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IoT devices can be used to complete a wide array of physical tasks, but due to factors such as low computa-
tional resources and distributed physical deployment, they are susceptible to a wide array of faulty behaviors.
Many devices deployed in homes, vehicles, industrial sites, and hospitals carry a great risk of damage to
property, harm to a person, or breach of security if they behave faultily. We propose a general fault handling
system named IoTRepair, which shows promising results for effectiveness with limited latency and power
overhead in an IoT environment. IoTRepair dynamically organizes and customizes fault-handling techniques
to address the unique problems associated with heterogeneous IoT deployments. We evaluate IoTRepair by
creating a physical implementation mirroring a typical home environment to motivate the effectiveness of
this system. Our evaluation showed that each of our fault-handling functions could be completed within 100
milliseconds after fault identification, which is a fraction of the time that state-of-the-art fault-identification
methods take (measured in minutes). The power overhead is equally small, with the computation and device
action consuming less than 30 milliwatts. This evaluation shows that IoTRepair not only can be deployed in
a physical system, but offers significant benefits at a low overhead.
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1 INTRODUCTION

In recent years, Internet of Things (IoT) devices have grown exponentially in complexity, di-
versity, and quantity across a wide variety of deployment environments. As the sophistication
and abundance of IoT devices continue to increase, the effect they have on everyday life increases
in turn. This empowers IoT to increase convenience and efficiency in personal and commercial
environments, but also opens the door for potential harm to persons or property should correct
operation be disrupted by attackers or system flaws. For this reason, it is increasingly important
to improve the dependability of IoT systems to ensure the stability of as many deployments as
possible.

A core concern for increasing reliability in IoT is handling faults swiftly and automatically be-
fore significant damage is caused to an IoT environment. This is a significant challenge, as IoT
devices are prone to faults due to their distributed deployment in physical spaces and limited
resources. Possible faults can be caused by factors such as power outages [18] and network dis-
ruption [32]; the frequency of faults is also increased due to IoT device design constraints such as
low computation capacity [27] and small batteries [13]. Additionally, devices face complex issues,
such as disruptive environmental conditions such as weather and collisions [36], user error during
deployment in an environment [18], and flaws in the device hardware and software [9]. A study
shows that devices in smart homes can experience faults more than four hours a day due to power
loss, network disruption, and hardware failure [13]. More recent work shows that a temperature
sensor experiences more than 15% faulty temperature readings [32].

The unique requirements for fault tolerance in IoT have been discussed in earlier work [38],
and prior efforts have proposed solutions for fault identification [6, 10, 23, 31] and addressing
faults [3, 7, 17, 19, 30, 35, 39]. However, previous solutions target a narrow scope (target only
certain devices, faults, or environments), and often only notify users about the fault—assuming
the user is familiar enough with the deployed devices, installed applications, and fault types to act
appropriately. Additionally, the solutions that do perform automatic handling rely on replication,
which is not always effective [39] and might be prohibitively costly [38]. Since IoT systems are
primarily autonomous, users have less interaction and oversight, which could lengthen the time
to resolve the fault manually. The user must recognize the alert and respond to it, but there may
not be a user on site. Therefore, an automatic response to faults is desirable to reduce dependency
on swift user interventions and increase the reliability of IoT services.

In this article, we develop a flexible multi-layer fault-handling system called IoTRepair specifi-
cally designed for IoT. At the lower layer, IoTRepair provides a fault-handling library with a set of
functions for handling device faults and a configuration file. To handle diverse faults in IoT, users
can write their own configuration files to customize the system and combine the fault-handling
functions through the library’s API. At the higher layer, IoTRepair includes an automated fault
handler on top of the lower layer to handle common situations of IoT faults. The automated han-
dler can be installed onto the edge device of a deployed IoT system to provide autonomous fault
handling. A configuration file is generated at installation time through querying the edge device
for a list of devices and applications, and also modified at runtime by the fault handler for runtime
adaptation; e.g., the fault handler discovers redundant devices at runtime and saves that informa-
tion in the configuration file.

To evaluate IoTRepair, we implemented 11 distinct IoT apps to manage 17 IoT devices in an
Arduino setup designed to mimic the behavior of a sample smart home. We conducted two sets
of experiments. In the first, we measured the latency of different fault-handling methods. In the
second, we measured the power overhead of IoTRepair’s automated fault handler on devices. We
injected a comprehensive set of faults into the devices to measure errors that faults would cause,
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and how well the fault handler mitigated those errors. In this article, we make the following
contributions:

o We study the nature of faults in IoT systems. We show what makes fault behavior in IoT sys-
tems different from other environments and why addressing IoT faults is uniquely difficult
and requires a generalized solution.

e We design and implement a fault-handling library that implements a common set of func-
tions for handling device faults, such as device restarts, retries, and checkpointing. We pro-
vide a flexible API for developers to utilize our fault-handling library in their application
code. On top of the fault-handling library, we develop an automated fault handler for IoT.
The automated fault handler invokes fault-handling functions in customized orders and con-
figures the functions automatically based on the IoT environment.

o In designing IoTRepair, we propose a set of novel techniques, including a history-based
checkpoint/rollback mechanism and a technique for inferring redundant devices according
to runtime information.

e We evaluate IoTRepair on a physical setup that mimics a smart home, including 17 devices
and 11 IoT apps. We show what harm faults can cause and how IoTRepair mitigates the
damage.

A conference version of this article was published at the 5th ACM/IEEE Conference on Internet
of Things Design and Implementation (IoTDI 2020) [25]. This article differs from the conference
version in the following ways: First, we perform an evaluation on a physical 10T setup detailed
in Section 6 to conclusively show IoTRepair’s effectiveness; our previous article performed evalu-
ation only in a simulator. Second, we add a power overhead analysis to show that device power
consumption, and therefore lifespan, is not significantly impacted by IoTRepair. Finally, we expand
the discussion of how IoTRepair is designed and implemented in Sections 3, 5, and 9. Particularly,
we describe how IoTRepair can be implemented in any IoT deployment, give detailed descriptions
of our fault-handling algorithms, and present detailed examples, both of how faults manifest and
cascade through a system and how IoTRepair would mitigate their impact.

2 MOTIVATION AND CHALLENGES

We begin by introducing fault types common in IoT platforms, with an example app to illustrate
these fault types. We then motivate the need for a flexible IoT fault-handling system by studying
how faults are reported and handled in commercial IoT platforms and existing research literature
on fault identification and handling. We end the section with challenges in IoT fault handling.

2.1 Faults in loT Systems

IoT systems integrate physical processes with digital connectivity. These systems perform simple
tasks such as motion-activated light switches, as well as complex tasks such as controlling traffic
lights in a smart city. Regardless of purpose and complexity, IoT systems often use an edge device
as a centralized gateway that connects devices in physical environments and use a cloud back-end
to synchronize device states and provide interfaces to control and monitor devices.

Faults in IoT systems can occur due to flaws in components of devices, the cloud, and com-
munication between them. While faults may happen in any of these components, device fail-
ures are more common due to factors such as minimal computational resources, energy con-
straints, architectural problems, improperly configured systems, and disruptive environmental
conditions [17, 18, 24, 27, 31]. For instance, devices in smart homes could experience faults on
an average of two hours a day due to power loss, network disruption, and hardware failure [13].
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Fig. 1. loT system architecture and an example loT app for illustrating fault types.

Table 1. Categorization of loT Device Fault Types and Causes

[ Fault Type I Description
Power A device loses power from battery or outlet and ceases to function
Fail stop Communication | A device disconnects from the network or otherwise cannot send or receive packets and ceases to respond requests
Critical Error Hardware or software error causes device to cease to function
Outlier A device reports incorrect state for a single poll
. Stuck-at A device fails to change state when expected to
Non fail-stop - - - - - -
High-Variance | A device oscillates between states faster than the environment dictates
Spike Numeric device state increases/decreases faster than environment dictates

In a similar vein, experiments in exposed environments recorded half of the devices reporting
incorrect states due to severe weather conditions [36].

An IoT system often consists of five components (Figure 1, right): (i) a set of sensors and actua-
tors such as the temperature sensor, light sensor, door lock, thermostat, and leak sensor shown in
the figure; (ii) an auxiliary Micro-Controller Unit (MCU) to read the raw sensor values; (iii) an
edge device with low-power CPU cores and controllers for communicating with sensors, actuators,
and the cloud; (iv) a cloud provider for performing advanced computation and interacting with
the user; and (v) either a battery or a power supply unit for each sensor/actuator and the edge de-
vice to power each of these components. Components (ii) to (v) are often housed in an edge device
such as a hub. A fault in any of these components can lead to errors in the system. We will use
a temp-control app that subscribes to a thermostat, a heater, and window actuators to illustrate
the different fault types and their consequences (see Figure 1). The app opens the windows and no-
tifies the user through SMS when the temperature exceeds a user-defined threshold and closes the
windows and sets the heater to a user-defined temperature value when the temperature is below
the threshold.

We divide faults into two categories, extending the terminology in previous fault tolerance 1
work [6] (see Table 1). Visualizations of the various fault types and the effects they can have on
devices are shown in Figure 2. Fail-stop faults happen when a device stops functioning and is un-
responsive to external requests; for example, when a device loses power, network communication
fails; as another example, a software or hardware error halts device operation. A fail-stop fault in
the thermostat would cause our example app to halt entirely, and such a fault in the window or
the heater would remove the functionality of those actuators.
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Non-fail-stop faults relate to a response by the device that diverges from the desired device state.
These faults can manifest in a variety of ways with different effects, as shown in Reference [24]:
an outlier fault causes a device to report an incorrect state for a very brief period, usually the
duration of just 1 poll. For example, the temperature reported by a temperature sensor may fall
outside of a reasonable range for a single device poll. An unhandled outlier fault in the thermostat
could cause the app to send an unintended notification that incorrectly indicates the temperature
is above the threshold. A stuck-at fault happens when a device cannot change state, maintain-
ing the same state despite changes in environment or actuation commands. An example is if the
app opens the window, but the temperature sensor fails to decrease the temperature as it should,
which causes a safety issue because an open window enables a burglar to break in the house. Con-
versely, in commercial buildings with automated doors, a door that is stuck-at closed could cut off
access to areas of the building or even trap individuals in certain areas. A stuck-at fault could also
cause energy data analytics to be incorrect and home temperature to surge if the heater gets stuck
with the always-on state. A high variance fault appears when a device’s state fluctuates back and
forth more rapidly than the environment dictates. For example, the temperature value fluctuates
between high and low more than the environment temperature. If this variance crosses the user-
defined temperature threshold, then this could cause several issues by repeatedly opening then
closing the window and turning the heater on and off. A spike fault happens when there is a rapid
increase or decrease in the device state; e.g., the temperature decreases faster than the actual tem-
perature in the environment. This could cause safety issues by incorrectly closing the window and
turning on the heater, overheating the house—wasting energy and causing discomfort, or possi-
bly even damage if there are temperature-sensitive objects in the environment or the temperature
was already very hot. In an industrial setting, a downward spike fault in a temperature sensor for
a furnace could cause it to heat to a degree far greater than intended, damaging what is inside
and possibly the furnace itself. This could also cause faults in other devices as a now improperly
created product is processed as though it were correctly created.

The existing fault tolerance methods discussed in Section 1 and later in this section cannot
address this wide array of fault types. Those methods either address only a few specific faults, rely
on extensive replication, or cannot handle the effects of cascading behavior.

To evaluate over every possible permutation of these faults would create an impossibly large
test size. Therefore, our evaluation in Section 6 targeted only the variables that were consistent
across most faults, meaning fault duration and false state, leaving specific elements such as partial
fail-stop or the spike change rate as constants. We argue this is acceptable, as these are unlikely
to affect the latency of IoTRepair, and have a minor effect on the power consumption.

2.2 Fault Causes

We also divide faults based on what has caused the device to begin faulty behavior. These classifica-
tions are important, because they can influence how effective a fault-handling function is, as well
as how long it takes to complete. Our fault causes and how they affect system behavior differently
are defined below.

A power failure occurs when a device no longer has sufficient power to operate, either due to an
expended battery or loss of power supply. It completely stops the operation of the device; further,
it cannot be repaired by any remote means; so any fault handling other than replication or rollback
wastes time and energy.

A communication disruption occurs when the hub is either unable to communicate with the de-
vice or the communication is unreliable. In the case where communication is impossible, this cause
is no different than a power failure, but if communication is unreliable, then normal operation can
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Fig. 2. Visualizing how each fault type would affect the behavior of a device’s state.

be approximated by retrying polls and actuations, and it may be possible to repair, as the device
can still receive function commands.

A software error occurs when a bug in the device’s software causes one of the fault types to
occur. This can only occur in devices with sufficient software to host bugs, such as a Thermostat,
and can most often be repaired by re-initializing the device’s software or by power-recycling the
device.

A hardware error occurs when a defect in the device’s hardware causes one of the fault types to
occur. This can occur in any device and may be fixable by power-cycling the device one or more
times; otherwise, it is no different from a power failure regarding remote fault handling.

As can be seen in the definitions, the cause of a fault mostly affects what form of fault handling
may be able to correct the device behavior, if any. Other causes, such as environmental condi-
tions or adversarial attacks, do not add anything significant to this list of causes from IoTRepair’s
perspective.

2.3 Motivation for Automated Fault Handling

As discussed in the introduction, as IoT systems are primarily autonomous, users generally have
little interaction and oversight. Therefore, it is highly desirable to have a largely automated IoT
fault identification and handling system.

Fault tolerance in IoT platforms. To understand how IoT platforms identify and handle faults,
we have studied eight major IoT platforms to characterize their fault identification and handling
methods. The results for each platform are shown in Table 2, with undetected meaning that the
fault is not recognized by the platform, silent meaning that the fault is recognized but the system
does not inform apps of the fault, general error meaning that an error is thrown but the error does
not contain the fault type, and detailed error meaning an error is thrown and it specifies the fault
type. For instance, SmartThings provides a developer API to obtain the current device state and can
notify an app when the device state is changed [34]; an app can check for the state changes before
continuing execution. This requires additional developer effort, and if a developer neglects this
check, an app would operate ignorant of whether a device failure exists. Additionally, if a failed
device is queried, then SmartThings returns the last known device state or some default value,
which may potentially return stale sensor states when a device is unreachable. This enables an
app to continue functioning, yet the stale states may inadvertently actuate incorrect device states.
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Table 2. loT Platforms’ Response to Different Device Faults

I Fail-Stop Faults I Non-Fail-Stop Faults ‘

IoT Platform Comm. | Power | Crit Error | Outlier | Stuck-at | High Var. | Spike
SmartThings [29] %) %) %) ® ® ® ®
OpenHab [26] %) %) %) ® ® ® ®
Vera [40] @ @ @ ® ® ® ®
Homekit [2] S S) S) ® ® ® ®
Wink [42] ) ) ) ® ® ® ®
AndroidThings [11] ) ® ® ® ® ® ®
ToTivity [14] e 2 2 ® ® ® ®
KaaloT [37] ) ) ) ® ® ® ®

[®]: Undetected, [@]: Silent, [&]: Generic Error, and [&]: Detailed Error.
Undetected means that the fault is not recognized by the platform, silent means no message sent to apps, generic error
means messages do not contain fault information, and detailed error means messages contain fault information.

The results in the table show that only Android Things gives enough information to handle
fail-stop faults effectively, and no platforms give the means for applications to handle non-fail-
stop faults. In contrast, IoTRepair is able to handle these types of faults automatically and further
provides a toolset to allow developers on any platform to perform their own handling.

Research Literature on IoT Fault Identification and Handling. Fault identification tech-
niques aim to determine the presence of a fault and determine the faulty device and type. We
characterize the fault identification techniques for IoT systems into three groups. First, network
traffic-based techniques analyze sensor data packets to detect faults [28, 44]. Network-level tech-
niques are effective at identifying fail-stop failures but ignore non-fail-stop faults. Second, redun-
dant sensor-based techniques use data from multiple homogeneous sensors and exploit the fact
that spatial sensing of close sensors should yield similar sensor states [5, 10, 31]. However, these
systems are costly due to the requirement of multiple sensors and, more importantly, ineffective
when considering that simultaneous sensor faults are common in IoT. In the last group, data ob-
tained from different types of sensors are used for fault identification. These techniques apply to
environments such as smart homes where various sensors states are available and often corre-
lated [17, 19, 23]. While these techniques differ in scope, precision, and methodology, they do not
identify fault types.

Very little research has been performed in IoT fault handling. The explored techniques often
aim at specific environments and faults. A fault-tolerant technique [39] for redundancy-free UAV
sensors uses imperfect replication to allow near-correct device operation in the presence of a
sensor failure. While this work poses a good argument for the value of imperfect replication, the
functions are specific to UAV sensors and contribute little to repairing faults. Rivulet [3] aims at
removing an edge device as a single point of failure to mitigate connection faults by distributing
communication to devices. The core drawback of this technique is that it does not handle the
far more common sensor and actuator faults. Transactuations is a fault-handling technique
introduced in Reference [30] to address some flaws that transactions have in IoT environments.
This enhanced technique better prevents physical device states from losing synchronization with
software variables. While this is useful for preserving dependencies, it does not repair faults
and cannot correct errors that occur before the fault is detected. To the best of our knowledge,
no current techniques develop a fault handler for diverse IoT device failures and bundle fault
identification and fault handling to mitigate faults. CEFIoT [15] and its extension IoTEF [16] use a
fault tolerance model designed for distributed systems with the goal of ensuring data processing
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and delivery. While it is very effective at increasing the resilience of systems with advanced
distributed computation, it assumes the collected data is correct at the source, which may not be
true in the case of a faulty device, nor the cascading effects that can cause. The system also does
not attempt to repair faulty devices actions or consider the changing state of an IoT environment.

Challenges in IoT Fault Handling. Compared to the fault handling in other computing plat-
forms such as distributed systems and cloud services, fault handling in IoT systems raises a set of
unique challenges. We present these challenges below and discuss briefly how we address each.

First, there is no single fault handler technique that can address all possible device faults, due to
the vast array of heterogeneous IoT devices and the diverse set of environments in which they are
deployed. Implementing an optimal handling technique for a specific fault is highly contextual—
one cannot define the impact or correctness of fault handling without understanding the envi-
ronment. Due to the heterogeneity of IoT devices, various devices often require different fault-
handling techniques executed to fit power, environmental, and computation constraints. IoTRepair
addresses this challenge by introducing a set of functions that may be invoked in a flexible order
with custom parameters through device-driven defined schemes. These schemes can be chosen
to meet the system and environmental requirements such as safety, security, and availability. We
present the fault-handling functions and schemes in Section 4.

Second, optimal handling of a specific fault is highly contextual due to varying user and devel-
oper demands and environmental factors. For instance, some users may prefer energy conservation
over real-time fault handling, and a developer may desire their apps suspended when a fault oc-
curs. [oTRepair enables users and developers to define their requirements in a configuration file,
which is updated by runtime environmental input.

Third, due to dynamic application code across deployments, faulty behavior can cascade
throughout the environment unpredictably. This cascading behavior causes a faulty device in an
app to incorrectly trigger an event in another app. To illustrate, we consider a secure-home app co-
located with the temp-control app. The secure-home app controls a presence sensor, a door lock,
and a window actuator. The app keeps home secure—door-locked and window-closed—when the
user is not at home and notifies the user if the house becomes insecure. An unhandled spike fault
in the thermostat controlled by the temp-control app causes an increase in temperature when
the user is not at home and causes the window to open. The secure-home app then sends an SMS
alert to the user saying that the house is unsafe—making the user become unnecessarily anxious.
This behavior is correct from the secure-home app, as the window should not be open; however,
the window is opened because of a fault that triggers the event handler of the temp-control app.
This example shows that faults of a faulty device can propagate beyond the device through in-
fluencing the environment and interactions between apps. This requires fault tolerance that can
either prevent or remedy these behaviors.

Finally, a fault-handling mechanism at installation and runtime must require minimum user
interaction and domain expertise. For instance, a solution that only notifies users about the fault
may lead to safety issues, as the users might not be available, and the fault may require a real-time
response. [oTRepair provides automated fault-handling functionality with user configurations.

3 APPROACH OVERVIEW

The variety of faults in IoT systems, combined with the diversity of IoT deployments, requires a
flexible fault-handling approach. It is important that users can customize a fault-handling system
to address a variety of faulty devices, fault types, deployment environments, and their preferences.
For this reason, we design IoTRepair to be flexible, with major components presented in Figure 3.

One design decision of IoTRepair is that it focuses entirely on the fault-handling aspect and
assumes there is already a fault-identification module that can accurately identify the faults in a
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Fig. 3. Overview of loTRepair architecture.

timely manner. At runtime, the fault identification module sends a signal with the faulty device
ID (and optionally the fault type) to IoTRepair’s fault handler when it detects a fault. The signal
could be in the form of a network packet or an API call; in our implementation the identification
module simply imports the IoTRepair library and performs a function call. Each message should
only identify one fault, as IoTRepair assumes faults are independent. Multiple faults are consid-
ered in design and implementation, however, the number of faults only affects the performance
of environmental functions, as increasing faults reduce the ability to accurately gauge the correct
system state. We also consider that the identification module may have varying amounts of delay
in detecting faults, but our evaluation in Section 6 shows that the delay does not have an impact
in IoTRepair’s effectiveness beyond the latency of the delay itself.

With that design choice, IoTRepair first provides a menu of fault-handling functions as a library
so developers can invoke these functions to mitigate or repair the faults. For instance, it provides a
retry function, which a developer can invoke to repeat some functionality of a device if a previous
use of that functionality returned a fault. This is useful for resolving transient faults.

Second, IoTRepair provides an automated fault handler, which takes a configuration file (dis-
cussed soon) and performs fault handling without user involvement. IoTRepair introduces a no-
tion of fault-handling schemes to organize and execute fault-handling functions autonomously. A
scheme is a list of fault-handling functions to be invoked in a specific order. Each device is assigned
a scheme in the configuration file that determines which fault-handling functions will be used to
handle faults in that device and what order they will be called in.

Finally, the system includes a configuration file, which is created during an initialization phase
and updated by the automated handler at runtime. During the initialization phase, our system re-
quests information from the loaded identification module and obtains a list of installed applications
and connected devices, their types, and capabilities; e.g., a motion sensor has active and inactive
states and a hardware restart functionality. In detail, there are three types of information in the
configuration file: (i) general parameters, defining the upper bound on how long fault identifica-
tion takes defined by the identification module, as well as specifications for checkpoint cleanup
and replicated device detection, specified by the user; (ii) device-based parameters, defining the
list of devices running in the system and a set of parameters (e.g., which fault-handling scheme)
for each device; a list of default configurations for various device types is also defined; each device
has its default set based on the device’s type, or to a conservative default; these settings can be
modified by the user, by the automated handler at runtime, or by developers via making API calls
in their applications; (iii) application parameters, listing what apps are installed on the edge device
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and whether the application suppression is enabled for each; by default, application suppression
is disabled. These components allow IoTRepair to be flexible in addressing a variety of faults and
environments.

The above discussion implies the two modes through which IoTRepair can be used.

Developer API In this mode, a developer can customize and use IoTRepair through the fault-
handling library. The library provides an API for its functions (discussed later). An application
developer can utilize the API in two ways. The simplest is to use a set of auxiliary functions to
modify the configuration file to customize the automated handler. The second is for the application
to call fault-handling functions in the library directly. For our current implementation in Python,
installing the library is as simple as importing our Python file. For an application that is not in
Python, it can interact with our library through Python’s foreign function interface. For faults
that cause application code to return errors, a developer can simply use a try/catch block around
application code that interacts with devices. For any caught error, the application can call handler
functions in conjunction with their own code whenever a fault occurs in a device. This allows
them to handle faults flexibly, although it requires more effort on the developer part, as they have
to provide all arguments for each call. For faults that do not cause application code to return errors,
a developer would need to incorporate a fault identification module and call specific IoTRepair
functions on fault identification; for these faults, it is far easier to simply use the configuration file
for automated fault handling.

Automated Fault Handling. For Automated Fault Handling, IoTRepair assumes there is a cen-
tralized control point where IoTRepair can be installed, which can be an edge device located in the
deployment or a cloud service. IoTRepair also assumes this is the only entity other than the de-
vices themselves that can modify device states. While these assumptions eliminate environments
with distributed control, centralized control is common in many IoT environments, whether they
are smart homes, industrial control systems, hospitals, or otherwise. Once a faulty device is iden-
tified, its automated handler performs device suppression, which blocks polls to the faulty device
and events generated by faulty devices. This prevents faulty devices from triggering application
code and causing incorrect actuations. The handler then uses the configuration file to see which
scheme should be used for handling the fault for the faulty device. The handler calls fault-handling
functions in the order specified in the scheme, and each function uses the information in the con-
figuration file while attempting to handle the fault. If the fault is repaired at any stage of the
scheme, then fault handling immediately ends, and the device is added back for normal execution.
If the scheme ends without the device being repaired, then the user is notified that the device
must be manually repaired, and the handling ends. Using the automated fault handler in our cur-
rent setup requires importing our Python file, creating a configuration file, inserting function calls
for routinely taking checkpoints, and inserting a function call into the fault identification module
for when a fault has been identified. In our implementation, we inserted checkpoint calls at the
end of a cycle where device states were polled and any relevant application code was run, which
we called a poll-cycle, but this may be different for different environments, such as SmartThings
where activity is event-driven not poll-driven.

4 FAULT-HANDLING FUNCTIONS

We introduce a set of functions to handle faults effectively. We present these functions in three
groups, presented in Table 3. We then discuss four built-in fault-handling schemes that can be
integrated into diverse IoT environments.

Design Requirements and Assumptions. We present the requirements for IoTRepair to oper-
ate effectively. First, some fault-handling functions, such as rollback and checkpointing, require
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Table 3. Fault-handling Functions Prototypes

Device-based Functions
bool activate_redundant_device (String device_ID)
int retry (String device_ID, FP verifyFunct,
String[1[] expectedValuest, bool isFailstopt)
bool device_software_restart (String device_ID))
bool device_hardware_restart (String device_ID)
void notifyUser (String device_ID)

Environment-based Functions
bool checkpoint (String[] device_values)
int rollback (String device_ID)
int transaction (String[][] actuations)

Auxiliary Functions
bool AddDevice (String[] device_ID)
bool RemoveDevice (String[] device_ID)
bool UpdateDeviceConfig (String[] device_ID, ConfigOptionst)
bool UpdateAppConfig (ConfigOptionst)

([+] Marks optional arguments. [+] ConfigOptions represents a series of arguments for all
configuration parameters for the device/application.)

access to the device states; thus, we assume that device states are available through polling. Sec-
ond, IoTRepair relies on the edge device (e.g., the hub) being able to query or record the ID and
model of all connected devices. Third, we assume that there is a fault-identification module that
provides the faulty device ID for each detected fault. Any system that can provide the faulty device
ID can be integrated into IoTRepair. Finally, we assume that our implementation is injected into
the edge device; it can access the aforementioned capabilities and its library functions are exposed
to applications.

4.1 Device-based Functions

Device-based functions are an implementation of isolated fault handling, which considers only
the state of the faulty device, but not the overall state of the system. The effectiveness of such a
function depends only on the specifications of the faulty device and the nature of the fault. These
functions do not directly affect and are not affected by any other devices in the system.

Activate Redundant Devices. Functional replication is a well-studied technique in many do-
mains, with applications in cloud environments, distributed systems, and even some IoT imple-
mentations. We argue that [oT devices can provide replication in two distinct ways: (a) a duplicate
of the primary device; (b) a device that is not a complete duplicate but provides similar capabilities;
for example, a camera that is located in the same room as a fault motion sensor can detect motion
to replicate the functionality of the motion sensor. I[oTRepair currently can only automatically im-
plement replication of type (a), but type (b) is a quite reasonable future addition, as the feasibility
was demonstrated in earlier work [39].

The user can use the configuration file to specify any known replicating devices of type (a).
IoTRepair’s API function ActivateRedundantDevice allows the system to continue to run unaf-
fected by a detected fault, so long as the configuration file specifies the replicating device ID if
one exists. If there is, then it redirects polls and actuation commands from the faulty device to the
replicating device. Using this method, IoTRepair does not rely on native replication support from
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Fig. 4. Example of automatic replication detection.

the platform. This also places all replication logic in the cloud, which keeps latency and overhead
to a minimum.

To ease the burden of writing replicating devices in the configuration file, IoTRepair’s runtime
includes a method to automatically detect likely candidates for replication, similar to the finger-
printing method in Reference [12]. It examines the list of connected devices through platform
capabilities for devices with matching type and automatically generates relevant configuration
data. Finding a replicate device in an IoT environment must consider the fact that similar devices
are not necessarily co-located. To address this, IoTRepair observes the sensor states during polling
for a configured time and checks whether devices report the same states consistently. If the two
devices’ states and transition timings remain within acceptable bounds, then these devices are
identified to be replicating. Figure 4 illustrates how two co-located motion sensors would be de-
tected as replicating, as their states match consistently. In contrast, an unrelated presence sensor
and distant motion sensor are not treated as duplicates.

Retry Device State. Retry is effective at handling short, transient faults in devices, or faults that
only incur a chance of failure. The first purpose of Retry is stalling device execution long enough
to let the fault resolve itself and preventing excessive handling from being performed. This can
resolve very short faults, such as outliers, that only take place over a few milliseconds. The second
is that, if the device is an actuator or the proper state of a device is known, then through repeated
polling and/or actuating the fault may be resolved. Retry takes parameters of the device ID and
three optional arguments: a function pointer for a validation function, a list of expected device
states, and whether the fault is fail-stop or not. When used by the automated handler, these may
be supplied by the fault identification module. Additionally, each device is configured with a set
number of retries. If a function pointer to a validation function is given, then the validation function
will be called to check if the fault is resolved (until the retry limit is reached). If the expected device
states are passed, then the retry will poll and/or actuate the device continually until an expected
state is returned or retry limit is reached. If an expected value is returned, then it will mark the
fault as resolved and end fault handling. If the fault is identified as fail-stop, then any successfully
returned state will be treated as an expected value.

Software and Hardware Restart. Restarting can potentially correct both software faults, where
the onboard software on the device encounters a bug, or hardware faults, where the hardware
enters a bad state, so long as it can be remedied by a power-cycle. SoftwareRestart and
HardwareRestart take a device ID and send a signal to the faulty device to initiate a software
and hardware restart, respectively. The configuration file will also be read for the device to
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determine the max number of attempts to restart. If no acknowledgment signal is received, then
the command will be repeated, and if it is not acknowledged a configured number of times in a
row, then the restart will be aborted and return with an error code. If the restart is acknowledged,
if the fault was not fail-stop, then the function will disable the app and device suppression for the
passed device and then wait for a length of time equal to the upper bound on fault detection for the
loaded fault identification module. If no fault is detected during this time, then the restart resolves
the fault and fault handling ends. If a fault is detected or the fault was fail-stop, then the restart
function ends unsuccessfully.

The implementation of restart functions is device-dependent. Many IoT devices such as Honey-
well Z-Wave Thermostat [33] and open-source electronics platforms such as Arduino implement
the device restart functionality.

User Notification. Notify takes a device ID and notifies users of the fault and the result of fault
handling. The implementation of the notify call is platform-dependent; we inform users through
alert messages on the console, yet text messages or push notifications are possible through IoT
platform APIs. Event triggers for user notification can be configured for each device to notify the
user when a fault cannot be repaired by the handler, when a fault has been repaired by the handler,
when a fault occurs, or any combination of these.

4.2 Environment-based Functions

Environment-based functions are an implementation of linked fault handling, which mitigates cas-
cading behavior. It responds to a fault by considering the states of all devices in an IoT environ-
ment; e.g., linked fault handling should close the window that was incorrectly opened by an app
due to the faulty thermostat. As environment-based functions can affect all device states in an
environment, they are capable of mitigating cascading failures across the system.

Checkpoint. Checkpoint stores all device states in the system at the time it is called. In general,
a checkpoint is a sequence of pairs of devices and device states. For example, in our Arduino
deployment each device either has a digital or analog value for its current state. So, a system with
a presence sensor, motion sensor, and light may have a Checkpoint that looks like [“Presence”: 1,
“Motion”: 0, “Light”: 1], which means Presence is detected, Motion is detected, and Light is on. We
divide device states into sensor states and actuator states. Sensor states are read-only states that
collectively represent the state of the environment and drive behavior. Actuator states can be read
and modified through actuation, and they are the states that can be rolled back.

We assume that there is a causal relation from the sensor to actuator states; in other words,
an app follows the well-known sensor-computation-actuator structure: It takes the sensor states,
performs some computation, and then performs actuation to modify the actuator states. Based
on this, IoTRepair includes a novel, history-based checkpoint/rollback mechanism (1) that during
checkpointing records the history of device states, and (2) that during rolling back restores the
most likely actuator states by looking up the history according to the current sensor states. We
next discuss this mechanism in detail.

First, the automated fault handler invokes the checkpoint function after every actuation that
does not trigger cascading actuations. This means a checkpoint is taken after actuations where
no subscribing application initiates an actuation based on the new state. The handler determines
these states by checking all apps logic subscribed to the actuated device to ensure no additional
actuation is performed as a result.

Second, we must ensure no faults were present at the time a checkpoint was taken. We must
wait until a period equal to the upper bound on the fault-detection time has passed without a
fault being identified to verify this. If the fault-identification module does not have a known upper
bound, then we wait for a user-defined length of time, with a default value of 30 minutes.
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Fig. 5. lllustration of checkpointing.

When enough time has passed, the new checkpoint is then stored in a history log, which holds
checkpoints and their frequencies. If no previous checkpoint has matching sensor states, then a
new checkpoint is appended to the log. This Checkpoint will be assigned a frequency for tracking
how often it has occurred in the system, with an initial value of 1. This value acts as a tie-breaker
when choosing between possible target Checkpoints. If the sensor states match an existing check-
point’s sensor states, then the frequency is incremented if actuator states also match, or the actu-
ator states are overwritten, and the frequency is reset to be one if the actuator states differ. Only
storing the most recent actuator states for a set of sensor states keeps the log from exploding in
size. For the same reason, checkpoints are removed from history if they remain unused for an
extended time, as determined by the configuration. If computation and storage space is relatively
high, such as on a cloud server, then we could store all possible actuator configurations for each
sensor set. In this case, actuator states could also be used when deciding between Checkpoints,
where the Checkpoint that would require less actuations to match is selected. This would allow
for causal relationships between actuators to be included in rollback.

Figure 5 provides an example of how checkpoints are taken over time in a system as a result of
changes in actuator states. The example uses a simple system with two devices: a motion sensor
and a light actuator. The figure shows checkpoints being taken during a series of actuations, which
occur at timestamps tq through t4, with initial time ty before actuations. On the left side of the
figure, the state of the system after the actuation completes is shown; on the right is the list of
checkpoints at each time, starting from an empty set. The first two checkpoints at times t; and
t, are new states, since there are no existing checkpoints that match the sensor states. For these
new checkpoints, the time and current device states are recorded, and the frequency is set to 1.
The checkpoint taken at t3 has the same device states as an existing checkpoint; so it updates the
checkpoint timestamp and the frequency. At time t4, a checkpoint that matches the sensor states
is taken, but the actuator states do not match those of an existing checkpoint; so the matching
checkpoint’s timestamp is updated, actuator states are overwritten, and frequency is reset.

Rollback. Rollback performs a series of actuations to match the system state to the checkpoint
that best reflects the current system sensor values. Algorithm 1 details the steps for computing
a rollback that finds all potential matches, determines the best match, and performs actuation
according to the best match.

We have designed three techniques for choosing the best checkpoint to target for rollback: most-
recent, fail-norm, and fail-safe. The configuration for the faulty device determines which technique
will be used. Lines 1 and 2 of the algorithm involve retrieving which of these to use based on the
faulty device.
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ALGORITHM 1: Rollback Algorithm

Input :The ID of the device that triggered this rollback
Output: Success or Failure
Read configuration file to get rollbackType

[

&)

Set targetCriteria be timestamp if rollbackType = most-recent, be current sensor states if
rollbackType = fail-norm, be fail-safe states if rollbackType = fail-safe

w

Search through Checkpoints to find checkpoint that fits targetCriteria and store it in bestMatch
if bestMatch equals () then
L return Failure

[E N

o

if any device in systemState is an actuator, its state does not match bestMatch, and is faulty then
L return Failure

~

%

Actuate each actuator in systemState to match bestMatch

©

Change each faulty sensor state in systemState to match bestMatch
10 return Success

Most Recent targets the last checkpoint that occurred in the system. This is the most basic method
and assumes that faults can be detected very quickly relative to the speed that the environment
typically changes. This assumption means that most if not all of the recent changes in the environ-
ment should be due to the faulty behavior; so they can safely be rolled back to allow the system to
continue from a recent safe point. A good example would be in an environment where detecting
faults has a high priority, like a hospital. It also works well with complex devices that are more
likely to be able to self-diagnose and report faults. Most recent is also good in environments where
it is assumed many devices are likely to have faults at once. This is because other rollback methods
decrease in accuracy as more faults occur and decrease what can be known about the environment
state. An example environment where this would be the case is one that spreads across many net-
works, where one node going down may result in many devices suffering a network failure.

Fail-norm finds which checkpoint best matches the current known environment. First, only
checkpoints where all sensor states match the current sensor states in the system are considered.
As the states of faulty sensors cannot be trusted, their sensor states are not considered when deter-
mining if a checkpoint matches the current sensor states. Because of this, it is possible that multiple
checkpoints match the current known state of non-faulty sensors. If there is more than one match,
then the frequency of checkpoints is used as a tie-breaker. As previously mentioned, this method
assumes a causal relationship from sensors to actuators, and also assumes a large majority of de-
vices are non-faulty at rollback time. Fail-norm is best suited to devices whose states have a high
degree of correlation with other devices. For example, a motion sensor’s state may be highly cor-
related with the state of a presence sensor, which allows the rollback to use the presence sensor
to determine what the faulty motion sensor’s state should be. It is also better in environments
without single points of failure, such as a factory with a backup generator for power failure.

Fail-safe uses the fail-safe configurations for all of the actuators in the system to reduce the
list of checkpoints to only those where actuators match their fail-safe states; e.g., the fail-safe
configuration for an alarm might be to have it on. Once the list has been reduced, a checkpoint
will be selected in the same manner as fail-norm. This is the only method that will proceed with
the rollback even if no valid checkpoint is found or one of the devices that must be changed is
faulty. Even in these cases, the bare minimum is to put all devices with fail-safe states into those
states. Similar to fail-norm, fail-safe assumes devices are correlated for selecting checkpoints, but
more importantly assumes that there are devices that have known safe states that are critical for
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Current System State:

[Motion] Presence [ Door Lock | ALGORITHM 2: Transaction Algorithm

| Off |Fau|ty (stuck at home)| Unlocked |
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Input :An ActuationList of

(ActuatorID, ActuationValue) tuples
30 Oon Home | Unlocked Output: Success or Failure return code

On Away Locked 1 undoLogs — 0

2 foreach tuple in ActuationList do

Bottom two checkpoints match the current motion sensor state, and the 3 originalValue — getDeViceState( tuple[o])
second checkpoint has a higher frequency, so rollback will lock the door. . i
4 if actuate(tuple[0],tuple[1]) returns Failure
Fig. 6. Example of fail-norm rollback. then o
5 foreach actuation in undoLog do
6 L actuate(actuation[0], actuation[1])
7 return Failure
8 undoLog.append(tuple[0], originalValue)

9 return Success

them to enter if their proper state becomes ambiguous. The best example for this is when the faulty
device drives the behavior of many important devices. In a commercial building with automatic
doors, a faulty fire alarm may mean that all interior doors must open to avoid possibly preventing
individuals from escaping a possible fire. A similar case would be a smart home that closes and
locks all entrances if the presence sensor becomes faulty to secure the home while the location of
the resident is unknown.

Line 3 of the algorithm is where a rollback technique is used to iterate through the list of pre-
viously taken checkpoints to find the best match for the rollback type. Most Recent will choose
the checkpoint with the latest timestamp. Fail-norm finds the checkpoint that matches all known
current sensor states best, using how frequently it has occurred as a tie-breaker. Fail-safe is the
same is fail-norm, but will choose only checkpoints where all devices with fail-safe states in the
configuration file match those states. If there are no matches, then the rollback fails and terminates.

Rollbacks can be dangerous, as a partial rollback can result in an otherwise impossible transition
and enter an invalid system state. For this reason, our rollback fails if any actuator that needs to
be changed is currently faulty (lines 6-7). We note that this captures the heterogeneous nature
of IoT devices compared to similar functions in distributed systems [21] and cyber-physical
systems [20]. We further note that as IoTRepair assumes that the identification module does not
provide exactly when the fault occurred in the device, all actuators that do not match the chosen
checkpoint must be actuated. If the fault time were provided, then it would be possible to rollback
only the effects of the fault; we discuss a possible extension in Section 7. We also implement a
data rollback as part of the system rollback. Specifically, as long as the rollback does not fail, any
faulty sensors are set to their values at the time of the checkpoint until the device is repaired or
another rollback occurs (Line 8).

Figure 6 gives an example of how fail-norm rollback would operate in a system with two sen-
sors, motion and presence, and a lock actuator for a door. It shows that IoTRepair’s rollback can
mitigate dangerous faults that would otherwise persist until the user can repair the faulty device,
as long as another sensor’s state is correlated with the faulty sensor’s state with high frequency.
In the example of Figure 6, a presence sensor that is stuck at home could cause the door to remain
unlocked indefinitely. Fortunately, the motion sensor’s state is largely correlated with the pres-
ence sensor’s state, because it is likely to detect user motion when the user is at home. As a result,
IoTRepair’s rollback can then use the motion sensor’s state to correct the door to be locked and
secure the home, even when the presence sensor is faulty.

ACM Transactions on Internet of Things, Vol. 3, No. 3, Article 22. Publication date: July 2022.



loTRepair: Flexible Fault Handling in Diverse loT Deployments 22:17

Transaction. A transaction performs a series of actuations and ensures that the actuations are per-
formed atomically as a group, either all successfully completing or none completing. Currently, the
transaction function is not used by IotRepair’s automated handler, yet app developers can invoke
it to cause a series of actuations to execute atomically when a partially executed series may leave
the system in an unsafe state. For instance, a developer can issue a call “transaction([[Window,
Closed], [Heater, On]])” to close the Windows and turn on the heater as a transaction. Trans-
actions are implemented through a standard undo-log-based algorithm. It performs each of these
actuations in the order given in the passed array while recording the original states in an undo log.
If any actuation fails, then the transaction is aborted, all devices are reset to their previous states,
and an error is returned.

4.3 Auxiliary Functions

We describe functions necessary for the operation of the fault handler. These functions are not
directly used during fault handling but can be invoked by the automated handler or application
developers to modify handler configuration.

Device Suppression. It is not a library function, but rather a capability injected into the code
of an edge device (e.g., a hub). This is because it is required to interrupt polls and event hooks
at the edge device. Through this capability, the edge device can terminate polling the device’s
state and block actuation commands sent to the device. This prevents events from a faulty device
triggering incorrect actuations to other devices through app code. Device suppression is effective
in correcting non-fail-stop faults. For example, if the smoke detector experiences a high variance
fault, then it may rapidly switch between smoke-detected and smoke-not-detected states. This
would cause the alarm to turn on and off until the fault is resolved. With device suppression, the
smoke detector can be suppressed once it is identified as faulty.

Application Suppression. Similar to device suppression, application suppression is also a capa-
bility injected into the edge device code. Application suppression can be enabled or disabled for
each app based on the configuration file. When a device is identified as faulty, application sup-
pression checks the list of apps subscribed to the device’s events. For every app that application
suppression is enabled, all events that would be sent to the app and all commands generated by
the app are suppressed. This halts the execution of the app, which is desirable when an app has
functionality that may put the system into an unsafe state if the state of one of its dependent de-
vices is unknown. For example, suppose there is an app that opens the window when the presence
sensor indicates the user is home and the house is too hot; when the presence sensor is faulty, the
window may open if the app is not suppressed.

Update Device/App Configuration. These functions allow IoTRepair to update the configura-
tion file at runtime by passing a device or application name and a list of fields to update. If the
passed arguments are valid for the given fields, then the values in the configuration file are updated.
App developers can also call this function with the same parameters to customize the configuration
file for their requirements.

4.4 Built-in Fault-handling Schemes

We introduce a set of built-in schemes to automate the functions introduced above (see Table 4).
The schemes control the execution order of the functions to address environmental requirements
such as safety and security. We choose to use the device type as a primary determinant of which
scheme to use, since [oT device parameters introduce several limitations, e.g., duration of restarts
and the presence of replicated devices, which impacts the optimal function ordering. Our four
schemes are not designed to address all possible deployments, and additional schemes can easily
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Table 4. The Execution Order of Functions in Schemes:
(1) Replicate, (2) Retry, (3) Software Restart, (4)
Hardware Restart, (5) Rollback, (6) Notify User

’ Scheme \ Function Ordering ‘
Conservative 112|134 ]5]|6
Permanent-Expected | 1 |3 | 4|56 |0
Long-Restart 12|53 (4]|6
Time-Sensitive 115|123 ]4]6

be created for different deployment requirements and when new handling functions are developed.
IoTRepair updates selected schemes based on device behavior during fault handling. We describe
the purpose of each scheme. The Conservative scheme fits in environments where there are no strict
time requirements, and energy conservation is the primary goal. For this reason, the functions are
ordered by increasing cost of power to the device. The Permanent-expected scheme aims at devices
that are unlikely to experience transient faults. It is similar to Conservative, but it skips over Retry,
as Retry can only resolve transient faults. For instance, this would be suitable for a temperature
sensor deployed in a stable home environment, since it is capable of restarting and does not control
time-sensitive operations. The Long-restart scheme is used in devices that have excessively long
software and hardware restart times, such as security cameras and a smart refrigerator. For this
reason, it deploys rollbacks before attempting any restarts to attempt to first correct the system
state. The Time-sensitive scheme aims to return the system to the desired state as soon as possible,
for instance, when an IoT system that is responsible for security is unresponsive. It is similar to
Long Restart, but skips Retry, as Retry delays more effective functions. This scheme fits industrial
or vehicle environments where system integrity is the top priority.

5 IMPLEMENTATION AND EVALUATION SETUP

For a prototype implementation, we deploy a physical testbed with a set of Arduino IoT devices and
applications to mimic a smart home environment. In this section, we introduce our implementation
setup, discuss the physical devices and applications in the setup, and then present fault injection
techniques we use to evaluate the effectiveness and overhead of IoTRepair.

Implementation Setup. To mimic a real deployment, our setup contains (1) an AVR Arduino
Mega 2560 Rev 3 Board [4], which acts as a hub in a smart home environment; (2) a set of devices
(sensors and actuators); and (3) a desktop Windows machine, which takes the place of what would
be the cloud; the windows machine uses an 8-core 2.2 GHz Intel processor and 12 GB of RAM. An
overview of the implementation is shown in Figure 7.

IoT application code and IoTRepair code are installed to the desktop machine. It takes csv con-
figuration files as input and output measurements, discussed in Section 6, into CSV files. During
the evaluation, the desktop machine also runs a Python script to drive the evaluation. Polling and
actuation functions, as well as the fault-handling functions (Section 4), are uploaded to the Ar-
duino board, which then interacts directly with a variety of devices. The desktop machine and
the Arduino board communicate over a serial connection, and Arduino communicates with de-
vices over jumper wires. For evaluation, the Arduino board is coded to perform several commands:
(1) Inject Fault, (2) Remove Fault, (3) Poll Devices, (4) Actuate Devices, (5) Check Devices for Faults,
(6) Software Restart, (7) Hardware Restart. The timing and power usage of each action is recorded
during evaluation.

This setup improves upon our prior work where the evaluation was entirely simulated based on
estimated behavior from an observed Arduino setup [25]. In that evaluation, we used the sensor
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Fig. 7. A graphical representation of our physical implementation, with a desktop Windows machine taking
the place of what would be the cloud, an Arduino board acting as the Hub, and a set of devices.

Table 5. Details of Sensors/actuators Used in Our loT Testbed

] ID¥} \ Device} \ Power (mW) \ Read time (ms) \ Output ‘
S.1 | Motion Sensor 66 0.1 double, 8B
S.2 | Contact Sensor 0.1 0.1 int, 4B
S.3 | Temperature, Pressure, Altitude Sensor 19.5 37.5 double, 8B
S.4 | Acceleration sensor 1.3 0.5 int*3,12B
S.5 | Flame detector 30 0.96 double, 8B
S.6 | Water detector 80 0.1 double, 8B
A.1 | LED 0.01 0.1 -

A.2 | Buzzer 100 0.1 -

Power is passive power consumed.
[1] S is for Sensor and A is for Actuator. [$] We use Arduino-compatible devices to simulate the devices in IoT apps.
For instance, a flame detector is used for smoke-alarm, and switches are used for the lights (see Section 5).

data observed in a sample Arduino setup to generate traces for 17 simulated devices; those traces
represented activity in a smart home, which then drove a trace-driven simulation. That allowed
for estimation of the behavior of faults and fault handling in IoTRepair but lacked a guarantee of
accuracy in a physical setup.

IoT Devices and Applications. We deployed six different types of sensors and two types of
actuators, for a total of eight types of devices. Table 5 presents the types of devices by ID, device
description, and device characteristics, which include the power consumption, the amount of time
for reading device states, and the type of sensor output values; since actuators do not have output,
we use “-” for their output column. Some devices are used as substitutes for devices that would be
found in a home environment. For example, the Acceleration Sensor gives X, Y, and Z coordinates
of its current position, allowing acceleration to be measured by comparing the difference between
two polls. Since a single poll simply gives the current position, it can approximate a presence
sensor, which tracks whether the device is present at a location by taking each poll as an isolated
current position. Our implemented home environment uses 7 sensors and 10 actuators and includes
a set of apps described in Table 6. These apps are selected to cover a wide spectrum of home
environment functionality, including green living, convenience, home automation, security and
safety, and personal care.
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Table 6. The loT Apps We Developed to Evaluate loTRepair and Their Descriptions

[ ] App Name [ Description
App1 | Motion-Activated-Lights | When motion detected, turn on the lights. Turn off the lights when motion not active.
App2 | Smoke-Alarm ‘When smoke is detected, sound the alarm and unlock the doors. When no smoke is detected, turn off the alarm.
App3 | Temperature-Control Keep temperature between 70-80 degrees (‘F) by turning the heater and the air conditioner on and off.
App4 | Water-Leak-Detector When leak is detected, sound the alarm and close the water valve. When no leak is detected, turn off the alarm and open the water valve.
App5 | Welcome-Home When the user arrives home, unlock the doors and turn on the coffee machine.
App6 | Secure-Patio When user is not present and contact is detected, send text message to user.
App7 | Energy-Saver If the window is open and either the heater or the air conditioner is on, close the window.
App8 | Secure-Home When user is not present at home, lock the doors and close the windows.
App9 | Intruder-Detector ‘When user is not present at home and motion is detected, send text message to user.
App10 | Alarm-Safety ‘When the alarm is activated, turn on the lights.
App11 | Morning-Air Open the windows and close the windows at specific times.

Fault Injection. In our evaluation, we use fault injection to evaluate the effectiveness of fault
handling. There is an explosion of possible fault scenarios that can occur in an IoT environment
due to the many factors that can influence how a fault appears in the system. Our fault injection
aims to take into account of these factors, including fault type, device type, the state of other
devices when the fault occurs, and the events that occur during the fault’s presence. First, we
inject one fault per run. Second, we inject a full spread of every fault type across each device.
Finally, we ensure the devices have all entered a stable state prior to beginning each evaluation,
meaning that they have finished any startup and are reporting stable state information.

After we have specified the fault injection parameters, we construct an input configuration file
that specifies what faults are injected. This allows our system to accept custom sets of faults. Faults
are characterized through designated device, fault type, cause, delay, and the false value of every
injected fault:

e Designated device can be any valid device ID.

e Fault type is one of Transient-Fail-stop, Transient-Outlier, Transient-Stuck-at, Transient-
High-Variance, Transient-Spike, Permanent-Fail-Stop, Permanent-Stuck-At, Permanent-
High-Variance, or Permanent-Spike.

e Fault cause is one of Power Failure, Software Failure, Hardware Failure, or Communication
Failure. During the evaluation, to inject a fault caused by power failure, the energy wire
for a device is turned off; to inject a fault caused by software failure, the variables the de-
vice uses to calculate state are corrupted to cause desired behavior; for simulating hardware
failure and communication failure faults, their behaviors are coded in the Arduino Board.
Hardware failure tags the device as failed and redirects any commands to a function that
drives behavior based on the fault type. For example, if the fault type is spike, then it will
increase/decrease the state value of each call up to a threshold. Communication Disruption
causes any command to the device to fail with a certain probability, defined as 30%, 50%, or
80% in the evaluations.

e Delay determines the number of seconds until [oTRepair becomes aware of the fault; it mod-
els the amount of time that a fault-detection module takes to detect the fault.

e Finally, the false value is the state the device falsely reports.

For example, an injected fault entry, (1, Transient-Fail-Stop,Hardware, F),injects a faultinto
the motion sensor (with device ID 1), with type Transient-Fail-Stop; it is caused by a fault in the
hardware, and it causes the device to be nonresponsive (F value for failure). For most fields, our
injected faults cover every possible value of those fields, but for delay, false values, and duration,
we use a sample set in injected faults. For delay, the values 0 and 100 seconds are used. With
false values, for digital devices, we use a complete set of 0 and 1 values, which, depending on
device, can represent on/off, detected/not detected, open/closed, or other binary values. For analog
devices, we use the extreme ends of the ranges of values; for example, a temperature sensor’s value
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range is 0 to 38 degrees Celsius. Duration determines how long the fault remains in the system
without considering handling. The fault is removed after the duration expires, with duration values
being 50, 100, and 150 seconds; we also support permanent faults by making the duration equal to
execution time.

Fault Identification. As discussed earlier, IoTRepair is parameterized by a fault-identification
module. There is a wide array of identification algorithms available, discussed in Section 2.3. We
do not implement our own fault identification system, as there already exists a large body of work
on the subject, and it is a different problem than handling faults. We also chose not to implement
an existing fault identification system, as the time cost outweighed the minor benefit of using
an independent tool to identify our manually injected faults. In our evaluation, we assume an
identification module whose amount of identification time is modeled by the delay in fault injection
discussed earlier. Further, we assume the module always identifies the correct fault type (after the
delay), since IoTRepair focuses on fault repair instead of fault detection.

6 EVALUATION

In our evaluation, we aim to answer the following questions: (1) how effectively can IoTRepair
handle a variety of faults?, and (2) what is the runtime efficiency of IoTRepair, in terms of both
runtime overhead and power consumption? To this end, we evaluate effectiveness by checking
how well IoTRepair removes faults and returns the system to correct operation. We also evalu-
ate IoTRepair’s efficiency by measuring the latency between fault detection and the completion
of a fault-handling function in IoTRepair. In addition, we measure the power consumption of
IoTRepair’s fault handling.

We discuss a couple of important notes before we proceed. First, we assume that the motion
sensor and smart lights have replicated devices. These devices were chosen to demonstrate device
replication, because smart homes are likely to deploy multiple of such devices. Second, in our
evaluation, we found that the fail-norm checkpoint is consistently the best match for all devices,
and so we only use fail-norm rollbacks in our evaluation.

6.1 loTRepair Effectiveness

For evaluating the effectiveness of IoTRepair, we constructed a set of faulty scenarios to inject
into our setup and test how effective IoTRepair is at handling each scenario. These scenarios and
the results are displayed in Table 7. Section 1 presents scenarios where a single fault is injected:
For instance, in scenario 1, a failure in a presence sensor causes the door lock to be unlocked
incorrectly. Section 2 presents scenarios where multiple faults are injected and Section 3 presents
scenarios where a single fault is injected but it causes cascading behavior. For each scenario, we
list what faults are injected, what the effect of the fault in the system is, which IoTRepair functions
should be used to handle the fault, what the defined desired behavior should be once IoTRepair is
finished, and whether IoTrepair was effective at achieving the desired behavior. These scenarios
are complete over fault types and applications they affect, though not every possible combination.
The scenarios were selected to cover the breadth of fault effects IoTRepair could have to deal with
in our setup.

For executions, the state of non-faulty sensors is hard-coded to follow the behavior necessary
for the listed fault effects. Faults are injected immediately, but fault detection takes 10 seconds
to allow the effects to complete before IoTRepair activates. We manually determine the desired
behavior for each scenario and check the states of all devices compared to our desired behavior
to evaluate if IoTRepair effectively handled the fault. Desired behavior is generally a return to the
state pre-fault, but for some instances where faults are not removed or caused the environment
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Table 7. Effectiveness Evaluation Scenarios and the Results of loTRepair on Different Fault Injections

| | Group 7 | D | Device: Fault | Fault Effect | ToTRepair Function | Desired Behavior | Effective Check | |
1 Presence Sensor: Presence Sensor is Fail-safe Rollback Door Lock should be locked, as | Door is locked, but Alarm
Power Failure unresponsive, so state is whether user is present or not is is turned on incorrectly
unknown unknown
2 Door Lock: Door Lock does not respond Retry Door Lock should be Tocked Success
1 Communication to command to lock
Disruption
3 Door Lock: Power Door Lock becomes Fail-safe Rollback Alarm should be turned on, as Alarm is turned on, but
Failure unresponsive while unlocked door cannot be locked Water-valve and Window
are closed incorrectly
4 Leak Detector: Leak Detector has High Hardware Restart Fault is removed and alarm is Success
Hardware Fault Variance between detected turned on to alert user of the
and not detected, causing the leaked water
water valve and alarm to
rapidly switch states, causing
a large leak
5 | Light: Power Failure Light is stuck at off when it Replicate Replicating Light should be Success
should be on turned on
6 Motion Sensor: Motion Sensor stops Replicate Replicating Motion Sensor is used Success
Power Failure responding, so light is not and light is turned off
turned off when there is no
motion
7 Presence Sensor: Poll command to presence Retry Door Lock should unlock, water Success
Communication sensor fails, so door is not valve should open, and coffee
Disruption unlocked and coffee not made maker should be on
when user arrives home
8 Contact Sensor: Contact sensor high variance Hardware Restart Fault removed and user stops Success
Hardware Fault causes user to be spammed being spammed
with texts that someone is at
the door
9 Motion Sensor: Poll command fails for Motion Retry Poll is completed and user is sent Success
Communication Sensor when there is motion an alert
Disruption while user is not home, so
they are not alerted
10 | Window: Hardware | Window is stuck at open and Hardware Restart Fault is removed and window is Success
Failure 50 is not closed when the closed
air-conditioner
11 Motion & Motion and Temperature Replicate and Heater should turn on and light | Success, contingent upon
Temperature: Power | Sensors are unresponsive, so | Fail-Norm Rollback turned on time information
2 Failure state is unknown, causing indicating heater should
heater to be off when it should be on
not be and light to stay off
when there is motion
12 Heater & Heater is stuck at off and Hardware Restart Both faults are removed, heater is Success
Water-valve: Water-valve is stuck closed turned on, and Water-valve is
Hardware Failure opened
13 | Presence & Smoke & Three devices become Fail-Safe Rollback Door Lock should lock, alarm Success, though would
Temperature: Power unresponsive, so door is should be on, air-conditioner not be if the correct states
Failure unlocked, alarm is off, and should be off, since these are were reversed, instead
air-conditioner is on safe-states would need Fail-Norm
incorrectly
14 Presence & Light: Presence sensor is stuck at Hardware Restart Faults are removed, door lock is Success
Hardware Failure home, so door is unlocked and locked, light is turned off
light is stuck on incorrectly
15 All sensors: A single Outlier event from Fail-Norm Rollback Return all actuators to state Success, though most
Hardware Fault each device causes all devices pre-outlier fault incorrect values are gone
to be in incorrect states by the time IoTRepair
commences Rollback
from App Code
16 | Temperature Sensor: Temp. Sensor spikes Software Restart and | Fault is removed, heater is turned | Success, when Rollback is
Software Failure downward to 10 degrees, Fail-Norm Rollback off, and window is opened run second
3 causing the heater to turn on,
which causes the window to
close
17 Smoke Sensor: Smoke Sensor becomes Hardware Restart Fault is removed and alarm is Success
Hardware Failure stuck-at smoke detected, and Fail-Norm turned off and light is turned off
causing alarm to turn on, Rollback
which causes light to turn on
18 Smoke Sensor: Smoke sensor stuck at Software Restart and | Fault is removed, alarm and Tight Success
Software Fault detected, so alarm is turned Fail-Norm Rollback are turned off
on incorrectly and light is
turned on as well
19 Alarm: Power Power failure causes alarm not | Fail-Norm Rollback Light is turned on Success
Failure to turn on and so light does
not turn on when it should
20 | Temperature Sensor: | One poll Outlier causes heater | Hardware Restart Fault is removed, heater is turned | Success, only if Rollback
Hardware Fault to turn on and window to and Fail-Norm off, and window is opened is run second
close Rollback

[+] 1 is for single faults, 2 is for multiple faults, and 3 is for demonstrating cascading behavior.
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state to change, the desired behavior is defined to follow the intent of the applications as best as
possible.

As shown in the table, most faults are resolved successfully, but there are a few instances where
IoTRepair’s success is conditional on some element. For instance, in scenarios 1, 3, and 13, the
desired behavior occurs, but, since Fail-safe rollback is used, devices unrelated to the fault are also
rolled back. An optimal fault handler would only rollback the devices associated with the given
fault; so in scenario 1 the alarm would not be turned on. This behavior is acceptable, because Fail-
safe by definition places these devices in a safe state that will cause little to no harm. Additionally,
for devices that do not have a Fail-Safe state, Fail-Safe rollback has the same requirements as Fail-
Norm.

For Fail-Norm rollback, we also rely on consistent correlation between sensor states. In sce-
nario 11 the correctness of the rollback has requirements, namely, that the non-faulty information
indicates the correct state of the faulty devices. In this case, recent timing information in check-
points indicates that at this time of day the heater is likely to be on. This is acceptable behavior, as
it fits into the intended effect of Fail-Norm rollback.

Cascading Behavior. Our applications are susceptible to cascading behavior—which are cases
where a fault in one device causes incorrect states in a second device through inter-application in-
teractions. Cascading behavior can be unpredictable, because the application that places a device
in a faulty state might not directly utilize the value of the faulty device, and the application inter-
action may not even be intended. Row 16 of Table 7 shows an example of this. In this scenario, a
temperature sensor becoming stuck at a low temperature causes the following sequence of events
and actuations in App3, App7, and App11:

heater-oﬂ'———)temp<60 App3: heater-on -—)heater_on App7:close-window

In this example, App7 causes the window to close as a cascading result of App3’s action re-
sponding to a fault in the temperature sensor. The complicated inter-application relationship of
cascading behavior lends additional value to environmental functions such as rollback. Even if
another function corrects the fault, the cascading behavior may not be automatically removed by
application code. In this example, while the heater turning on causes the window to close, there
is no code to open the window when the heater is turned off; so the window would incorrectly
remain closed even after the temperature sensor fault is removed. In this case, a correct rollback
can put the system back into the correct state.

For Table 7’s cascading behavior scenarios, we consider fault-handling schemes and whether the
order of fault-handling functions in a scheme affects the behavior of IoTRepair. The only function
whose position in a scheme matters is rollback. This is because not knowing the state of the device
is only relevant for rollback, as it may affect which checkpoint is selected. Therefore, if a previous
fault-handling function corrects a faulty device, then rollback is more likely to select the correct
checkpoint to remove any cascading behavior the fault had. In scenarios 16 and 20, rollback must
be run second, because in these instances Fail-Norm chooses the incorrect Checkpoint as the true
sensor state is unlikely given other state information. In other scenarios rollback selects the correct
target whether the fault is present or not, as the true device state of the faulty device is likely given
the other state information. This is acceptable as it mostly relies on the accuracy of rollback, which,
as shown below in our discussion of cascading behavior, is very high. Other than the interaction
between rollback and other fault-handling functions, the only other interaction is that software
restart should never follow hardware restart, since hardware restart corrects anything software
restart would.
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To further understand the effectiveness of rollback, we discuss the pros and cons of the three
types of checkpoint selection that allow rollback to handle different types of cascading behaviors
based on desired behavior: most recent, fail-norm, fail-safe.

Most Recent is the best at resolving cascading behavior that is detected quickly and is reversible.
Reversible in this case means the state changes caused by the cascade can be undone. For example,
a window that was opened can be closed, but it is not possible to reverse making coffee. A good
example of when Most Recent rollback would correct a cascade in our implementation is the sam-
ple given in the text above, where a fault in the Temperature Sensor closes the window; a Most
Recent rollback would turn off the heater and open the window, correcting the issue.

Fail-Norm is the best rollback for when there are only a few faults in the system and there are
no possibly highly dangerous states based on the faulty devices. For example, in Table 7 scenario
16, we see that turning on the heater can cause the window to close incorrectly. Here, fail-norm
may find a checkpoint where non-faulty sensors indicate the heater should be off and the window
should be open and correctly actuate the devices. However, if the temperature sensor also caused
a dangerous action, such as unlocking the door, then it may be better to rely on fail-safe.

Fail-Safe is the best rollback when neither of the conditions for Most Recent or Fail-Norm is true.
As this rollback attempts to move all devices to their “secure” state, it should avoid any unsafe
states, to the maximum degree that can be achieved given the fault set. For example, if we were
to consider the Smoke Sensor cascade in Table 7 scenario 18, then the state of the alarm could be
potentially dangerous if there is a fire; so Fail-Safe would turn on the alarm to establish the safest
state until the fault is properly resolved.

For Most Recent, the effectiveness and accuracy are determined by how quick the fault is de-
tected; this is independent of IoTRepair, which relies on a separate fault-identification module.
Fail-Safe can be statically evaluated, given a set of faulty sensors the target rollback is known; so
the only determinant is if it is possible. For example, we know fail-safe will always attempt to close
the window; but if the window becomes stuck-at open, then there is nothing fail-safe can do to
correct the state.

The only rollback that must be evaluated empirically during out evaluation is fail-norm, as its
effectiveness and accuracy depends on how well the checkpoints [oTRepair collects represent sys-
tem states. To this end, we evaluate Fail-Norm by running the program with 0 faults for 1,000 polls
to get a baseline and gather checkpoints. We then run again with rollback enabled and attempt a
rollback at each poll timestamp. For each rollback, we analyze if the correct checkpoint is chosen
across every possible device being faulty, and if it is, then we mark that as accurate and if not, then
it is marked as incorrect. We indicate a correct checkpoint by the checkpoint selecting the actuator
target states that match the baseline at this timestamp. The primary cause of an incorrect check-
point is when a sensor is faulty; it cannot be considered when selecting the best fit checkpoint;
thus, two or more checkpoints may be “valid.” In this case, fail-norm selects the one that occurred
the most during checkpointing. Within this experiment, only one rollback was incorrect by these
standards, giving a 99.9% accuracy, at least in a system that stays stable for long periods of time
and only experiences a single fault.

Overall, this evaluation shows that IoTRepair can effectively handle a wide range of faults, most
of the time returning the system to normal operation or at the very least making the system be-
havior closer to intended behavior.

6.2 Function Latency

In this experiment, we evaluate the latency of functions in IoTRepair’s fault-handling library.
Across all possible fault injection parameters there is a huge variety of scenarios and because
of this large state space it would be time-consuming to experimentally cover the entire state space
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to measure the latency of each fault-handling function for each possible scenario. Therefore, for
our evaluation, we decided to analyze a select subset of those to cover typical kinds of devices
and typical faults that can happen to those devices. Among the 17 devices in our IoT testbed, we
selected two sensors and two actuators. The two sensors include a simple digital sensor (a motion
sensor) and an analog sensor (a temperature sensor). The two actuators include one with high
frequency of actuation (a light actuator) and one with low frequency of actuation (a heater). These
four devices are representative of the devices in our testbed. For example, a motion sensor and a
contact senor are nearly identical in their characteristics. We also performed experimental analysis
on devices not selected for evaluation and confirmed that there is little variance between the data
for the representative devices and the data for the rest.

For each selected device, we picked the most typical kind of fault to inject for that device; we
will explain this selection and its rationale soon. To get timing information, we record the total
time between when a fault is injected and when a fault is either resolved by a fault-handling
function or the function determines it cannot resolve the fault. The latency is calculated from
an average of three executions for each scenario and each possible set of parameters. We note
some parameter combinations are invalid; specifically, since power and communication disruption
can only cause fail-stop faults, there is no need to run executions with a fault delay greater than
or equal to fault duration, and only communication disruption has a communication probability
parameter. Furthermore, when getting the timing information of a fault-handling function, we
remove the communication time spent between the core machine, representing the cloud, and
the Arduino board, representing the Hub. In our experiments, our communication time was on
average 1.23 seconds, which is similar to cloud-based IoT environments [22], and significantly
longer than localized implementations, such as mobile devices [8]. This communication time is
removed because it is independent of the execution time of our IoTRepair functions, which is the
main objective for this evaluation.

The evaluation results are presented in Figure 8 to Figure 11. For these figures, we label fault-
handling functions by Success/Fail labels. A label specifies whether a fault-handling function com-
pletes its goal or not. For different functions, goal completion can mean different things; for restart,
the goal is to remove the fault, while rollback and retry simply aim to mitigate the faulty behav-
ior. Furthermore, even though a fault may have multiple parameters, through our experimental
data, we found most parameters did not cause variation on the latency of fault-handling func-
tions. Therefore, each figure will use only the most dominant parameter (in terms of its effect on
fault-handling latency) as the x-axis.

Figure 8 presents the results of a Communication Disruption fault injected into a Motion sensor.
We selected the Communication Disruption for two reasons. First, the motion sensor (located on
a porch or at the front door) is the most likely to be far from the Hub, and therefore more likely to
have periods of unreliable connection to the Hub. Second, since most motion sensors are battery-
powered and simple, they are relatively unlikely to suffer other types of faults. The x-axis in this
graph is the Communication Disruption Probability, which represents how likely the fault is to
cause any given communication to fail. Each failed message causes additional time where the ac-
tion must be repeated until completion or reaching the limit of attempts. For this reason, of all of
our parameters this has the most impact for most functions, with the exception of rollback. Because
rollback does not consider faulty devices when selecting the best checkpoint, the communication
failure probability of a device has no impact on latency. Additionally, this Communication Disrup-
tion Probability parameter causes the highest standard deviation among sampled results, because
each execution can vary wildly in latency based on how many times the action fails. But from
this graph, we can see that even with an extremely high (80%) chance of failed communication,
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the latency only doubles compared to the case of having 30% chance to fail and remains under
60 milliseconds.

Figure 9 shows a power failure injected into a heater actuator. We selected power failure because
it is the most likely fault for a heater to experience; anytime a home loses power or the power
flickers, the heater can lose power—or if its connection to an outlet is disrupted in any way. The
x-axis shows the amount of fault delay (i.e., the amount of time the fault-detection module detects
the fault); even though the fault delay causes the largest change among applicable parameters, it
still causes only a fraction of a percentage change in latency. With 25 ms as the highest latency, it
is clear that latency is low for power failures in this evaluation; however, it is worth noting that
only rollback can succeed in case of a power failure.

Figure 10 shows a hardware fault injected into a light actuator. This fault was selected because
among all our devices lights have the shortest lifespan, generally burning out or otherwise failing
far before other devices would suffer major hardware faults. The x-axis is selected to be duration, as
it has the highest impact; though similar to the previous figure, the change is small in magnitude.
The only exception is for failed rollbacks. This is because rollback attempts to actuate light to
a certain state, and because it is faulty this cannot succeed; however, for each run the selected
checkpoint and system state cause high variance in how many actuations are attempted. This is
more impactful than successful rollbacks, since the devices that did succeed need to be reverted to
the pre-rollback state. Despite this variance, the latency still remains below a fast 40 ms, on average.

Finally, Figure 11 presents a software fault injected into the temperature sensor. Of our deployed
devices, only Temperature Sensor and Smoke Sensor are complex enough to suffer proper software
faults and allow a software restart, and the temperature sensor is the more complex of two. Fault
duration is the parameter with the most impact; so it is selected as the x-axis. But just like the
previous two graphs, the impact on latency is still small. The average latency for all functions
remains small, even with the relative complexity of temperature sensors.

It can be seen across these graphs that only the communication disruption probability makes
any real impact on latency. For delay and duration, changes across the axis are small and do not
exhibit any trend. For fault duration, this is because the typical duration is much longer than any el-
ement of IoTRepair latency. For fault delay, when the time spent on fault identification is removed,
most IoTRepair functions are not sensitive to the state change over that time. The only function
that can be is rollback, and in our experiments, the delay did not drastically change how many de-
vices needed actuated. Also, besides the latency of these functions, transactions incur an average
of 44.82-millisecond latency per-transaction. This is because the transaction must complete and
verify each actuation before moving on to the next and record the previous states of devices in case
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a transaction rollback becomes necessary. We separate transaction and measure it independently,
as unlike the other functions it operates whether a fault is present or not. This means it imposes
a constant latency overhead on the system that must be accepted by the user, and that it would
be pointless comparing it to functions that only have to be called once per fault. Finally, we also
tracked the latency of checkpointing and replication. We chose not to include checkpointing in
the graph in part because it occurs constantly whether a fault is present or not, and because both
checkpoints and replication take fractions of milliseconds to finish. This is due to the lack of re-
liance on the Arduino Hub, with all calculation taking place on the far-faster machine representing
the cloud implementation. Additionally, only motion and light devices have replicating devices in
our setup.

Based on our evaluation, we argue that the amount of latency in IoTRepair is acceptable com-
pared to the current state of IoT. First, the current state of the art of IoT fault identification takes far
longer to detect most faults than our system takes to handle them. This is shown in more detail in
our Related Work section; one such example is DICE [6], one of the fastest identification methods,
and it still takes at least 10 minutes to identify faults. Compared to this, the latency of IoTRepair
is insignificant. This cannot be said for fail-stop faults, though, which some systems may detect
near-instantly, or at least within a matter of seconds, depending on the polling/event generation
setup. Even in these cases, we argue our latency is acceptable, as the average fault duration is also
quite high relative to the latency. As seen in Reference [13], faults can last hours, in which case,
while handling them as fast as possible is still desirable, IoTRepair is fast enough to handle the vast
majority of the harm the fault will cause. In the case of outlier faults, such as in Reference [36],
the fault will be gone before IoTRepair can handle it, but IoTRepair can still rollback and likely fix
any changes that the brief fault caused.

Comparing IoTRepair’s latency to other systems’ faces several challenges. First, most existing
systems incur some constant latency cost to normal system operation rather than a time-to-fix
latency like IoTRepair. Additionally, many papers do not report latency in a way conducive to
comparisons. Many papers either omit latency information, evaluate some other metric such as
throughput, or do not provide a baseline for comparison. Despite this, with some justifications, we
can compare to several systems that show IoTRepair has acceptable latency. Transactuations [30]
provide the execution time of 10 SmartThings apps with and without their system. They observe
an average of 50% overhead when Transactuations are implemented. IoTRepair’s transactions in-
cur slightly less overhead, with an overhead of 37.5% when compared to normal actuations. The
comparison is not perfect, since Transactuations focus on preserving the synchronization of soft
and hard states, while our transaction avoids unsafe state transitions; however, the implementation
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from a user’s standpoint is similar. Another system [1] implements several blockchain consensus
algorithms to increase fault tolerance when some devices may provide incorrect information. It
measures the latency of sending packages of 360 bytes, though it does not provide a ground-truth
for when there is no blockchain implementation. Depending on the algorithm, number of nodes,
and propagation model, the latency ranges from around 3 milliseconds to almost 500 milliseconds.
So, depending on the circumstances, the latency may be better or worse than IoTRepair functions,
but even in the best case where the overhead is only a few milliseconds this method imposes a
constant cost. This cost is incurred far more frequently than our Transaction or Checkpoint and
will slow the system far more than IoTRepair. Another method for implementing fault tolerance
is to design an IoT architecture from the ground up to be Fault Tolerance, such as IoTEF [16]. As
IoTEF is an independent architecture, it has no baseline to compare to. However, it does provide
the latency of processing images. When sending images from the camera to the edge device it
takes roughly 10-60 ms, depending on the image size. The median is similar to each of our fault-
handling functions, showing that IoTRepair’s fault-handling functions have comparable latency
to normal operating processes in IoTEF. Finally, Wang et al. [41] propose a system that adaptively
determines whether edge devices need to replicate data in case of data loss. In their evaluation,
the system imposed only an overhead of a couple milliseconds at worst from a retransmission-
only baseline. This is less overhead than IoTRepair functions besides Replicate and Checkpoint,
but once again it occurs far more frequently and targets only preventing data-loss due to a fault.
Overall, IoTRepair imposes very little latency overhead during normal runtime when compared to
other fault tolerance solutions, and the time to handle faults is relatively low.

6.3 Power Consumption

In this evaluation, we measure the power overhead caused by IoTRepair and show that it is low cost
in terms of power consumption compared to normal system operations. For this, we first tracked
how much power was consumed across each execution and compared the power overhead of
our fault-handling functions. We performed this using a Monsoon Power Monitor to measure the
power consumed by the Arduino board during execution. We show these results with the same
scenarios used in Section 6.2. The power consumption is shown as the average power consumption
used during IoTRepair function calls.

Figure 12 presents the average power consumption of a fault-handling function for the scenario
when a communication disruption fault is injected into a motion sensor. Most functions consume
less than 200 milliwatts, which is an insignificant amount when compared to the fact that the aver-
age power consumed per poll cycle is 4.28 watts. A poll cycle represents the time from when a poll
begins to when the next poll begins. The time it takes a cycle to complete affects how much power
is consumed, since idle power consumption is relatively high for the system. Time is primarily
consumed by communication time in the system, as discussed in Section 6.2. A non-faulty poll
cycle with no actuations takes an average of 2.56 seconds, while a cycle with actuations can add
2.31 seconds or more, depending on how many devices, and are actuated and if an actuation causes
more actuations to occur due to application code. During a cycle, power is consumed for receiving
events, running applications to determine what actuations are needed, and performing actuations.
We use the power consumption of a poll cycle as our base power consumption, as it represents the
power consumption of the normal behavior of the system. Figure 12 also has the highest standard
deviation of the four figures we present, because communication disruption alters with some prob-
ability how many times the functions need to attempt to communicate with the device. rollback
has the highest standard deviation and cost across most graphs, because it must operate on various
numbers of devices based on the chosen checkpoint. Overall, even rollback costs a tiny fraction of
the power consumed during normal system operations.
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Motion Sensor Communication Disruption Heater Power Failure

Power Consumption (mW)

Power Consumpt

Software Restart  Hardware Restart Rolback Retry Software Restart  Hardware Restart Rolback

Function Name Function Name

Fig. 12. The average power consumption of each  Fig. 13. The average power consumption of each
function on a Comm. Disruption fault injected into  function on a Power Failure fault injected into a
a Motion Sensor. Heater.
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Fig. 14. The average power consumption of each  Fig. 15. The average power consumption of each
function on a Hardware Failure fault injected into  function on a Software Failure fault injected into a
a Light. Temperature Sensor.

Figure 13 shows the average power consumption of a fault-handling function when a power
failure is injected into a heater. The amount of power consumption is also low. For the first three
functions, the cost is less than the numbers for the communication-disruption scenario, as the
functions cannot succeed and therefore do not consume extra time and power. The only exception
is rollback, which can succeed so long as the heater does not need to be turned on for a given
checkpoint. All functions still remain relatively small on power consumption, compared with this
scenario’s average poll cycle costing 3.80 watts.

Figure 14 presents the average power consumption of a fault-handling function when a hard-
ware failure is injected into a light. Among the presented scenarios, rollback has a lower cost
compared to other fault-handling functions. This is because in this scenario the light must change
state for a successful rollback; so the rollback simply fails to execute once this is determined. Aside
from that, this graph is similar to the others with all functions consuming a small amount of power
compared to the poll cycle cost of 3.68 watts.

Figure 15 presents the average power consumption of a fault-handling function when a software
fault is injected into a temperature sensor. The only noteworthy difference from previous graphs
is the high cost of Retry. This is a side-effect of polling the Temperature Sensor being much more
expensive than polling other much simpler devices. Since Retry uses polling when attempting to
resolve the fault, it also increases the cost of Retry. The higher cost of Retry would hold true for all
complex devices, such as Presence, Leak, and Contact sensors that report analog rather than digital
values. Despite this increase, it is still less expensive than rollback and relatively small compared
to the poll cycle cost of 3.82 watts.
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Table 8. The Power Consumed by the Devices and Board Computation for Each Function

‘ | Motion [ Temperature | Smoke || Leak [ Presence [[ Contact | Light [ Alarm |
Poll 275 mW | 6.1 mW 13.69 mW || 15.81 mW | 18.95 mW || 20.88 mW | 2.64 mW | 2.79 mW
Actuate N/A N/A N/A N/A N/A N/A 10.7 mW | 6.6 mW
Retry 4.01 mW | 14.04 mW 15.75 mW || 17.55 mW | 20.64 mW || 23.13 mW | 6.52 mW | 8.58 mW
softwareRestart | 3.54 mW | 3.83 mW 3.04 mW 299 mW | 3.35 mW 3.44mW | 58mW | 7.07 mW
hardwareRestart | 4.05 mW | 4.24 mW 3.49 mW 358 mW | 3.82 mW 3.92mW | 7.69 mW | 7.88 mW

Another consideration in power consumption is the power cost to individual devices, which
may rely on a battery or have their lifespan shortened by high power usage. To evaluate our device
overhead, we collect the baseline consumption of the Arduino board with no devices powered and
compare that to both when the device is powered but not doing anything and when our functions
run on the device. As shown in Table 8, there is a very low cost each function incurs beyond the
idle operations of the Arduino Board and devices. As can be seen in the table, the functions all
have similar costs to the simple Poll and Actuate functions, and when comparing the several Watt
cost of each poll cycle this cost is insignificant. It is worth noting that rollback has been left out of
this table as its cost to Arduino and devices is identical to actuate, which only has a cost for light
and alarm devices. Also, it is not possible to separate what is consumed by the device and what
is consumed by the Arduino Board for computation using our method of power evaluation, but
since both of these costs are incurred by the function call directly, their sum can be considered the
direct cost incurred by a function call.

Comparing energy cost to other fault-handling solutions has the same limitations as latency
comparisons. Nontheless, we compare IoTRepair’s energy consumption to a fault-tolerance solu-
tion that aims for energy efficiency [43]. This article aims to use the min-cut algorithm to mini-
mize the overhead of saving state information to non-volatile-memory while still saving enough
for good fault tolerance. They implement their system on a set of controller benchmarks and ob-
serve an energy overhead ranging from 19.9% to 65.8% with an average of 41.5%, and observe a
14.9% average overhead on Mediabench benchmarks. With our functions costing only less than
1,000 milliwatts each time they are called, the total overhead of IoTRepair across one poll cycle is
a fraction of a percent. As time passes with no faults in the system, the overhead during the short
periods when there are faults will shrink even more, so IoTRepair clearly beats out this method in
energy efficiency.

Overall, it is clear that there is a negligible energy cost to IoTRepair. This is intuitive as compared
to the lengthy time IoT devices are meant to be deployed for; a single restart or actuation is a
negligible and infrequent cost.

7 LIMITATIONS AND DISCUSSION

The evaluation of the effectiveness of IoTRepair’s fault handling is limited by the coarse-grained
definition of fault causes and the limited set of parameter values we evaluated. This is necessary
for an evaluation with limited resources, as otherwise the set of combinations would be infeasible
to execute. With coarse-grained definitions, some scenarios are not observed, most obviously a
Software/Hardware Fault that cannot be corrected by a restart. For example, a hardware fault
caused by a damaged circuit will likely persist or reappear after a restart. This is not essential
to evaluate, however, as this then makes the faulty behavior similar to that of a Power Failure,
with the only exception being the fault may be high-variance or spike. Conversely, there may be
instances where Communication Disruption is removed by a restart. This is also similar to other
evaluated cases, those being Software/Hardware Faults, with the difference it may take longer
due to failed communication. Additionally, random elements such as random packet loss during

ACM Transactions on Internet of Things, Vol. 3, No. 3, Article 22. Publication date: July 2022.



loTRepair: Flexible Fault Handling in Diverse loT Deployments 22:31

communication disruption can influence factors such as the effectiveness and latency of retry and
restart. We also assumed a perfect fault identification module; so we assumed that no Byzantine
Failures occurred where the fault-identification module missed faults entirely or falsely reported
faults. When a device is never reported faulty, most of the time IoTRepair will simply remain
idle and have no extra negative effect. However, if a falsely reported fault causes a rollback, then
the silent failure may cause an incorrect checkpoint to be selected as the device’s presumed state.
This can also occur when a device is falsely identified, but in addition unnecessary function calls
can disrupt the device’s service or unnecessarily change many device states as part of a rollback.
Obviously this is a major issue; the selected fault-identification module should report only faults
it is absolutely sure of. Future work to mitigate this issue could be to include confidence levels
for the functions, where certain functions will be disabled if the fault cannot be identified with
sufficient confidence.

We restrict our evaluation to a moderate set of IoT devices and applications. It allows more
tractable outputs to evaluate our fault-handling functions and the effect of faults. More sophisti-
cated systems with a diverse set of devices and apps, especially in the settings of industrial IoT
and automobiles, would allow for a more thorough evaluation. For instance, the increase in the
number of devices would lead to more cascading behavior, as well as increasing the probability
of device correlation and allowing some of our underutilized functions such as device replication
to be more effective. This would also allow for suppression of entire apps to be effective, as the
primary use of this technique is to stop cascading behavior.

There are also limitations in the core assumptions and design of IoTRepair. First, we assume
a centralized control system, and so our current design would not work on a distributed system
where control is shared between cooperating nodes. A future work could be modifying the design
in a way that allowed a distributed installation. A relatively trivial method would be to force such
systems to designate one node as the only one that could issue sensing and actuation commands
generated by IoTRepair to devices and other nodes, while a more complex design would have to
use scheduling or data locks to prevent faulty behavior through unnecessary or repeated actions.

Another design limitation is in our design of Checkpoint/rollback, which can change the states
of devices that were not affected by a fault. The reason for this is our assumption that the identi-
fication module cannot provide the exact time a fault occurred. This makes tracking exactly what
devices were affected nearly impossible, as we cannot track where cascading behaviors began. If
we change this assumption, then a future work could detect what devices were affected by the
faulty behavior. This can be accomplished either through analyzing history logs if the control
node has access to cause/effect relationships in actuations or through analyzing the application
logic.

8 CONCLUSION

With this extension on the previous IoTRepair paper, we show that our system can be used to
mitigate faults in a physical system with minimal latency and acceptable power overhead. We
have shown that a flexible fault handler is a necessary next step to improve reliability, as Internet
of Things systems continue to grow in complexity. As future work, we hope to adapt our design
to other systems that manage complex environments, such as Smart Cities.
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