. For example, a user Bob looking for employ-
ment in the field of secure systems engineering could place a copy of his résumé in
publicly accessible web space encrypted with the attributes “secure systems engi-
neering” and “human resources manager”. Only potential employers satisfying these
attributes would be able to decrypt this information and contact Bob.

In this paper, we develop and evaluate a secure attribute system built on attribute-
based encryption (ABE). A descriptive policy system is defined that predicates ac-
cess on logical expressions over attributes. We show how these policies can be re-
alized through applications of novel ABE constructions. We also demonstrate their
semantic depth through their use in two proposed applications: a HIPAA compliant
distributed file system and a social network.

We have developed an extensive ABE implementation tailored for the rapid cre-
ation of attribute systems – the first known implementation and characterization of
such cryptographic constructions. In an effort to aid development and subsequent
system use, we perform an in-depth empirical analysis of the input parameter space.
Our implementation includes several novel optimizations to the original ABE cryp-
tosystem described by Sahai and Waters [35]. The major operations of the system,
including system initialization, key generation, and the encryption and decryption of
objects are benchmarked. We then measure the cost of implementing complex at-
tribute policies. Whereas past work has suggested that these constructions were too
expensive for use in real systems [33], this analysis shows that such policies are not
only feasible, but can also be highly efficient. For instance, we demonstrate that the
cost of key generation and encryption can be reduced by more than 80% and 98%,
respectively, by using constructions secure in the random oracle model.

The remainder of this paper is organized as follows: Section 2 presents an
overview of the cryptographic mechanisms supporting ABE; Section 3 compares
ABE systems to PKI systems; Section 4 introduces a descriptive policy system for
use in ABE-based systems; Section 5 offers sample policies for two example ap-
plications; Section 6 gives the results of our performance analysis; Section 7 exam-
ines open problems in the sphere of policy expression in attribute-based systems;
Section 8 discusses some of the issues inherent to managing ABE-based systems;
Section 9 explores relevant related work; Section 10 offers concluding remarks.

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

JCS ios2a v.2009/02/26 arttype:RA Prn:29/07/2009; 13:50 F:jcs383.tex; VTEX/Emilija p. 3

M. Pirretti et al. / Secure attribute-based systems 3

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

2. Attribute-based encryption

We now give an overview of attribute-based encryption (ABE) algorithms. The
Sahai–Waters [35] (ABE) cryptosystem as implemented in this paper is specifically
detailed. We focus our efforts on providing the description of the scheme and intu-
ition for its construction. For the proof of security see [35].

Attribute-based encryption can be viewed as a generalization of identity-based
encryption (IBE) [8,13,39]. In IBE a user’s identity is a string such as
“bobsmith@yahoo.com”. A party in the system can encrypt a message to this partic-
ular user with only the knowledge of the recipient’s identity and the system’s public
parameters. In particular the encryption algorithm does not need to have access to a
separate public key certificate of the recipient.

In attribute-based encryption a user’s identity is composed of a set, S, of strings
which serve as descriptive attributes of the user. For example, a user’s identity could
consist of attributes describing their university, department, and job function. A party
in the system can then specify another set of attributes S′ such that a receiver can only
decrypt a message if his identity S has at least k attributes in common with the set S′,
where k is a parameter set by the system. Like traditional identity-based encryption,
a party in an attribute-based encryption system only needs to know the receiver’s
description in order to determine their public key, allowing such systems to benefit
from the lazy distribution of keys. However, the expressiveness of an ABE system
is potentially much more powerful. For example, there could be several different
recipients that are able to decrypt a message encrypted for a set S′. Although there
could in theory exist even more expressive ABE systems, the threshold constructions
described and illustrated in the following sections are sufficiently semantically deep
that we can define complex and precise encryption policies.

2.1. ABE algorithms

We now informally specify a threshold attribute-based encryption system as a col-
lection of four algorithms:

Setup(k): The Setup algorithm is run by an authority in order to create a new ABE
system. Setup takes as input a threshold value, k and outputs a master key MK
and a set of public parameters PK.

Key-Gen(S, MK): The authority executes the Key-Gen algorithm for the purpose
of generating a new secret key SK. The algorithm takes as input the user’s
identity, S, as a set of strings representing a user’s attributes and the master-
key MK and outputs S’s secret key SK.

Encrypt(M , S′, PK): The Encrypt algorithm is run by a user to encrypt a message
M , with a target set S′, and the public parameters. It outputs a ciphertext, C.

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

JCS ios2a v.2009/02/26 arttype:RA Prn:29/07/2009; 13:50 F:jcs383.tex; VTEX/Emilija p. 4

4 M. Pirretti et al. / Secure attribute-based systems

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Decrypt(C, S′, S, SK): The Decrypt algorithm is run by a user with identity S and
secret key SK to attempt to decrypt a ciphertext C that has been encrypted
with S′. If the set overlap |S ∩ S′ | is greater than or equal to k the algorithm
will output the decrypted message M .

We discuss the how the value of k can be varied in Section 4.3.

2.2. ABE constructions

We have investigated the use of two separate ABE constructions: the Sahai–Waters
construction and a variant of the Sahai–Waters construction that we refer to as
the random oracle construction. The Sahai–Waters construction is from the Sahai–
Waters Large Universe system as described in Section 6 of [35]. A more complete
and formal explanation of both constructions can be found in Appendix B.

Both constructions use elliptic curves to perform pairing-based cryptography. Bi-
linear maps (pairings) e : G1 × G2 → GT upon elements of an elliptic curve are the
basis for pairing-based cryptosystems. In the Sahai–Waters construction, decryption
is possible by performing pairings between k components of a ciphertext and k pri-
vate key components. We refer the reader to the IBE paper by Boneh–Franklin [8]
for more details on pairing-based cryptosystems.

2.2.1. Sahai–Waters construction
We note two observations about the Sahai–Waters construction, which have led

us to design the random oracle construction. Both observations pertain to the use of
following function used in both the Key-Gen and Encrypt algorithms:

T (i) = gxi
n+1∏

j=1

t
Δj,N (i)
j , (1)

where N is the set {1, . . . , n + 1}.
Our first observation is that because of T , the Setup algorithm must take as input

a ciphertext size n in addition to the threshold value k. Without the techniques pro-
posed in Section 4.3, this construction mandates that each ciphertext must contain
exactly n attributes and that the threshold must be a fixed value k for all ciphertexts.

Our second observation is based upon our experience in building an implemen-
tation of the Sahai–Waters construction. We have found T requires a great deal of
computational effort. It is easily seen that the number of exponentiations required to
solve T is equal to n + 1.

Because of these two observations we have proposed the following modification
to the Sahai–Waters construction.

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

JCS ios2a v.2009/02/26 arttype:RA Prn:29/07/2009; 13:50 F:jcs383.tex; VTEX/Emilija p. 5

M. Pirretti et al. / Secure attribute-based systems 5

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

2.2.2. Random oracle construction
We drastically reduce computational overhead in the key generation and encryp-

tion algorithms by replacing T with a hash function used as a random oracle [5].
A simple argument shows that the random oracle can be “programmed” such that
the security proof of Sahai and Waters still holds. We refer the reader to the litera-
ture [5,12] for further discussion on the random oracle model.

Implementing T as a random oracle has the following characteristics. First, cipher-
texts can contain a variable number of attributes, rather than be required to contain
n. Second, the n + 1 exponentiations needed to solve T in the Sahai–Waters con-
struction have been replaced with a single cryptographic hash.

However, using model that requires the random oracle heuristic results in a slightly
weaker security model; the use of random oracles makes the security of the cryp-
tosystem dependent upon the security of the hash function used to compute T . In
Section 6, we experimentally compare implementations of the original Sahai and
Waters construction with our variant.

2.2.3. Decryption optimization
Under both constructions, the dominant operations are pairings followed by ex-

ponentiations. Decryption as described by Sahai and Waters has the following
form [35]:

M = E′ ∏

i∈S

(
e(di, Ei)
e(Di, E′ ′)

)Δi,S (0)

, (2)

where e denotes a pairing operation. In the equation above, there are 2k pairings and
k exponentiations. Decryption can be optimized to reduce the number of bilinear
map operations by bringing the Lagrange coefficients in:

M =
E′ ∏

i∈S e(d
Δi,S(0)
i , Ei)

e(
∏

i∈S D
Δi,S(0)
i , E′ ′)

. (3)

This optimization reduces the number of bilinear map operations from 2k to k + 1
at the expense of increasing the number of exponentiations from k to 2k. Because
bilinear map operations are more computationally intensive than exponentiations,
this optimization increases the overall speed of decryption.

3. Attribute key infrastructure

Systems using ABE, which are a generalization of IBE, do not vouch for identity
in the traditional sense, as users are represented by the summation of their attributes.
Accordingly, as identities are no longer necessarily unique, there is no need to vali-
date bindings between keys and users. Like IBE systems, this alleviates many of the

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

JCS ios2a v.2009/02/26 arttype:RA Prn:29/07/2009; 13:50 F:jcs383.tex; VTEX/Emilija p. 6

6 M. Pirretti et al. / Secure attribute-based systems

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

managerial problems found in traditional PKI systems [16] (e.g., user name colli-
sions, per-user revocation). However, new challenges arise. We briefly consider these
issues, as well as their similarity to traditional PKI systems. Note that this work is
not intended to solve the problems of PKIs, but to apply available approaches where
possible and invent others where needed.

The process by which users are certified in an ABE system is analogous to cer-
tification in a PKI. Similar to a traditional PKI, a user presents the authority with a
set of credentials that prove their right to fulfill an attribute. Instead of mapping a
user to an identity, certification establishes that the user fulfills the semantic of the
attribute. Such semantics are specific to the supported community (e.g. job function
in a business system, clubs belonged to in a social network). This process is repeated
for all attributes appropriate to each user. Key distribution is significantly simplified
in such a system, as public keys are simply the combination of the cryptosystem’s
public parameters and attribute names.

The revocation process is significantly different in a ABE system as attributes, not
users or keys, are revoked. In fact, there is no way to revoke a user, save revoking
all of his attributes. Like traditional PKI systems, revocation can impact all users
who either have or use an attribute. Unlike traditional PKI systems, however, the
compromise of a particular attribute may not mandate its revocation. As Section 4
details, it is the specific application of multiple attributes that defines policy. The
compromise of any single attribute may therefore be a necessary but not sufficient
condition for its revocation. Consequently, it may be desirable to revoke all, a subset
or none of the compromised user attributes. Explored in depth in Section 8.1, we
consider both online and offline revocation approaches.

A superficial reading of the above issues may lead one to falsely conclude that
ABE systems must be online. The creation of keys, certification of users, and adding
attributes are largely isomorphic to certification issuance operations present in cur-
rent PKI. Revocation can also be handled offline (however, online approaches such
as OCSP [32] are likely to be desirable in some environments). Hence, ABE systems
can operate entirely offline in largely the same that current PKI systems do.

4. Attribute policy

We now informally define an expository system for describing encryption policies
in attribute-based systems. An attribute policy (or just policy throughout) is a speci-
fication of cryptographic operations carried out on a plaintext in the attribute-based
system. Hence, through encryption, a party is able to embed expressive policies
into objects themselves, allowing for the decentralized enforcement of such policies.
Note that the following policy description is not particular to the specific construc-
tions of our implementation [34], and is appropriate for defining policy in any ABE
system that supports threshold constructions.

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

JCS ios2a v.2009/02/26 arttype:RA Prn:29/07/2009; 13:50 F:jcs383.tex; VTEX/Emilija p. 7

M. Pirretti et al. / Secure attribute-based systems 7

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

4.1. Definition

There are two components central to the definition of policies: attributes and ob-
jects. An attribute consists of a uniquely identifying string, Name, and its hash,
H(Name). The semantics of the Name identifier are irrelevant to the policy itself
and will be driven by the application it supports (see Section 5 for examples). The
hash is necessary for the ABE construction (see Appendix B), but plays no role in
the formulation of policy. We broadly refer to all encrypted or recovered data as
objects. For example, objects in a distributed file system would be the files that it
stores. Conversely, objects in a social network may include a mix of personal com-
muniques (e.g. emails, instant messages, etc.), profile information, and pictures. We
refer to the universe of all attributes as the set A = {a1, a2, . . . , ax}, the set of
objects O = {o1, o2, . . . , oy}. Where meaning is obvious or differentiation unneces-
sary, subscripts may be omitted.

The attribute policy is a specification of the attributes and threshold used to encrypt
an object. For example, consider a policy P that mandates encryption using a single
attribute a under a threshold of 1. We denote this policy:

P = T1(a). (4)

Of course, policies are of most interest when they are applied to objects. The appli-
cation of the example attribute policy on an object o is denoted:

E(o, P) or equivalently E(o, T1(a)) (5)

which states that o has been encrypted under attribute a using a 1-out-of-1 threshold
encryption function. This object can therefore only be decrypted by a user possessing
this attribute. Now consider the application of a similar policy P ′ on o that encrypts
using 2-out-of-3 threshold using attributes a1, a2, and a3:

E(o, P ′) or equivalently E(o, T2(a1, a2, a3)). (6)

Now consider the most general case. An arbitrary policy P ′ ′ is defined:

P ′ ′ = Tk(S) | S ⊆ A, S �= ∅, 1 � k � |S|, (7)

which states that the following must be true for any legal policy, (a) the set of at-
tributes must be a nonempty subset of A and (b) the threshold must at least 1 and no
more than the total number of attributes.

Note that policies can be arbitrarily nested. Users can build complex expressions
of attributes, thresholds, and logical operators. For example one may wish to com-
bine P and P ′ over o above to achieve,

E
(
E(o, P ′), P

)
or equivalently E

(
E(o, T2(a1, a2, a3)), T1(a)

)
(8)

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

JCS ios2a v.2009/02/26 arttype:RA Prn:29/07/2009; 13:50 F:jcs383.tex; VTEX/Emilija p. 8

8 M. Pirretti et al. / Secure attribute-based systems

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

which states that one must decrypt under policy P first, then P ′ to recover o. Ex-
plored more fully in the following section, logical conjunction and disjunction are
expressible through attribute policy. For example, if Pi and Pj are policies, then:

Pk = (Pi) ∧ (Pj), Pl = (Pi) ∨ (Pj). (9)

The semantics of these policies are straightforward. A logical ‘and’ policy states that
one must be able to decrypt both under both policies to extract the plaintext. The
logical ‘or’ policy requires that one must be able decrypt under either or both of the
policies to obtain the plaintext. Such constructions are examined in greater detail in
Section 5.

The remainder of this paper explores how we build constructions meeting the se-
mantics of these policies and how they can be applied to build novel and interesting
applications.

4.2. Implementing policy

Implementing singular attribute or threshold policies is straightforward using ABE
constructions. An example of a threshold policy is depicted in Fig. 1. This policy
states that decryption is possible if the party performing decryption possess at least
three of the following attributes: a1, a2, a3, a4. This is illustrated by the requisite
attributes being fed to the threshold operator T3. The output of the threshold primitive
is the desired policy P1, which can then be used to define an encryption operation.

We refer to a policy where k-out-of-k attributes are required to decrypt an object
as an and logic policy, and 1-in-k attributes as or logic policy. These policies can be
easily implemented using the thresholding primitive, where the threshold is k in the
case of and logic and 1 in or logic. Figure 2 illustrates an and policy. The policy P2
requires that the party performing decryption must possess all four of the following
attributes: a1, a2, a3, a4. P2 is implemented by giving the threshold operator T4 the
four required attributes. An or policy is trivially similar, and is thus not illustrated.

Expressing policy becomes somewhat more complex when the input policies are
not subsets of S, i.e., not expressions over atomic policies. Consider the case of an
or policy spanning three (possibly complex) policies P1, P2 and P3. In this case, one
need only encrypt each of the input objects under each policy and concatenate them
together; anyone able to decrypt at least one of these objects should be able to recover
the underlying object. Denoting concatenation as “·”, the ciphertext of an object oi

encrypted under a policy P1 ∨ P2 ∨ P3 would be E(oi, P1) · E(oi, P2) · E(oi, P3).
Now consider the case of an and policy spanning three (possibly complex) policies

P1, P2 and P3. One cannot simply use a threshold as above because the input policies
do not reflect a threshold over atomic attributes. Hence, another construction must be
used. Observe that we can achieve and semantics by sequentially encrypting the ob-
ject with each policy. Thus the policy P1 ∧P2 ∧P3 would be E(E(E(oi, P1), P2), P3).

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

JCS ios2a v.2009/02/26 arttype:RA Prn:29/07/2009; 13:50 F:jcs383.tex; VTEX/Emilija p. 9

M. Pirretti et al. / Secure attribute-based systems 9

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Fig. 1. Encryption using threshold policy P1. Object o1 can only be decrypted by a principal in possession
of at least three of the requisite attributes.

Fig. 2. Encryption using and policy P2. Object o2 can be decrypted by principals who possess all four
requisite attributes.

This satisfies the policy semantic because only principals which possess the under-
lying attributes satisfying all policies can recover the plaintext.

Conjunction and disjunction constructions can be nested arbitrarily. In Figs 3 and 4
we illustrate policies that use both and logic and or logic. Specifically, in the and-or
policy, any party performing decryption must possess either the attributes a1 and a2
or the attributes a3 and a4. The or-and policy requires the decrypting party possess
a1 or a2 in addition to attribute a3.

Observe that the conjunction constructor has a weaker security model than the
original ABE constructions, where the base objects are encrypted under attributes.
Whereas ABE encryption prevents any collusion attack, it is possible for adversaries
to collude to recover the plaintext in this construction. To illustrate, in the or-and
example1 in Fig. 4, two colluding parties satisfying P7 and P8 independently can
recover the plaintext. The first adversary need decrypt the outer encryption using its

1This policy expression could be optimized to reduce the required number of encryptions. Specifically,
(a1 ∨ a2) ∧ a3 ≡ (a1 ∧ a3) ∨ (a2 ∧ a3). This optimization would require two encryptions with T2, as

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

JCS ios2a v.2009/02/26 arttype:RA Prn:29/07/2009; 13:50 F:jcs383.tex; VTEX/Emilija p. 10

10 M. Pirretti et al. / Secure attribute-based systems

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Fig. 3. Encryption operation using and-or policy P3. Principals who possess either attributes a1 and a2
or a3 and a4 are capable of decrypting object o3.

Fig. 4. Encryption operation using or-and policy P4. A principal possessing attribute a3 and either a1 or
a2 may decrypt object o4.

a3 assignment, then pass the inner E(o4, T1(A1)) ciphertext to the second adversary
who can then decrypt using a1 to recover the original plaintext o4. Work to improve
this aspect of the associated cryptographic constructions is currently under way. Un-
til then, our constructions are no weaker than standard cryptographic methods e.g.,
public key cryptosystems.

4.3. Extending the flexibility of ABE

ABE natively supports a k-of-n threshold primitive. However the cryptographic
constructions discussed in Appendix B mandate that k be a fixed constant across all

opposed to four encryptions with T1. Such logic expression reductions have been thoroughly studied by
other works [23]. We discuss policy embodiment briefly in Section 8.3.

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

JCS ios2a v.2009/02/26 arttype:RA Prn:29/07/2009; 13:50 F:jcs383.tex; VTEX/Emilija p. 11

M. Pirretti et al. / Secure attribute-based systems 11

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

ciphertext objects created by a given attribute system. Further, for the implementa-
tion without random oracles, the number of attributes in each ciphertext n, must also
be fixed. These requirements greatly limit the liberty at which principals can draft
policies; each policy must be created with a single type of threshold primitive. Thus,
if k = 4, n = 4, then all policies would have to be written using T4 threshold oper-
ators and each ciphertext would have to contain exactly 4 attributes. As a result the
policy P10 = T2(a1, a2, a3) could not be implemented.

Because we are interested in enabling the creation of highly expressive policies,
we discuss three separate approaches which circumvent the fixed n, k requirement
for constructions without random oracles.2 The first two approaches were initially
introduced by Sahai and Waters [35]. To better understand the difference between
these three solutions it is helpful to introduce the following notation. Let (ki, ni)
denote a valid pairing of k, n for a particular system.

The first solution is to provide all principals in a system with “default attributes”,
which act as placeholders and are devoid of semantic meaning (i.e. they are given to
all users regardless of their attributes). The purpose of these attributes is to enable
objects to contain any threshold operator, Tk′ such that 1 � k′ � k. To attain this
end, each object must contain the maximum number of possible attributes n. The de-
fault attributes can then pad for any of the required n attributes. This scheme extends
a system where only (k, n) is valid to a system where any of the following are valid:
(1, n − (k − 1)), (2, n − (k − 2)), . . . , (k, n). Given k, n = 10, this method allows a
single cryptosystem to express the ten and policies between (1, 1) and (10, 10); how-
ever, this example cryptosystem could not express any system in which k, n were not
equal.

The second solution entails creating n separate cryptosystems, each with a differ-
ent value of k, enabling policy to use any of the following: (1, n), (2, n), . . . , (n, n).
Similar to the previous approach, this scheme extends policy expressiveness, but re-
quires a large number of systems to express a diverse set of policies.

Our approach is a hybrid of the above two techniques. Specifically, this ap-
proach enables any policy that is expressed with at most n attributes. More exactly,
∀nj � n and ∀ki � nj , (ki, nj) are all valid pairings of k and n. This scheme is
implemented by creating n separate cryptosystems as described in the second solu-
tion. From these cryptosystems, default attributes can be used to attain all the desired
policies. This is illustrated in Fig. 5, where n = 10. Each of these 10 cryptosystems,
denoted as the white circles on the right side of the figure, giving the following (k, n)
pairs: (1, 10), (2, 10), . . . , (10, 10). The diagonal lines indicate the other pairings of
(k, n) that are obtainable by using default attributes from within the 10 cryptosys-
tems. Consider the (9, 10) cryptosystem, in which default attributes allow for the
expression of the policies (1, 2), (2, 3), . . . , (9, 10). Similar expressiveness is possible
for the remaining cryptosystems.

2While this discussion focuses on circumventing the fixed n, k in the constructions without random
oracles, our approaches can be extended to constructions with random oracles, which is only limited by
having a fixed k.

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

JCS ios2a v.2009/02/26 arttype:RA Prn:29/07/2009; 13:50 F:jcs383.tex; VTEX/Emilija p. 12

12 M. Pirretti et al. / Secure attribute-based systems

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Fig. 5. Example of our method for extending flexibility of ABE. ABE constructions without random
oracles can only directly implement a k-out-of-n policy where k and n are fixed. In this example we
show how any possible pairing of k � n and n, given that no more than 10 attributes will be present in
any ciphertext. To attain this end, 10 separate cryptosystems (denoted by white circles) are implemented.
Arrows indicate the use of semantically void default attributes. These attributes can be used on each of
the 10 cryptosystems to attain any k, n pairing.

This scheme can easily be extended to meet the needs of the target application.
For instance, a system may opt to only create a subset of the possible cryptosystems
(e.g. the values of k for powers of 2 less than or equal to n). Section 6 explores the
performance trade-offs associated with using such a sampling. Trade-offs between
expressibility, performance and overhead must be carefully considered.

5. Application of policy

The threshold, conjunction and disjunction constructions discussed in Section 4
result in an expressive policy system. In this section we illustrate the use of policy in
two separate applications: HIPAA compliant distributed storage systems and social
networks.

5.1. Distributed file systems

A content-addressable file system enables users to locate files based on attributes
or keywords describing their contents. Accordingly, data becomes searchable in a
more meaningful fashion than the traditional approach of specifying file paths. To

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

JCS ios2a v.2009/02/26 arttype:RA Prn:29/07/2009; 13:50 F:jcs383.tex; VTEX/Emilija p. 13

M. Pirretti et al. / Secure attribute-based systems 13

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

date, most work on content-addressable file systems has focused on automatically
generating descriptions of a file’s contents [9,19,22]. The use of ABE strengthens
the security properties of such systems. Because the access control policy of every
object is embedded within it, the enforcement of policy becomes an inseparable char-
acteristic of the data itself. This is in direct contrast to most currently available sys-
tems, which rely directly upon a trusted host to mediate access and administer policy.
As file systems become more distributed in nature and rely upon domains of varying
trust to control access, traditional approaches no longer provide adequate guarantees.

Example systems include large multisite research efforts such as the Human
Genome Project, which was formed in order to map the sequence of chemical build-
ing blocks composing the human genome. While this multinational research effort
requires a total of only 3 gigabytes of space to store the genome itself, the space
estimated for additional annotations will sufficiently dwarf the initial sequence data
in the system [3]. As this and other research projects begin to require petabytes of
storage, the ability to securely store such information across multiple sites becomes
increasingly critical.

5.1.1. Policy for HIPAA compliant medical systems
We use a Health Insurance Portability and Accountability Act (HIPAA) compliant

medical system as an example of a loosely-coupled, content-addressable file system
with strict security requirements. HIPAA was designed to clearly enumerate the secu-
rity requirements and provide information flow control for electronically stored med-
ical information such that patient privacy is maintained [42]. While the system below
is by far not a comprehensive example of HIPAA requirements, it demonstrates the
ease with which a fully compliant system could be constructed using ABE.

In this example, a patient i’s medical information is composed of several fields.
Patients define the following privacy policies to best protect each component of their
medical information: currently used medications (Pi,Med), medical history (Pi,Hist),
contact information (Pi,CI), and insurance information (Pi,Ins). A patient’s policy de-
scribes the attributes that must be possessed by medical personnel in order to access
their medical information. As illustrated in Fig. 6, these attributes describe various
job functions of medical personnel as well as the health insurance plans they accept.

A patient, Robert Oppenheimer, supplements his limited insurance coverage
through the ACME Corporation with a “Medicare D” prescription plan. His policy
therefore stipulates that only doctors (Dr) and nurses (Rn) supporting his insurance
plan can view his full medical history, contact information, and a listing of his current
medications. Oppenheimer’s policy also allows a pharmacist (Rx) in his plan to view
the medications he is currently taking, so that he/she can ensure no conflicts between
prescriptions exist. Further, a pharmacist is allowed access to contact information to
notify him when prescriptions have been filled. Oppenheimer’s policy also restricts
the access of billing personnel (Bill) to his insurance and contact information such
that charges can be filed with his insurance providers without danger of exposing
private information. Lastly, without revealing his contact information, Oppenheimer

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

JCS ios2a v.2009/02/26 arttype:RA Prn:29/07/2009; 13:50 F:jcs383.tex; VTEX/Emilija p. 14

14 M. Pirretti et al. / Secure attribute-based systems

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Fig. 6. Mapping of attributes to principals in HIPAA compliant medical system.

allows the list of medications he is currently using to be made available to pharma-
ceutical representatives (Rep) analyzing the combination of drugs with which their
products are prescribed in concert. As described above, Oppenheimer’s policies are
represented as follows:

PO,Hist = T1(Dr, Rn) ∧ T1(ACME, Medicare D),

PO,CI = T1(Dr, Rn, Bill, Rx) ∧ T1(ACME, Medicare D),

PO,Ins = T1(Bill) ∧ T1(ACME, Medicare D),

PO,Med =
(
T1(Dr, Rn, Rx) ∧ T1(ACME, Medicare D)

)
∨ T1(Rep).

From the above policies, only Dr. Crusher and Nurse Whitman can access his
medical history. Dr. Crusher, Nurse Whitman, Billing Secretary Arnold, and Phar-
macist Fleming can access his contact information. Billing Specialist Arnold can also
access Oppenheimer’s insurance information. Dr. Crusher, Nurse Whitman, Pharma-
cist Fleming and Pharmaceutical Representative Miller are able to determine Oppen-
heimer’s current regime of medication.

5.2. Social networks and online communities

Social networks, such as orkut, Facebook and Friendster [1], are an online ap-
plication which enable users to find other users with similar interests. To use these
applications, users must reveal large quantities of personal information (e.g. name,
age, address, personal interests, sexuality, etc.) into the public domain. Groups of
people sharing similar attributes and friends are then automatically linked to each

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

JCS ios2a v.2009/02/26 arttype:RA Prn:29/07/2009; 13:50 F:jcs383.tex; VTEX/Emilija p. 15

M. Pirretti et al. / Secure attribute-based systems 15

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

other. Currently, such systems provide only weak privacy guarantees; network mem-
bership allows access to the wealth of user information. Accordingly, user data can
readily be mined and abused by undesirable parties.

ABE-based systems are well suited to provide user controlled-privacy, as users
in these communities are already characterized by their attributes. In Friendster, for
example, a user with the attribute “Penn State University Alumnus” is automatically
enrolled in a group of the same name. Accordingly, the creation of “white-lists” for
communication immediately becomes possible without requiring enumeration of all
user identities. Constructing a social network using ABE also provides scalability.
Current social networks require a trusted central server to store all profile informa-
tion and enforce policy. Because ABE-based systems do not require a trusted stor-
age system, profile information could be stored on untrusted servers, significantly
decreasing the traffic and storage requirements incurred by a system. Further, in an
ABE-based system, objects are embedded with policy, enabling distributed enforce-
ment.

5.2.1. Policy in a social network
We now demonstrate policy in a social network through an application where the

principals are users of an online dating service. Each user dictates their own policy
in order to restrict access to their personal information.

Figure 7 illustrates a sample network. A principal’s policy can be viewed as a
description of attributes they find desirable in other principals. Possession of the
attributes described in the policy is therefore a prerequisite to being able to access
another principal’s personal information. We begin with a relatively simple policy.
Van Buren is only interested in meeting women with black hair, medium wealth, and

Fig. 7. Mapping of attributes to principals in social network application.

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

JCS ios2a v.2009/02/26 arttype:RA Prn:29/07/2009; 13:50 F:jcs383.tex; VTEX/Emilija p. 16

16 M. Pirretti et al. / Secure attribute-based systems

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

medium weight. His policy is represented as:

PV = T4(Female ∧ Black Hair ∧ Med Wealth ∧ Med Weight).

Of the above principals, only Jones can access Van Buren’s profile. This policy,
which is equivalent to policy P2 as depicted in Fig. 2, can be expressed using a single
threshold primitive T4. It is therefore possible to directly implement PV with a single
ABE encryption. Accordingly, data encrypted under this policy will be resistant to
collusion.

Grant’s policy, whereby only blond or red haired women can access his profile
information, is represented as:

PG = T1(Female) ∧ (T1(Blonde) ∨ T1(Red)).

As such, only Anderson or Kidman can access his information. Notice that Grant’s
policy is equivalent to policy P6 in Fig. 4 and therefore cannot be implemented using
a single threshold operator. Accordingly, PG is less resistant to collusion than PV .

Lastly, Anderson is interested in hearing from men who possess at least two of the
following attributes: red hair, medium weight, overweight, or medium wealth. Her
policy can be represented as:

PA = T1(Male) ∧ T2(Red, Med Weight, Overweight, Med Wealth).

Given Anderson’s policy Coolidge and Grant can access her information. Notice,
however, that a principal’s policy is not necessarily symmetric. For instance, of these
two, only Grant has a policy that would allow Anderson to contact him. Note also that
some attributes are inherently mutually exclusive. For example, none of Anderson’s
suitors could logically be both medium weight and overweight. Enforcement of an
intrinsic dichotomy between attributes is the job of the authority assigning attributes;
however, it is possible to write more robust policies such that even the accidental
assignment of such attributes would not allow a client to access data (e.g., using a
separate 1-out-of-2 threshold encryption for the weight characteristic).

6. System evaluation

The policies discussed in the previous section illustrate the potential expressibility
of ABE-based systems. In this section, we characterize the performance of systems
providing such functionality. We begin by exploring the cost of the base crypto-
graphic constructions. We then determine the cost of implementing a selection of the
previously defined policies. We finish by comparing the performance of an ABE-
based system to a comparable system implemented with RSA cryptographic primi-
tives.

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

JCS ios2a v.2009/02/26 arttype:RA Prn:29/07/2009; 13:50 F:jcs383.tex; VTEX/Emilija p. 17

M. Pirretti et al. / Secure attribute-based systems 17

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

As demonstrated by numerous others (e.g. [14]), the selection of cryptographic
parameters can have a drastic impact on system performance. In this section, we
characterize the parameter space by profiling the performance of attribute systems
under different input parameters. Such analysis is necessary to optimize the system
for a particular application or environment. All experiments were carried out on a
2.0 GHz Apple Xserve G5 with 4 GB memory running Mac OS X Server 10.3.9.
All disk operations were performed on a 1.82 TB RAID 5 disk array. All results are
calculated from an average of 500 iterations of the measured operation. The perfor-
mance of these primitives was noted to improve when similar tests were executed on
desktop class machines using x86-based processors [41].

We have implemented an ABE library upon which secure attribute systems can be
constructed. This C library contains approximately 5,200 lines of code and has been
tested on Solaris, OS X and Linux platforms. To our knowledge, we are the first to
implement, measure, and characterize the theoretical mechanisms of attribute-based
encryption. Accordingly, we explore a wide range of potential inputs and settings
system architects should consider when designing new secure attribute-based envi-
ronments. For instance, systems using our API can choose between the two most
studied elliptic curve groups providing bilinear maps: supersingular elliptic curves
(SS), which enable fast cryptographic pairing operations [30], and MNT elliptic
curves, which are used to obtain small ciphertext sizes [31]. We use the Pairing-
Based Crypto library [27] for the underlying implementation of these groups and
OpenSSL [2] for providing a supporting Key Encapsulation Mechanism (KEM) [40].

The following analysis measures the four central functions of the attribute system
as defined in Section 2: Setup_System, Key_Generation, Encryption,
and Decryption. For reference, Table 1 provides an outline of the base crypto-
graphic operations for each of the base operations. See Appendix A for greater detail
on the use of these functions and the design of our attribute system API. All source
code and documentation are available at: http://siis.cse.psu.edu/attribute.html.

These experiments indicate several important properties of the parameter space.
Firstly, MNT is faster than SS for encryption whereas the opposite is true for de-
cryption. Secondly, encryption costs are significantly improved by the use of random
oracles. Hence, the curve selected should be a reflection of the relative number of en-
cryptions and decryptions performed in the system, as well as the capabilities of the

Table 1

Base cryptographic operations for the major attribute functions

Random oracle No random oracle

Operation Hashes Expon. Pairings Hashes Expon. Pairings

System_Setup 1 1 1 1

Key_Generation (x attributes) x 3x 3x + (n ∗ x)

Encryption (y attributes) y 2 + y 2 + y + (n ∗ y)

Decryption (threshold k) 2k k + 1 2k k + 1

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

JCS ios2a v.2009/02/26 arttype:RA Prn:29/07/2009; 13:50 F:jcs383.tex; VTEX/Emilija p. 18

18 M. Pirretti et al. / Secure attribute-based systems

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

encryptor and the intended recipients. Lastly, the ability to express complex policies
with ABE allows for practical use of attribute-based systems.

6.1. Experimental results

The first set of experiments measure the degree to which different system para-
meters affect performance: we vary the number of attributes, length of data, elliptic
curve and initialization of randomness parameters. We then perform an R-squared
or coefficient of determination analysis over the measured results. This technique
identifies the portion of observed variance in one variable that is directly attributable
to a second. On a scale from zero to one, numbers closer to one represent a signifi-
cant correlation between variables. For precision, we also include measurements for
two additional subfunctions: Initialize_Randomness preloads random bytes
from the local entropy pool and New_Attribute allocates a new attribute to a
principal.3 The results of these tests reveal that the number of attributes followed
by the elliptic curve used are the dominant factors, as shown in Tables 2 and 3 (bold
font highlights significant value). Lastly, to characterize the growth of execution time
against the number of attributes, we run a regression analysis for the worst case and
present our findings in the standard linear form, i.e., y = mx + b.

Table 2

Table of r2 values (no random oracles)

Attributes Data length Curve type Rand init

Initialize_Randomness 2.083E−5 1.043E−5 1.440E−6 0.9721

System_Setup 0.8052 1.321E−4 0.0138 2.355E−6

New_Attribute 0.0442 1.499E−4 6.959E−4 2.282E−5

Key_Generation 0.8297 2.480E−4 0.0369 1.158E−9

Encryption 0.7134 2.120E−4 0.0692 6.470E−9

Decryption 0.5355 1.733E−4 0.2222 5.466E−9

Table 3

Table of r2 values (random oracles)

Attributes Data length Curve type Rand init

Initialize_Randomness 1.167E−5 1.254E−5 3.363E−7 0.9721

System_Setup 0.7908 8.915E−7 0.0176 3.827E−7

New_Attribute 0.0394 1.014E−4 8.343E−5 3.719E−6

Key_Generation 0.9997 9.792E−8 1.551E−4 3.916E−8

Encryption 0.4781 3.167E−7 0.1993 5.456E−8

Decryption 0.5608 4.543E−9 0.2041 4.078E−9

3In all tests in this section, Initialize_Randomness is included in measurements of Sys-
tem_Setup, and New_Attribute is included by Key_Generation.

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

JCS ios2a v.2009/02/26 arttype:RA Prn:29/07/2009; 13:50 F:jcs383.tex; VTEX/Emilija p. 19

M. Pirretti et al. / Secure attribute-based systems 19

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Fig. 8. System_Setup: As the number of attributes grows, MNT curves become more efficient.

Figure 8 shows the cost of System_Setup as a function of the number of at-
tributes. Systems using a SS curve without random oracles average 0.366 seconds
(σ = 0.049, 95% CI = ±0.004) and 2.141 seconds (σ = 0.133, 95% CI = ±0.011)
for 1 and 32 attributes, respectively. A system using the MNT elliptic curve without
random oracles averages between 0.737 seconds (σ = 0.202, 95% CI = ±0.017)
and 1.699 seconds (σ = 0.284, 95% CI = ±0.025) for the same range. Execution
time for both curves scales linearly in the number of attributes (SS w/o random or-
acles: y = 0.572x + 0.3126; r2 = 0.9999). Random oracles have no role in system
setup, and hence have no bearing on performance. System setup therefore poses no
significant computational burden in real systems.

Figure 9 illustrates the cost of key generation, which is consistently cheaper for
MNT curves. For a system using 32 attributes without random oracles, MNT curves
require an average of 12.355 seconds (σ = 0.035, 95% CI = ±0.003) to generate
a user key, compared to 25.05 seconds (σ = 0.052, 95% CI = ±0.004) for SS
curves. Random oracle constructions are significantly faster – systems built on SS
and MNT curves perform similarly at all numbers of attributes, e.g., at 5.051 (σ =
0.017, 95% CI = ±0.002) and 4.927 (σ = 0.017, 95% CI = ±0.002) seconds,
respectively for 32 attributes. Execution time scales linearly for both curves with and
without the use of random oracles (SS w/o random oracles: y = 0.8003x − 2.37;
r2 = 0.9584). Note that key generation for each user is performed infrequently
(likely once). If the user community is fairly static, such costs will be amortized by
operations on data. Conversely, in environments where users may join frequently,
it behooves the administrator to select parameter choices that minimize these costs,
e.g., MNT elliptic curves using random oracles.

As shown in Fig. 10 for both SS and MNT elliptic curves, the construction without
random oracles requires an average of 11.213 (σ = 0.031, 95% CI = ±0.002) and

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

JCS ios2a v.2009/02/26 arttype:RA Prn:29/07/2009; 13:50 F:jcs383.tex; VTEX/Emilija p. 20

20 M. Pirretti et al. / Secure attribute-based systems

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Fig. 9. Key_Generation: Performance becomes nearly identical for systems using either type of curve
with random oracles.

Fig. 10. Encryption: SS constructions are significantly slower than MNT constructions.

3.946 (σ = 0.017, 95% CI = ±0.002) seconds to encrypt data using 32 attributes.
Systems implementing the construction with random oracles experience dramatically
improved encryption performance, i.e., 1.207 (σ = 0.009, 95% CI = ±0.0001) and
0.204 (σ = 0.006, 95% CI = ±0.001) seconds, respectively. Here, MNT elliptic
curves are approximately 65–85% faster than their SS counter-parts (in constructions
with and without random oracles, respectively). Systems using MNT curves with
random oracles are in fact 98% faster those using SS curves without random oracles.

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

JCS ios2a v.2009/02/26 arttype:RA Prn:29/07/2009; 13:50 F:jcs383.tex; VTEX/Emilija p. 21

M. Pirretti et al. / Secure attribute-based systems 21

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Fig. 11. Decryption: SS constructions are significantly faster than MNT constructions.

Both systems scale linearly in the number of attributes with and without random
oracles (SS w/o random oracles: y = 0.3590x − 1.148; r2 = 0.9487). Conversely,
as illustrated in Fig. 11, a system of 32 attributes with and without random oracles
exhibits a decryption time of 1.452 (σ = 0.009, 95% CI = ±0.003) and 1.348 (σ =
0.044, 95% CI = ±0.0001) for an SS construction and 7.341 (σ = 0.029, 95% CI
= ±0.073) and 5.342 (σ = 0.841, 95% CI = ±0.003) seconds in MNT, respectively.
Execution time for both systems scales linearly in the number of attributes with and
without random oracles (MNT w/o random oracles: y = 0.2298x − 0.103; r2 =
0.9999). Note the systems using SS curves experience approximately 80% faster
performance than their MNT counterparts.

Lastly, we compare the performance of such a system against traditional offline
cryptographic techniques.4 From OpenSSL’s benchmarking tool [2], the platform
used for ABE benchmarking is capable of performing RSA public key encryption in
0.0003 and 0.00097 seconds for 1024 and 2048-bit keys, respectively. To offer simi-
lar semantic expressiveness and prevent the need for 2N − 1 keys (there are 2N − 1
nonempty subsets in a set of size N), we assume that each attribute in an ABE
system has a corresponding RSA key pair. For simple policies, encryption under a
single attribute/key is 300 and 93 times faster under RSA (0.0003 and 0.00097 vs
0.09 seconds). ABE’s thresholding primitive, however, allows much more efficient
execution. For example, a policy requiring a threshold of 2 of 32 attributes has nearly
identical execution times (0.1488 vs 0.2043 seconds) for both RSA-1024 and ABE

4Our analysis is designed to express the performance disparity of semantically meaningful cryptogra-
phy against more traditional offline schemes. Online techniques such as idemix [10] can greatly improve
performance over the offline use of RSA, assuming the tradeoffs of online systems discussed in Sec-
tion 8.2.

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

JCS ios2a v.2009/02/26 arttype:RA Prn:29/07/2009; 13:50 F:jcs383.tex; VTEX/Emilija p. 22

22 M. Pirretti et al. / Secure attribute-based systems

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

with MNT curves and random oracles. RSA-2048 requires approximately 0.5 sec-
onds to achieve the same ends. A system requiring 16 of 32 attributes would also
require 0.2043 seconds for an ABE system; however, the equivalent RSA systems
would require approximately 33.4 and 107.97 days, over 46.6 million times slower,
to perform the necessary 32

16 encryptions. ABE’s inherent expressibility makes it a
practical means of constructing real attribute systems.

6.1.1. HIPAA system policy analysis
We now determine the cost incurred for implementing expressive policies in

a proposed HIPAA system. Encrypting with the policy PO,CI from Section 5.1.1
requires an initial encryption of the principal Oppenheimer’s contact information
using T1(ACME, Medicare D), a process requiring E2 time to complete. This ci-
phertext object is then independently re-encrypted with each of the following at-
tributes: Dr, Rn, Billing, Rx. Each of these encryptions requires 1 attribute, and
thus takes E1 time to complete. This policy could alternatively be implemented
using two encryptions if the or construction is replaced with T1(Dr, Rn, Bill, Rx).
Table 4 shows the timing values for this optimized policy, noted as PO,CI =
E(E(CI, T1(ACME, Medicare D)), T1(Dr, Rn, Bill, Rx)).

Decrypting data encrypted under PO,CI requires two operations. The first de-
cryption occurs with any of the following attributes: Dr, Rn, Billing, Rx. The sec-
ond decryption, which enables recovery of the plaintext, requires decryption of
T1(ACME, Medicare D). Table 4 shows average execution time.

6.1.2. Social network analysis
We now examine the cost of expressing policy as described in Section 5.2.1

for a hypothetical social network application. Consider the time required to en-
crypt a message under Grant’s policy, PG. Grant’s information IG is first inde-
pendently encrypted under T1(Red Hair) and T1(Blonde). Both values, noted as
I ′
G = E(IG, T1(Red Hair)) and I ′ ′

G = E(IG, T1(Blonde)) respectively, are then
encrypted under T1(Female), yielding E(I ′

G, T1(Female)) and E(I ′ ′
G, T1(Female)).

Note that the total number of encryptions can be halved if the or semantic is equiv-
alently implemented as T1(Red Hair, Blonde). The total time to encrypt PG is given
by E(PG).

Table 4

Average performance (s) for PO,CI

No rand oracles Rand oracles

SS MNT SS MNT

E2 0.13 0.12 0.10 0.10

E4 0.31 0.18 0.18 0.10

D2 0.09 0.46 0.10 0.42

D4 0.18 0.91 0.18 0.75

E(PO,CI) 0.44 0.30 0.28 0.20

D(PO,CI) 0.27 1.37 0.28 1.17

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

JCS ios2a v.2009/02/26 arttype:RA Prn:29/07/2009; 13:50 F:jcs383.tex; VTEX/Emilija p. 23

M. Pirretti et al. / Secure attribute-based systems 23

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Table 5

Average performance (s) for PG

No rand oracles Rand oracles

SS MNT SS MNT

E1 0.07 0.10 0.07 0.09

D1 0.04 0.20 0.04 0.20

E(PG) 0.28 0.40 0.28 0.36

D(PG) 0.08 0.40 0.08 0.40

Table 5 details the time required to perform the unoptimized operations required
to formulate PG. These values represent the encryption and decryption operations
for SS and MNT elliptic curves with and without random oracles.

In the case of decryption for PG, two decryptions are required. The decrypting
party initially performs two decryptions with a3. From this, only a1 or a2 must be
decrypted in order to recover the original plaintext. The total time to decrypt PG is
given by D(PG).

6.2. Ciphertext size and user key length

Ciphertext size and key length are important to some classes of applications, e.g.,
in high traffic volume or low bandwidth networks or on resource poor devices. Here,
we briefly detail the size of ciphertexts and the size of a user’s private key. Specifi-
cally, we quantify ciphertext length and user key length as described in Appendix B.
Because the focus of this paper is on attribute systems and ABE, we do not include
structured data framing or data encrypted with symmetric cryptography in our treat-
ment of ciphertext size.

We shall first discuss a discrepancy between MNT curves and SS curves that
is necessary to understand our analysis. Recall that the Sahai–Waters construction
makes use of a bilinear group G to perform bilinear map operations: e : G×G → GT .
This type of bilinear map is said have symmetric groups. A bilinear map that is asym-
metric has the following form: e : G1 × G2 → GT , G1 �= G2. SS curves are charac-
terized by having symmetric bilinear groups. Both G and GT require 512 bits to be
represented. MNT curves are characterized by having asymmetric bilinear groups.
G1 is represented with 170 bits while G2, GT are represented with 510 bits.

Each attribute i possessed by a principal corresponds to two private key compo-
nents di and Di. For SS curves both of these components are members of G. For
MNT curves Di ∈ G1, di ∈ G2. This yields (for a private key with n attributes):

Supersingular KeySize(n) = 2 · n · 512 bits, (10)

MNT KeySize(n) = (170 + 510) · n bits. (11)

A ciphertext C scales with the number of attributes it contains as follows. A ci-
phertext with n attributes is composed of C ′, C ′ ′ and n elements Ci. For SS curves

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

JCS ios2a v.2009/02/26 arttype:RA Prn:29/07/2009; 13:50 F:jcs383.tex; VTEX/Emilija p. 24

24 M. Pirretti et al. / Secure attribute-based systems

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

C ′ ′, Ci ∈ G and C ′ ∈ GT . For MNT curves C ′ ′ ∈ G2, C ′ ∈ GT , and Ci ∈ G1. This
yields (for a n attribute ciphertext):

Supersingular CTLen(n) = (n + 2) · 512 bits, (12)

MNT CTLen(n) = 2 · 510 + 170n bits. (13)

7. Open problems in policy expression

In the previous sections, we characterized the flexibility and efficiency with which
semantically deep policy could be expressed using attribute-based encryption. How-
ever, significant challenges remain in a number of areas. In this section, we specif-
ically focus on a number of the open problems with regards to the expression of
policy in these systems.

7.1. Non-monotonic policy

One of the primary thrusts of this work has been to extend policy expressiveness
beyond the fixed k of n supported by the underlying cryptographic constructions.
As demonstrated in our previous results [34], a combination of default attributes
and multiple cryptosystems can be used to express any monotonic Boolean policy
(i.e. a policy constructed by using ands and ors to arbitrarily combine attributes)
containing at most n attributes. Such policies represent a significant expansion in
flexibility over operations provided by the cryptography itself. However, it may be
preferable in some cases to be able to express non-monotonic policies. Specifically,
the existence of a not (¬) logical primitive would be a powerful addition for the
declaration of policy. The ability to apply negation could be especially valuable in
situations where the declaration of those for whom access should be denied is simpler
than the enumeration of positive access rights.

The presence of a negation primitive also offers the opportunity for improved per-
formance for systems and specific policies in which user attributes are mutually ex-
clusive. Building from an example in Section 5, we examine patient Openheimer’s
policy PO,CI regarding the protection of his contact information. Specifically, Open-
heimer allows for physicians, nurses, members of the billing department and phar-
macists to contact him: T1(Dr, Rn, Bill, Rx). This policy can be seen as indirectly
expressing ¬Rep, by including the attributes of all parties except that of Rep in
the encryption of contact information. It is the specific embodiment of this policy
that allows for the system to potentially realize performance gains. Specifically, the
monotonic policy expressed above could be achieved using a cryptosystem in which
n = 4. The non-monotonic representation of the same expression could be accom-
plished in a cryptosystem in which n = 1. Accordingly, as detailed in Section 6, the
number of attributes required to express monotonic policy directly impacts overall
system execution time.

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

JCS ios2a v.2009/02/26 arttype:RA Prn:29/07/2009; 13:50 F:jcs383.tex; VTEX/Emilija p. 25

M. Pirretti et al. / Secure attribute-based systems 25

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Of course, not all policies and systems allow for implicit negation via exclusion.
Plainly stated, not all attributes are necessarily mutually exclusive. From our social
network example in Section 5, no combination of positive attributes would express
“non-smoker” or “not interested in silent movies”. Thus, the specific representation
of such characteristics must be explored.

The most logical method of attaining non-monotonicity would be to design a not
primitive analogous to the and and or primitives introduced in Section 4. However,
such a primitive would be ineffective in a distributed setting where recipients per-
form decryption. This is largely due to the fact that a potential recipient could erase
or hide their A3 attribute in order to circumvent the not primitive. Unless the system
required decryption to always use all attributes [25], users could not be coerced into
demonstrating they did not possess a specific attribute. While useful in the expression
of policy, it should be noted that the introduction of a not primitive makes compli-
ance checking, at worst, undecidable [7]. Such tradeoffs must therefore be carefully
considered when building a system.

To address the shortcomings introduced by the not, one can embed negation within
the semantics of the actual attributes. In this way, the cryptography would be blind
to the fact that there are negative attributes. For instance, A4 could be the attribute
¬A3. We could then express PN as A1 ∧ A2 ∧ A4. To decrypt an object with this
policy requires that the party performing decryption has proven that he/she possesses
the attributes A1 and A2, and that he/she does not possess the attribute A3.

A benefit of this scheme is that negative attributes are handled by the cryptosys-
tem in the same way as regular attributes. Whether an attribute is negative or not
is indicated by its semantics. Thus, the pair of attributes male and ¬male are han-
dled identically to attributes that are inherently negatives of each other, such as the
attributes male and female.

The introduction of negative attributes may cause a significant increase in the man-
agement duties of both users and the authority. Consider an implementation where
every attribute in the system must be generated in tandem with a corresponding neg-
ative version. Moreover, each user is required to possess an attribute or its negative
for all attributes in the system. Such requirements would make the management of an
attribute system with even a moderate number of attributes infeasible. Users would
need to carry a potentially massive quantity of keying information. The system would
also need to dedicate significant resources towards the generation of additional at-
tributes. Lastly, users would have to be immediately notified when new attributes
were added to the system, which may be difficult in disconnected environments.

To make the management of keying information feasible, we advocate the use of a
system built on lazy negative attributes. Using lazy negative attributes, the addition
of an attribute to the system does not mandate addition of its negative unless a user
or policy explicitly requires its presence. This enables the system to only have to
maintain the attributes that its users are actually using.

This model can be extended to include the specific attributes possessed by a user.
During the process of verification with the authority, a user may select to prove only a

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

JCS ios2a v.2009/02/26 arttype:RA Prn:29/07/2009; 13:50 F:jcs383.tex; VTEX/Emilija p. 26

26 M. Pirretti et al. / Secure attribute-based systems

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

subset of their total attributes. Such decisions may be made for reasons ranging from
privacy [4] to perceived usefulness. Consider a user in our social network example
that could prove that they posses the attribute “enjoys long walks on the beach”. This
user will not possess this attribute until after they specifically request it from the
authority. If they do not find this attribute to be useful, then they are not required to
demonstrate that they possess it. Such a system not only allows the needs and desires
of the users to dictate the attributes they posses, but is also more realistic (i.e., it may
be difficult to force a user to prove a private preference).

7.2. Hierarchical systems

In many situations, attributes are semantically equivalent to the concept of roles.
From our HIPAA example in Section 5, the principal Leonard McCoy embodies the
roles of “Doctor” and “Accepts Blue Cross Insurance” simply by possessing the as-
sociated attributes. In order to efficiently manage a large attribute-based system, it
may be beneficial to develop a role hierarchy [17,36]. As is shown in Fig. 12, we
create such relationships using an expanded set of roles in a HIPAA system. Under
such a hierarchy, Leonard McCoy (and any other principal possessing the attribute
associated with “Doctor”) would also have the authority to act as a “Care Provider”,
“Medical” Official and member of the “HIPAA System”. Given a medical emer-
gency in which triage is required, Dr. McCoy could therefore naturally assume the
role of “Care Provider” to assist with patient admission. On the other side of the or-
ganizational structure, the representative of the billing department Benedict Arnold,
who is also a certified public accountant (CPA), may act in the roles of “Accounts

Fig. 12. A sample hierarchy of the roles found in a HIPAA system.

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

JCS ios2a v.2009/02/26 arttype:RA Prn:29/07/2009; 13:50 F:jcs383.tex; VTEX/Emilija p. 27

M. Pirretti et al. / Secure attribute-based systems 27

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Payable” Official, “Billing Specialist” and a member of both the “Business Unit”
and the “HIPAA System”. Accordingly, Specialist Arnold can both send bills to cus-
tomers as an “Accounts Payable” Official and order paper supplies for the office as a
member of the “Business Unit”.

The realization of such an expressive system can be achieved using the current
constructions, but requires a significant amount of overhead. Specifically, under the
Sahai–Waters construction [35] used in this work, there is no means of expressing
the inheritance of privilege between two attributes. It is therefore not possible for
a “Doctor” principal to directly apply this attribute to access messages encrypted
under “Care Provider”. One approach to addressing this issue is through the use of
extensively enumerated policy constructions. Assuming individual attributes exist
for each of the roles in the hierarchy, an announcement made to all members of the
medical community could be encrypted as follows:

PAnnouncement = T1(Medical, Care Provider, Pharmacist, Doctor, Nurse).

Reflecting such access in policy actually addresses a large number of problems.
For example, because the attributes “Auditor” and “Accounts Payable” Official are
mutually exclusive, the enumeration of all roles allowed to view a message allows
for principals in such roles to be separated as necessary. Unfortunately, operations on
such constructions may become extremely expensive as policy expressions become
arbitrarily long and complex. Policy could only be expressed in a cryptosystem in
which all attributes were used in the encryption process. Alternatively, principals
fulfilling specific roles could receive the set of attributes representing their specific
branch of the hierarchy. Such an approach may also be inefficient due to management
and distribution issues. For example, while RBAC systems assume that the tasks as-
signed to roles are relatively static, the principals assigned to those roles can change
with arbitrary frequency. Accordingly, the revocation issues discussed in Section 6
become increasingly pertinent. Techniques from hierarchical identity-based cryptog-
raphy (HIBE) [18,20,24] or advances in the cryptographic primitives [6] may help to
alleviate the policy and management complexity issues discussed above. We examine
such issues in the next section.

8. Management issues in ABE systems

While systems built on a foundation of ABE show great potential to support a
wide range of applications, a number of crucial issues must be carefully considered
before deployment. In this section, we address some of the practical issues relevant
to constructing ABE-based systems. For completeness, an in-depth discussion of the
implementation and the associated parameters is provided in Appendix A.

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

JCS ios2a v.2009/02/26 arttype:RA Prn:29/07/2009; 13:50 F:jcs383.tex; VTEX/Emilija p. 28

28 M. Pirretti et al. / Secure attribute-based systems

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

8.1. Attribute revocation issues

Revocation of users and keys in systems is a well studied but nontrivial prob-
lem [29]. Revocation is even more difficult in attribute systems, given that each at-
tribute is conceivably possessed by multiple different users, whereas public/private
key pairs are uniquely associated with a single principal. While an in-depth discus-
sion of revocation is out of the scope of this paper, we give a brief overview of one
method by which revocation could be implemented.

One revocation technique would require each attribute to contain a time frame
within which it is valid. For instance, the attribute “Staff Member-December 31st
2006” denotes that the usefulness of the current attribute expires at the end of 2006.
Affixing temporal information to each attribute necessitates the system administra-
tor periodically releasing the latest version of attributes and periodically reissue user
keying information. Removal of an attribute from this system would be accomplished
by the administrator not releasing the latest version of the attribute. Similarly, re-
voking an attribute from an individual requires the administrator to withdraw the
updated attribute in the user’s private key, making the use of short-term keys expen-
sive. There are significant trade-offs between the load placed upon the administrator
and the amount of time that can elapse before an attribute/user can be purged. We
therefore leave more efficient solutions to future work.

Note that implementation details of ABE systems simplify some aspects of revo-
cation. As discussed in Section 6, because both the Sahai–Waters and Random Or-
acles constructions are used as KEM, all data are encrypted using a symmetric key.
Because this symmetric key is the object directly encrypted using the ABE construc-
tions, the cost associated with re-encryption is largely bounded by this computation
as the symmetric encryption of the data file is likely to be very fast.5

8.2. Online vs offline systems

One of the advantages of ABE-based systems is their ability to operate offline.
In the simple case, after having received the appropriate public parameters and at-
tributes from an authority, a user need not involve that authority in any future data
accesses. However, the changing needs of users and the system may require further
interaction between these two parties. Accordingly, we briefly discuss the four pos-
sible interactions between users and the authority and compare them against such
interactions in traditional online systems where appropriate. A more complete ex-
perimental quantification and examination of the costs of these operations is offered
for a specific application, broadcast encryption service for massive scale content dis-
tribution, in our follow-on work [41].

5Assuming the file is not very large.

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

JCS ios2a v.2009/02/26 arttype:RA Prn:29/07/2009; 13:50 F:jcs383.tex; VTEX/Emilija p. 29

M. Pirretti et al. / Secure attribute-based systems 29

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

8.2.1. Adding attributes to users
Adding attributes to users is the most straightforward interaction in an ABE-based

system. As discussed in Section 2, a user is assigned a set of attributes S and a secret
key SK via the execution of the Key-Gen algorithm. This set can easily be extended
by having the authority rerun the algorithm over an extended set S′. As shown in
Fig. 9, the time required perform this operation is linear in the number of attributes
assigned to the user and virtually identical for systems using MNT or Supersingular
curves with the random oracle construction.

When compared to more traditional online ACL- and capability-based systems,
costs of adding an attribute to a user are similar – both require a small amount of in-
volvement by an administrator. Additionally, both changes can take place essentially
immediately. However, the offline ABE case can easily amortize the cost of re-keying
due to the lack of interaction with the authority during subsequent operations.

8.2.2. Removing attributes from users
Like adding attributes to a user, removing attributes is achieved by executing the

Key-Gen algorithm over a modified set of attributes S′. Because SK ′ does not in-
clude the removed attribute, a user can no longer use SK ′ to decrypt content. The
cost to the authority is again linear in the size of S′.

The comparison against a more traditional ACL-based system is less clear-cut in
this scenario. For instance, if the user is believed to be an honest player and has not
copied SK, possession of SK ′ is sufficient. However, if it is believed that the user
may have retained a copy of SK, revocation may become necessary. The develop-
ment of efficient forward-secure schemes, which have been discussed for IBE-based
systems [43], may also assist in this process. An ACL-based system, however, will
behave more like the former case and prevent additional accesses with the revoked
attribute at the cost of checking every access attempt. Capability-based systems may
require capabilities to be revoked and/or reissued and are therefore generally closer
to the ABE-based system in this scenario.

8.2.3. Adding attributes to policies
Adding attributes to a policy protecting an object is achieved using the Encrypt and

Decrypt functions. As described in Section 2, the modified set of attributes S′ ′ and
the decrypted object to be encrypted are passed to the Encrypt function, which re-
turns the new ciphertext C. Because anyone with possessing the necessary attributes
S′ can decrypt and then re-encrypt the object under S′ ′, no interaction with the au-
thority is required. The cost of the operation, as shown in Figs 10 and 11, is O(n) in
the number of attributes.

Depending on the nature of the added attribute, however, the impact on the en-
crypted data can be minimized. For instance, if the attribute added expands the pool
of users able to access the object (i.e., n in a k-of-n grows), only the symmetric key
protecting the object need be re-encrypted. Users currently able to access the object
would accordingly experience no period in which they were unable to access the
object. For the case in which the attribute is added in order restrict access (i.e., k

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

JCS ios2a v.2009/02/26 arttype:RA Prn:29/07/2009; 13:50 F:jcs383.tex; VTEX/Emilija p. 30

30 M. Pirretti et al. / Secure attribute-based systems

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

in a k-of-n grows), both the object and the symmetric key protecting it would need
to be re-encrypted. During this period, the object should also become unavailable to
ensure that it is not accessed until the new policy is encoded. In the case of a more
traditional ACL-based system, such changes could quickly be implemented by an
administrator and reflected in the next access attempt. Like the ABE-based system,
the changes necessary in a capability-based system would depend on the specific
change to policy and the system itself.

8.2.4. Removing attributes from policies
Like the previous case, removing attributes from policies is achieved by re-

encrypting the targeted object under a new set of attributes. Accordingly, the cost
to the re-encrypting party is O(n) in the number of attributes. Like the previous case,
the authority in the system need not be involved in such operations.

The actions associated with removing attributes are inverted when compared to
adding them. For instance, if the removal of an attribute makes an object more ac-
cessible (i.e., k in k-of-n shrinks), no changes to the encrypted data itself need be
made. However, if the removal of an attribute makes an access policy more stringent
(i.e., n in k-of-n shrinks), both the object and the symmetric key protecting it should
be re-encrypted. As before, ACL- and capability-based systems could immediately
reflect this change with the interaction of the system administrator.

8.2.5. Summary
The average size of objects in the system, in addition to the expected churn rate

of user privileges/attributes, should be carefully considered when selecting between
these approaches. Scenarios in which access control rules are regularly in flux and
communication to centralized authorities is assured are likely to benefit from more
traditional access control and policy enforcement mechanisms. However, in environ-
ments where a user’s attributes are likely to change infrequently or where connectiv-
ity to a central authority can not always be guaranteed, the constructions in the paper
are an entirely appropriate foundation to manage access to objects.

8.3. Representations of policy

The performance of an arbitrary cryptosystem alone does not tell an engineer how
to build a secure attribute-based system. Rather, the results from Section 6 offer only
hints toward the realization of efficient policy. In this section, we show how cryp-
tosystem size and object replication can be varied to meet application-specific per-
formance requirements. We begin with the following high-level policy to illustrate
the diversity inherent to implementation:

P = (A0 ∨ A1 ∨ A2).

As noted above, the owner of object o creates a policy P allowing anyone in pos-
session of 1-out-of-3 attributes to gain access to o. When performing the encryption,

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

JCS ios2a v.2009/02/26 arttype:RA Prn:29/07/2009; 13:50 F:jcs383.tex; VTEX/Emilija p. 31

M. Pirretti et al. / Secure attribute-based systems 31

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

this policy can be correctly embodied as any of the following:

1 object: E(o, T1(A0, A1, A2)),
2 objects: E(o, T1(A0)), E(o, T1(A1, A2)),
2 objects: E(o, T1(A1)), E(o, T1(A0, A2)),
2 objects: E(o, T1(A2)), E(o, T1(A0, A1)),
3 objects: E(o, T1(A0)), E(o, T1(A1)), E(o, T1(A2)).

(14)

An obvious question arises; Given these options, “Which variant of the high-level
policy executes in the shortest time?”. As n becomes large, the party responsible
for implementing the encrypted object will be faced with an unmanageable number
of potential variants. The results in the Section 6 answer this question. Because of
the linear growth of encryption costs, all of the above constructions exhibit approx-
imately the same running time. However, given the overhead of setup and memory
management associated with multiple objects, the use of a single atomic expression
is the most efficient for policy expressions containing a small number of attributes.
This rule holds stronger as the value of k is increased, as this causes an exponential
increase in the number of copies of an object needed to express a policy.

Note that the semantic flexibility of this system allows even efficiently imple-
mented policies be unsatisfiable. For example:

P = T2(Male, Female)

is an efficient representation of a policy that should render the object it protects
as unrecoverable by all but the system authority.6 Policy must therefore be applied
carefully to ensure that the system remains usable.

9. Related work

Securing the sharing of information between groups is a fundamental problem
that arises in numerous applications. Such applications include multilevel security,
secure multicast, collaborative online communities, and distributed file systems. The
fundamental importance of the secure exchange of information has resulted in a wide
range of solutions.

Traditional access control mechanisms can be categorized into three groups:
mandatory access control (MAC) [15], discretionary access control (DAC) [26,37],
and role-based access control (RBAC) [17,36]. In MAC, an administrative mech-
anism enforces centralized access control on every object. Systems implementing
DAC require the owner of an object to dictate policy. Under RBAC, a user’s role in
an organization inherently dictates their ability to access and manipulate data. Each

6Assuming that attributes are distributed logically.

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

JCS ios2a v.2009/02/26 arttype:RA Prn:29/07/2009; 13:50 F:jcs383.tex; VTEX/Emilija p. 32

32 M. Pirretti et al. / Secure attribute-based systems

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

role in an RBAC system is associated with a set of permissions required to carry
out that role. While these mechanisms are highly effective at controlling access for
systems under a single administrative authority, they have been largely unsuccessful
at providing the same for unconnected and distributed environments.

ABE can enforce access control policy in such environments because it crypto-
graphically binds objects to their policies. Only users possessing the requisite set of
attributes are able to view and/or manipulate data. The ability to make policy portable
through cryptography is not new. Several works have attempted to use a public key
infrastructure (PKI) [21] or secure group communications mechanisms [11,28] to
provide similar access control mechanisms. The difficulty with applying standard
cryptographic techniques is they are designed to control access to single groups. In
real systems, however, users are often members of multiple groups. Unique keys
must therefore be assigned or negotiated for each of the subgroups for which a user
is a member. Such solutions do not scale for complex organizations with significant
communication across groups. In contrast, users in ABE-based systems automati-
cally belong to every possible attribute subset group without the need for additional
keying.

By using cryptographic mechanisms that are in and of themselves able to express
complex policies, ABE-based systems become a highly practical means of ensuring
the efficient and secure exchange of information between groups.

10. Conclusion

This paper has presented a novel secure information management architecture and
implementation. We extended existing constructions for attribute-based encryption
(ABE) and promoted them as a practical systems building block. The needs of com-
plex attribute applications were met via the introduction of a policy system and
an associated implementation for its enforcement. We illustrated the infrastructure
through the creation and performance evaluation of two applications: a HIPAA com-
pliant distributed file system and a social network. A further empirical study shows
that a careful selection of parameters and use of construction optimizations can lead
to significant cost savings. These analyses demonstrate that our attribute approach is
an attractive solution for securely managing information in large, loosely-coupled,
distributed systems.

Appendix A. ABE systems design and issues

ABE API – We have created the ABE API to enable rapid development of systems
and applications which use attribute-based cryptography. Our API uses the PBC li-
brary [27] to implement our attribute-based cryptography. This C language API has
been specifically designed to enable a programmer with no knowledge of ABE to

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

JCS ios2a v.2009/02/26 arttype:RA Prn:29/07/2009; 13:50 F:jcs383.tex; VTEX/Emilija p. 33

M. Pirretti et al. / Secure attribute-based systems 33

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

Fig. 13. Components of attribute-based cryptosystem API.

quickly write applications; the complex cryptography inherent to ABE is entirely
handled by the API.

For didactic purposes we present the API as four distinct modules: attribute-based
cryptography, standard cryptography, serialization and utility functions.

Attribute-based cryptography – The majority of application level code interacts
with the API through the attribute-based cryptography component. This module
was specifically designed for ease of use, consisting of seven simple functions:
Setup_System, Create_User, New_Attribute, Give_Attribute,
Key_Generation, Encryption and Decryption.

The Setup_System function creates and initializes a new attribute-based cryp-
tosystem. Specifically, this instantiates two key structures: global_params and
authority_priv. global_params contains global parameters required to
perform encryption and decryption operations. authority_priv contains the
master secret, from which all attribute keys are defined. authority_priv must
be kept secret in order to ensure the security of the system.
Setup_System must be given pbc_param_file_name, the name of an

XML file defining an elliptic curve from which all of the API’s ABE cryptography
is formulated. Included with the API are two such parameter files, a_param.xml
(Supersingular curve) and c159_param.xml (MNT curve). Supersingular curves
are optimized for fast cryptographic pairings, and MNT curves are optimized to re-
sult in small cryptographic group elements.

The nature of ABE cryptography is such that every ciphertext in a given cryp-
tosystem is of a fixed length n. The user can specify what this length is by providing
the API with ct_len.

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

JCS ios2a v.2009/02/26 arttype:RA Prn:29/07/2009; 13:50 F:jcs383.tex; VTEX/Emilija p. 34

34 M. Pirretti et al. / Secure attribute-based systems

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

To increase the flexibility of the API, Setup_System creates several “default”
attributes. The default attributes can be included in a ciphertext to take the place of
non-default attributes, enabling the user to create ciphertexts with less than ct_len
attributes.

The New_Attribute function is used to add a new attribute, whose name is
specified by att_name, to the universe of attributes in the system. Upon comple-
tion of this function the new attribute’s name and the hash of its name can be made
publicly available. At this point the new attribute can be used for encryption opera-
tions.

The Create_User function adds a user named user_id to the system. This
function instantiates user_id, a structure which stores the user’s name, the user’s
default and non-default attribute information, and a polynomial. Each user is given
a unique polynomial. Tieing each user’s per-attribute keying information to their
polynomial prevents users from colluding in order to attain more attributes.

The Give_Attribute function is used to give a user a new attribute. Specifi-
cally this function is used to update the user’s attribute data structures and does not
generate any keying information. The Key_Generation function is used to cre-
ate a user’s keying information based on the attributes that they possess. Keeping
key generation separate enables the Give_Attribute function to be executed
with fewer trust assumptions than is needed to perform the Key_Generation
function.

The Encryption function is used by a user to create a new ciphertext, ci-
phertext. The user specifies, message, a string they would like to encrypt and,
uid, a list of attributes that they would like to encrypt to. The user can encrypt with
at most ct_len attributes. The API will pad the ciphertext with as many default at-
tributes as is necessary to make the ciphertext contain a total of ct_len attributes.
A list of the attributes used to perform encryption are included in each ciphertext in
order for the party performing decryption to know which attributes are required to
decrypt the message.

Encryption is significantly more complicated than the API’s function calls would
seem to indicate. Specifically, the ABE constructions mandate that a ciphertext’s
payload must be a group element. To enable ABE to carry non-group element pay-
loads we use the Key Encapsulation Mechanism (KEM). In our API, KEM takes a
group element payload and uses SHA-1 to convert it into a HMAC key and an AES
key. The AES key is then used to encrypt the user’s message.
Decryption decrypts a ciphertext encrypted by the Encryption. This

process begins with the decrypting party verifying that they have the required at-
tributes. The party performing decryption will then use their attributes to decrypt the
decrypt the ciphertext in order to obtain the AES and HMAC key. The party will then
use the HMAC key to verify the ciphertext. If the ciphertext can be verified, then the
AES key will be used to decrypt the actual payload.

Standard cryptography – In addition to the attribute-based cryptography we have
also used standard cryptographic tools. The implementation of these tools are con-
tained in the crypto_utility and KEM code. The crypto_utility code

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

JCS ios2a v.2009/02/26 arttype:RA Prn:29/07/2009; 13:50 F:jcs383.tex; VTEX/Emilija p. 35

M. Pirretti et al. / Secure attribute-based systems 35

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

implements some of the low level cryptographic operations required by ABE. KEM
implements all of the operations required to enable ABE to encrypt non-group mem-
ber payloads.

Serialization – The serialization routines enable the API data structures to be writ-
ten out to disk for long-term storage. There are two different implementations of this
functionality. Serialization stores API data structures into byte-encoded files.
XMLSerialization stores API data structures into XML files. XMLSerial-
ization is human readable, has better platform independence, and is more fault
tolerant. Serialization results in slightly less disk space.

Utility functions – The utility functions are a group of functions that increase
the ease of programming with the attribute-based cryptography API. Included in
the utility routines are functions that print API data structures and conversion
routines.

Appendix B. Attribute-based encryption

For our system we use a variant of the Sahai–Waters Large Universe system [35]
(Section 6) which we now describe.

In this construction we will make use of a bilinear group G of prime order p. The
group will have an efficiently computable bilinear map e : G × G → GT that maps
two elements from the bilinear group into an element of the “target group”. The
salient feature of these groups is that if g is a generator of G then for all a, b ∈ Zp

we have that e(ga, gb) = e(g, g)ab. We refer the reader to the IBE paper of Boneh
and Franklin [8] for more details on bilinear groups.

The Sahai–Waters construction works by computing a bilinear map between k
components of the ciphertext with corresponding pieces of the private key. The re-
sult of these are interpolated using the secret sharing method of Shamir (in the ex-
ponent). We first define the following Lagrangian coefficients, which we will use in
our construction, as the following function over Zp:

Δi,S(X) =
∏

j∈S,j �=i

x − j

i − j
.

Additionally, we will assume all systems will work in some predetermined bilinear
group G of appropriate size.

The cryptosystem follows:

Setup(k): The setup algorithms first chooses a random exponent y ∈ Zp and lets
the public parameter be Y = e(g, g)y and the threshold value k. It keeps the
public key and the secret exponent y as the master key.

Key-Gen(S, MK): Let H : {0, 1}∗ → Zp be a collision-resistant hash function and
let T : Zp → G be a function that we will model as a random oracle [5].

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

JCS ios2a v.2009/02/26 arttype:RA Prn:29/07/2009; 13:50 F:jcs383.tex; VTEX/Emilija p. 36

36 M. Pirretti et al. / Secure attribute-based systems

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

First let Γ be the set defined as Γ =
⋃

s∈S H(s). The set Γ is essentially the set of
the hash of all attributes. (Note that since H is collision-resistant Γ should contain
|S| unique elements of Zp.) Then the authority will choose a new random degree
k − 1 polynomial q(x) over Zp such that q(0) = y and for all i ∈ Γ the authority
chooses a random ri. Then for all i ∈ Γ the private keys components are:

Di = gq(i)T (i)ri , di = gri .

Encrypt(M , S′, PK): The encryption algorithm first computes the set Γ′ =⋃
s∈S′ H(s). Next, it chooses a random exponent t ∈ Zp. The ciphertext is

output as:

C = (C ′ = MY t, C ′ ′ = gt, {Ci = T (i)t: i ∈ Γ′}).

Notice that both the size of the ciphertext and the encryption time grows lin-
early with the size of the set S.

Decrypt(C, S′, S, SK): The decryption algorithm first computes the sets Γ and Γ′

as before. If the size of the intersection |Γ ∩ Γ′ | < k the algorithm aborts,
this will occur if the overlap between the private key attribute set S and the
ciphertext set S′ is below the threshold k. Otherwise it chooses an arbitrary set
U such that |U | = k and U ⊆ Γ ∩ Γ′. For each i ∈ U the decryptor computes
a temporary value

Ai =
e(Di, C ′ ′)
e(di, Ci)

=
e(gq(i)T (i)ri , gt)

e(gri , T (i)t)
= e(g, g)tq(i).

This computation gives k shares of the polynomial tq(i) in the exponent. Using
polynomial interpolation the algorithm recovers the blinding value e(g, g)yt and di-
vides it out by computing:

M = C ′/
(
A

Δi,U (0)
i

)
= C ′/e(g, g)tq(0) = C ′/e(g, g)ty = M.

The decryption algorithm interpolates a polynomial in the exponent using
Shamir’s [38] secret sharing method. However, since a new random polynomial
is chosen for each private key, the system is secure against collusion attacks such
that different users are unable to combine their separate attributes.

The difference between the construction given here and that of Sahai and Waters is
in the computation of the function T (i). In their construction there is a upper bound,
n, on the number of attributes that can label a ciphertext which is set at setup. The
setup function publishes values t1, . . . , tn. The function T (i) is computed as:

T (i) = gxi
n+1∏

j=1

t
Δj,N (i)
j ,

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

JCS ios2a v.2009/02/26 arttype:RA Prn:29/07/2009; 13:50 F:jcs383.tex; VTEX/Emilija p. 37

M. Pirretti et al. / Secure attribute-based systems 37

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

where N is the set {1, . . . , n + 1}.
It is easily seen that the number of exponentiations required to compute T (i) is

equal to n + 1 in the original Sahai and Waters construction. We drastically reduce
the computation overhead replacing the computation of T with a hash function as
a random oracle. A simple argument shows that the random oracle can be “pro-
grammed” such that the simulation in the security proof of Sahai and Waters goes
through. We refer the reader to the literature [5,12] for further discussion on the ran-
dom oracle model. In Section 6 we experimentally compare implementations of the
original Sahai and Waters construction with our variant.

References

[1] Friendster, http://www.friendster.com, 2006.
[2] The OpenSSL project, http://www.openssl.org, 2006.
[3] The Human Genome Project, http://www.ornl.gov/sci/techresources/Human_Genome/home.shtml,

2006.
[4] G. Antenise, M. Blanton and J. Kirsch, Secret handshakes with dynamic and fuzzy matching, in:

Proceedings of the ISOC Network & Distributed System Security Symposium (NDSS), 2007.
[5] M. Bellare and P. Rogaway, Random oracles are practical: A paradigm for designing efficient pro-

tocols, in: Proceedings of the ACM Conference on Computer and Communications Security (CCS),
1993.

[6] J. Bethencourt, A. Sahai and B. Waters, Ciphertext-policy attribute-based encryption, in: Proceed-
ings of IEEE Symposium on Security and Privacy, Oakland, 2007.

[7] M. Blaze, J. Feigenbaum and M. Strauss, Compliance checking in the PolicyMaker trust manage-
ment system, in: Financial Cryptography (FC), 1998.

[8] D. Boneh and M.K. Franklin, Identity-based encryption from the Weil pairing, in: Proceedings of
the 21st Annual International Cryptology Conference on Advances in Cryptology, Springer-Verlag,
2001, pp. 213–229.

[9] M. Bowman, C. Dharap, M. Baruah, B. Camargo and S. Potti, A file system for information man-
agement, in: Proceedings of the ISMM International Conference on Intelligent Information Man-
agement Systems, March 1994.

[10] J. Camenisch and E. Van Herreweghen, Design and implementation of the idemix anonymous cre-
dential system, in: Proceedings of the ACM Conference on Computer and Communications Security,
2002.

[11] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor and B. Pinkas, Multicast security: A taxonomy
and some efficient constructions, in: Proceedings of IEEE INFOCOM’99, 1999.

[12] R. Canetti, O. Goldreich and S. Halevi, The random oracle methodology, revisited (preliminary
version), in: Proceedings of the ACM Symposium on Theory of Computing (STOC), 1998, pp. 209–
218.

[13] C. Cocks, An identity based encryption scheme based on quadratic residues, in: IMA International
Conference, 2001, pp. 360–363.

[14] E. Cronin, S. Jamin, T. Malkin and P. McDaniel, On the performance, feasibility, and use of forward
secure signatures, in: Proceedings of 10th ACM Conference on Computer and Communications
Security (CCS), ACM, Washington, DC, October 2003, pp. 131–144.

[15] D.E. Denning, A lattice model of secure information flow, Communications of the ACM 19(5)
(1976), 236–243.

[16] C. Ellison and B. Schneier, Ten risks of PKI: What you’re not being told about public key infrastruc-
ture, Computer Security Journal 16(1) (2000), 1–7.

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

JCS ios2a v.2009/02/26 arttype:RA Prn:29/07/2009; 13:50 F:jcs383.tex; VTEX/Emilija p. 38

38 M. Pirretti et al. / Secure attribute-based systems

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

[17] D.F. Ferraiolo, R. Sandhu, S. Gavrila, D.R. Kuhn and R. Chandramouli, Proposed NIST standard for
role-based access control, ACM Transactions on Information System Security 4(3) (2001), 224–274.

[18] C. Gentry and A. Silverberg, Hierarchical ID-based cryptography, in: Proceedings of ASIACRYPT,
2002.

[19] B. Gopal and U. Manber, Integrating content-based access mechanisms with hierarchical file sys-
tems, in: OSDI’99: Proceedings of the Third Symposium on Operating Systems Design and Imple-
mentation, USENIX Association, Berkeley, CA, 1999, pp. 265–278.

[20] V. Goyal, O. Pandey, A. Sahai and B. Waters, Attribute-based encryption for fine-grained access
control of encrypted data, in: Proceedings of the ACM Conference on Computer and Communica-
tions Security (CCS), 2006.

[21] T. Hardjono and B. Weis, The multicast group security architecture, RFC 3740 (Informational),
March 2004.

[22] D.R. Hardy and M.F. Schwartz, Essence: A resource discovery system based on semantic file in-
dexing, in: Proceedings of the USENIX Winter Conference, USENIX Association, Berkeley, CA,
January 1993, pp. 361–374.

[23] F.J. Hill and G.R. Peterson, Computer Aided Logical Design with Emphasis on VLSI, 4th edn, Wiley,
1993.

[24] J. Horwitz and B. Lynn, Toward hierarchical identity-based encryption, in: Theory and Application
of Cryptographic Techniques, 2002, pp. 466–481.

[25] A. Kapadia, P.P. Tsang and S.W. Smith, Attribute-based publishing with hidden credentials and
hidden policies, in: Proceedings of the ISOC Network & Distributed System Security Symposium
(NDSS), 2007.

[26] B. Lampson, Protection, in: Proceedings of the 5th Annual Princeton Conference on Information
Sciences and Systems, Princeton University, 1971, pp. 437–443,

[27] B. Lynn, PBC library, 2006, available at: http://crypto.stanford.edu/pbc/.
[28] P. McDaniel, A. Prakash and P. Honeyman, A flexible framework for secure group communication,

in: USENIX Security Symposium, 1999, pp. 99–114.
[29] P. McDaniel and A.D. Rubin, A response to “can we eliminate certificate revocation lists?”, in:

FC’00: Proceedings of the 4th International Conference on Financial Cryptography, Springer-
Verlag, London, UK, 2001, pp. 245–258.

[30] A.J. Menezes, T. Okamoto and S.A. Vanstone, Reducing elliptic curve logarithms to logarithms in
a finite field, IEEE Transactions on Information Theory 39(5) (1993), 1639–1646.

[31] A. Miyaji, M. Nakabayashi and S. Takano, New explicit conditions of elliptic curve traces for FR-
reduction, IEICE Transactions on Fundamentals E84-A(5) (2001), 1234–1243.

[32] M. Myers, R. Ankney, A. Malpani, S. Galperin and C. Adams, X.509 internet pub-
lic key infrastructure: Online Certificate Status Protocol – OCSP, 1999, available at:
http://www.ietf.org/rfc/rfc2560.txt.

[33] D. Nali, C. Adams and A. Miri, Using threshold attribute-based encryption for practical biometric-
based access control, 1(3) (2005), 173–182.

[34] M. Pirretti, P. Traynor, P. McDaniel and B. Waters, Secure attribute-based systems, in: Proceedings
of the ACM Conference on Computer and Communications Security (CCS), 2006.

[35] A. Sahai and B. Waters, Fuzzy identity based encryption, in: Eurocrypt 2005, 2005.
[36] R.S. Sandhu, E.J. Coyne, H.L. Feinstein and C.E. Youman, Role-based access control models, Com-

puter 29(2) (1996), 38–47.
[37] R.S. Sandhu and P. Samarati, Access control: Principles and practice, IEEE Communications Mag-

azine 32(9) (1994), 40–48.
[38] A. Shamir, How to share a secret, Communications of the ACM 22(11) (1979), 612–613.
[39] A. Shamir, Identity-based cryptosystems and signature schemes, in: Proceedings of CRYPTO 84 on

Advances in Cryptology, Springer-Verlag, New York, 1985, pp. 47–53.
[40] V. Shoup, Using hash functions as a hedge against chosen ciphertext attack, in: EUROCRYPT, 2000,

pp. 275–288.

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

JCS ios2a v.2009/02/26 arttype:RA Prn:29/07/2009; 13:50 F:jcs383.tex; VTEX/Emilija p. 39

M. Pirretti et al. / Secure attribute-based systems 39

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

[41] P. Traynor, K. Butler, W. Enck and P. McDaniel, Realizing massive-scale conditional access systems
through attribute-based cryptosystems, in: Proceedings of the ISOC Network & Distributed System
Security Symposium (NDSS), 2008.

[42] United States Department of Health and Human Services, Health Insurance Portability and Account-
ability Act, 1996, available at: http://aspe.hhs.gov/admnsimp/pl104191.htm.

[43] D. Yao, N. Fazio, Y. Dodis and A. Lysyanskaya, ID-based encryption for complex hierarchies with
applications to forward security and broadcast encryption, in: Proceedings of the ACM Conference
on Computer and Communications Security (CCS), 2004.

