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Abstract—Attacker VMs try to co-reside with victim VMs
on the same physical infrastructure as a precursor to launch-
ing attacks that target information leakage. VM migration is
an effective countermeasure against attempts at malicious co-
residency. In this paper, we first undertake an experimental study
on Amazon EC2 to obtain an in-depth understanding of the side-
channels an attacker can use to ascertain co-residency with a
victim. Here, we identify a new set of stealthy side-channel attacks
which, we show to be more effective than currently available
attacks towards verifying co-residency. Based on the study, we
develop a set of guidelines to determine under what conditions
victim VM migrations should be triggered given performance
costs in terms of bandwidth and downtime, that a user is willing
to bear. Via extensive experiments on our private in-house cloud,
we show that migrations using our guidelines can limit the
fraction of the time that an attacker VM co-resides with a victim
VM to about 1 % of the time with bandwidth costs of a few MB
and downtimes of a few seconds, per day per VM migrated.

I. INTRODUCTION

The risk of a VM sharing a physical machine with a
malicious VM on the cloud is very real [1], [2], [3]. Once
an attack VM co-resides with a victim VM on a physical
machine, it can launch arbitrary attacks (e.g., using side
channels to achieve information leakage from the victim).
Although providers continuously try to better isolate resources
across VMs, new vulnerabilities are expected to emerge as
hardware architectures and hypervisor technologies evolve [4].

Cloud providers assign each VM a public and a private IP
address, and the latter is not exposed externally. Today, an
adversary cannot determine correlations between the public
and private IP addresses (towards determining co-residency),
since the provider dynamically changes the mapping of public
addresses to private addresses [2]. Popular prior approaches
require the attacker to launch its VMs, and use side-channels to
create congestion on a shared resource; the attacker then uses a
side channel to check for the presence/absence of congestion
on that resource and thereby ascertains co-residency. Upon
failures, the attacker has to terminate and repeat the process.
Once co-residency is achieved, the longer a victim VM resides
on the same physical machine occupied by the attacker VM,
the higher is its risk of being compromised.

In this paper, we have two main goals. First, we seek an
in depth understanding of the ways and the effectiveness with
which an attacker can achieve co-residency with a victim VM.
Towards this, we undertake an extensive experimental effort on
Amazon’s EC2 cloud, to understand the side channels that an
attacker can use to ascertain co-residency with a victim VM.
En route, we discover new stealthy and highly effective timing
based side channels that can be used to ascertain co-residency.

Migrating a VM is a way of mitigating long periods of co-
residency with an attacker VM [5]. As our second objective,

we seek to determine under what conditions a victim VM
should be migrated to minimize its co-residency time with
an attacker, given a bandwidth/downtime cost the user of the
VM is willing to bear. Towards this (based on the above
experimental studies) we formulate a set of guidelines, which
are based on the time that a victim VM has resided on a host
machine and the very side channel that the attacker could
have used to ascertain co-residency. We perform extensive
experiments on our in house cloud (built using CloudStack
[6]) to demonstrate that our guidelines can drastically reduce
the times for which a victim VM co-resides with an attack
VM with low costs in terms of downtimes and bandwidth.

To summarize, our contributions are as follows:
• We carry out extensive experiments on Amazon EC2 over

five months to develop a comprehensive understanding of
the efficacy of an adversary in successfully co-residing its
VM with a victim’s VM. We also build a simple model that
provides rough estimates of how long it takes for an attacker
to successfully co-reside with a victim.
• We discover a set of new highly effective timing based side

channels that can be used by an attacker to determine co-
residency with a targeted victim VM. Our side channels
provide the highest accuracy in ascertaining co-residency
as compared to previously proposed side channel tests (≈
86 %), but with lower false positive rates. In addition, we
believe that they are much harder to detect since they do
not create explicit congestion on a shared resource.
• We consider VM migration as a countermeasure to thwart

malicious co-residency and develop a set of guidelines on
when to invoke victim VM migration given the bandwidth
expenses and downtimes that the user is willing to tolerate.
We perform extensive experiments on an in house KVM-
based private cloud (users cannot invoke live migrations on
commercial clouds today) to evaluate our guidelines. The
results show they can drastically reduce the times for which
a victim VM co-resides with an attack VM. Specifically,
with very reasonable performance costs (of the order of
MB of bandwidth and seconds of downtime per day, per
VM migrated), the fraction of time that the victim VM co-
resides with an attack VM can be limited to about 1 %.

II. RELATED WORK

Side channel attacks targeting information leakage: Side
channel attacks exploit physical information leakage such as
timing information, cache hits/misses, power consumption etc.
There are several side channel attacks on cloud tenants that
have been previously studied (e.g., [2], [7], [8]). Based on



the attack, the time taken to successfully extract information
ranges from the order of minutes to hours.

Co-residency with a victim process: For almost all side-
channel attacks reported, an attack VM will need to co-reside
with the victim VM on the same physical machine. The
attacker will need to use some kind of side channel to ascertain
if its VM has co-resided with a victim (e.g.,[9]). However,
prior efforts do not provide a comprehensive understanding of
how effective the proposed side-channels (for ascertaining co-
residency) are in terms of their accuracy and the time it takes
for an attack VM to successfully co-reside with a victim VM.

Reverse engineering the algorithm for determining the
placement of VMs, (e.g.,[9], [10]) although hard, might be
useful in the short term. However, placement algorithms are
likely to dynamically change over time [10]. Further, cloud
providers have ensured that many co-residency checks pro-
posed much earlier (e.g., [2], [11]) are no longer feasible (we
have also experimentally verified that this is the case). To the
best of our knowledge, we are the first to propose network
timing based side channels for ascertaining co-residency; note
that there are other network timing based attacks previously
studied but they are quite different (e.g., [12]).

Defending side-channel attacks: Efforts such as [13] in-
troduce random delays while accessing a resource to thwart
timing based side channel attacks targeting information leak-
age. [14] and [15] employ software level defense mechanisms
as countermeasures against cache based side channel attacks.
Although such methods can defend against known side channel
attacks, there could exist other attacks, currently unknown to
the research community. Other vulnerabilities could appear in
the future due to advancements in computer architecture and
hypervisor technologies. Mitigating malicious co-residency
can thwart the attacker’s ability to launch such attacks.

VM migration to mitigate side-channel attacks: VM
migration and placement with Nomad, is proposed to counter
side-channel attacks targeting information leakage in [5].
However, it is assumed that (i) the attacker has successfully
co-resided with the victim and (ii) decisions on migration
to cope with side channels, are made by the provider and
not the users of the VMs. The users may not be willing to
accept the performance penalties (downtimes) that occur when
VMs are migrated for coping with side-channel attacks. We
make no assumptions on what the provider will do in terms
of placement of VMs. Unlike in Nomad, we account for the
fact that an attacker takes an additional time to successfully
co-reside with a victim in addition to the time it takes for an
information leakage attack, while making migration decisions;
this can reduce the bandwidth and downtime costs from such
migrations. The users can configure when to migrate their
VMs based on their risk averseness and the costs they are
willing to bear.

III. THREAT MODEL

We assume that an attacker seeks to co-reside its VM
on the same physical machine as a certain targeted victim
VM for as long as possible. First we consider an attacker
who launches a set of VMs, repeatedly if needed, to achieve
its goal. We assume that the attacker has no knowledge or
control over the cloud provider’s policies for VM placement
(as with Amazon’s EC2). We call such an attacker an “reactive
attacker”; this scenario reflects what the attacker can do on
today’s commercial clouds.

Model Virtual CPU CPU Credits / hour Mem (GiB) Storage
t2.micro 1 6 1 EBS
t2.small 1 12 2 EBS

t2.medium 2 24 4 EBS
t2.large 2 36 8 EBS

TABLE I: Instance Type Comparison
Next, we consider an attacker who can migrate its VM,

if user driven migrations are allowed. We assume that the
provider does not unilaterally perform migrations for thwarting
side-channel attacks (without user requests) like in [5], since
this may cause downtimes which some users may find un-
desirable. However, the provider may still invoke migrations
for performance reasons (e.g., load balancing). An attacker
VM could simply choose to stay put on its physical machine
assuming that it will eventually co-reside with the migrating
target VM. We call such an attacker a “static attacker”. Finally,
we also consider an attacker that migrates periodically. We call
such an attacker, a “periodic” attacker. In both of the above
cases, we assume that the attacker continuously checks for co-
residency, since the victim could now at any point, migrate to
the machine on which its VM resides. Note that these strategies
cannot be implemented and tested today on Amazon’s EC2
(migrations are not viable as of today); we test them on our
in house cloud in Section VII.

Once the attacker is able to verify with high accuracy that
one of his attack VMs has successfully co-resided with the
victim’s VM on the same physical machine, an attempt is
made to launch a (previously proposed) side-channel attack to
successfully create a leakage of information from the victim.
However, we do not explicitly focus on such side-channel
attacks themselves in this work; however, we provide some
rough estimates of how such attacks are affected by our
approach in Section VII. For simplicity, we assume that the
number of virtual machines owned by the victim remains
unchanged, i.e. the number of virtual machines does not vary
over small time scales (hours or days). We also assume that
after a migration occurs, the attacker does not know “where
the victim process has been migrated.” We assume that it is
not interested in triggering other attacks (e.g., causing a DoS
attack by inducing repeated migrations).

IV. CHARACTERIZING CO-RESIDENCY VIA EXPERIMENTS

We perform extensive experiments on Amazon’s EC2 over
a period of 5 months, to obtain an understanding of (a) the
accuracy and (b) the time taken by an attacker to successfully
(we define what mean by success below) co-reside its VM with
a targeted victim VM (TCR), while using different types of
side-channels to verify co-residency. As a major contribution
here, we design new timing based co-residency tests that are
stealthy and yet, very effective.

Categories of co-residency tests: We divide co-residency
tests into two categories; controlled/internal and external. In
internal co-residency tests (ICT), we control both victim and
attacker VMs. These tests primarily offer high fidelity and can
serve as ground truth, but cannot necessarily be used by an
external adversary. In the external co-residency tests (ECT),
we only control the attacker VM. We exploit a service running
on the victim VM to try to create contention on a (possibly)
shared resource. The attack VM then compares the response
times to the service with and without contention. The accuracy
of the ECTs (which represent adversarial operations in a real
setting) is assessed by comparing the result with that of a ICT.

General setup: We initiate 20 micro or 20 small instances
each, for a victim and an attacker account (for ground truth



validation). All the instances run Ubuntu 14.04 LTS [16].
We conducted our experiments on three different datacenters
(us-west-2a, us-west-2b and us-west-2c). Four different side
channels that are exploitable to verify co-residency, reported
in the past three years, were implemented [9], [3], [11] and
tested. A key contribution we make is the design of new, very
effective, timing-based co-residency tests.

A victim VM hosts one of 3 very different services viz.,
Taiga, ownCloud and MediaServer; thus, the co-residency tests
in the three cases, for identical set ups, take different times.
Taiga is a project manager software with a mix of CPU, disk
(frequent), and memory workloads. ownCloud is a file hosting
service (resembles Dropbox) with memory and disk intensive
workloads. MediaServer is a wiki-page server that involves
a mix of CPU, disk (rare), and memory workloads. We use
different types of VMs; their specifications are summarized in
Table I (we use the Amazon EC2 jargon [17]).

In each experiment, as mentioned, the attacker and the
victim have 20 VMs each unless otherwise specified (we
have done experiments with other numbers and the behavioral
results are similar; we discuss some of these later). We do
several optimizations to reduce the time taken to perform an
exhaustive set of experiments (e.g., for each attack VM, we
perform a co-residency test with regards to a shared resource
with regards to all the victim VMs in one shot). We omit the
details of these optimizations in the interest of space.

After launching its VMs, the attacker performs what is
called a “co-residency test” as mentioned earlier. A successful
co-residency test would indicate that with high probability the
attack and the victim VM co-reside on the same physical
machine. For every failed attempt at co-residency (the co-
residency test fails), the attacker must terminate its VMs and
then re-launch them in an attempt to successfully co-reside
with his target victim. The time taken to launch and terminate
these VMs are denoted by tl and td, respectively. These
times contribute to the overall time taken by an attacker to
successfully co-reside with the victim VM. The overall time
taken to achieve co-residency is denoted by tc. This depends
on the type of co-residency test that is conducted, and the
service provided by the victim VM.

A. New timing based ECTs

As a major contribution, we propose a set of new, stealthy
yet very effective timing-based ECTs that can be used to
ascertain co-residency by an external attacker.

ECT based on RTT timing behaviors: Today, cloud
providers employ load balancers and multi-path routing to be
able to dynamically handle high traffic loads and DoS attacks
[18]. However, it is reasonable to assume that packets destined
to VMs that reside on the same physical machine, are exposed
to similar effects at a given time (same paths), and experience
similar delays. The attacker, from an external vantage point,
thus probes both its own VM and the victim’s VM almost
simultaneously; the expectation is that the delays experienced
by such probe packets will have consistent (similar) temporal
variations, if the two VMs are on the same physical machine.

To ensure that the results are not biased by hypervisor
scheduling delays (typically the maximum time slice that a
VM can obtain before being switched out of context ≈ 10
msec) we (as the attacker) probe at coarse time intervals (i.e.,
the probing period is set to ≥ 100 msec). With this, we can
associate exactly one response from each of the two VMs

(the attack and the victim VM), in each probing iteration. If
the two VMs are on the same physical machine the delays
observed between the responses from the VMs are much less
than the probing period; unless the physical machine load
rapidly changes (very rare), these delays are of the order of
OS scheduling delays. Otherwise, much higher variations are
observed in the delays (because of different routes and traffic
on those routes). In order to perform the comparisons, we
normalize the observed values with respect to the maximum
observed response times (to eliminate temporal variations in
load across the paths taken by the probes). We then perform a
time series analysis to determine whether the timing profiles
observed with respect to the two VMs are very similar. We
call this test the “behavioral timing test”.

To measure the RTT, we primarily rely on the TCP
handshake. We also use ICMP messages when applicable.
By collecting a long enough RTT trace, we can accurately
determine if the two VMs are on the same physical machine
or not. Further, we can deduce if the VMs are connected to the
same TOR (top of the rack) switch. The intuition is that if the
two VMs are co-located on the same physical machine, they
experience similar processing delays (which depends on the
workload of the machine). Indeed, as shown later (Table III),
the results of this test are fairly accurate as validated by
comparison with our ground truth.

Let ~rtt(o, di) = [rtt(o, di, t1) . . . , rtt(o, di, tn)], denote
the two time series for the attack and victim VM. (i ∈ {1, 2},
where, the d1 is the attack VM and d2 is the victim VM); o
and n represent the observer and duration of the observation,
respectively. We use two commonly used metrics to measure
the distance between the two time series, viz., the Mean Square
Error (MSE) [19] and the Pearson Coefficient (PeC) [19].

The mean square error given by:

MSE(o, d1, d2) =
1

n

√√√√ n∑
i=1

(rtt(o, d1, ti)− rtt(o, d2, ti))2 (1)

Here, we also measure the MSE relative to a time-shifted
versions of the the vector; this is to account for the fact that in
practice, the connections to the two VMs cannot be established
simultaneously (slight time shifts are experienced).

The PeC between the time series is given by,

PeC(o, d1, d2) =
COV ( ~rtt(o, d1), ~rtt(o, d2))

σ( ~rtt(o, d1))× σ( ~rtt(o, d2)).
(2)

COV is the covariance between the two time series.
In our experiments described in Section IV-C, the test

declares a success (the two VMs co-reside) if the MSE is
low (< 0.15) and the PeC is high (≥ 0.8).

Timing based ECT with multiple observers: In this
test, the attacker uses multiple observers (at different vantage
points); each observer examines the RTTs between the the
VMs in question and only records the “minimum RTTs”
observed with respect to the target VMs in a specific time
span. These RTT values are quantized to the nearest decile
(i.e., a value of 46 is rounded to 50, while a value of 41 is
rounded to 40). A vector of these quantized RTT values are
constructed for the attack and the victim VM. For example,
if there are three observers and ρj and ρ′j are the quantized
RTT values with respect to the attack and the victim VMs
at the jth observer, the vectors {ρ1, ρ2, ρ3} and {ρ′1, ρ′2, ρ′3}



Resource type # Avg. VMs # of hits Percentage
Bus ICT 108000 22666 21%
CPU ICT 98000 19540 20%
Core ICT 98000 8820 9%

TABLE II: Hit rates with different ICTs
are constructed. The similarity between these vectors is now
computed by means of a Hamming distance type measure.
The two VMs are considered to be on the same physical
machines, if their distances coincide. If the two signatures are
very similar (but don’t exactly match) it is very likely that the
VMs are on the same physical machine. (in our experiments
described in Section IV-C, we assume that they are similar if
the fraction of elements that match is ≥ 0.8). The accuracy
of the approach depends on the number of observers used and
the distribution of observers inside and outside the datacenter.
It also depends on the duration of the observations. We call
this test the “signature based timing test.”

ECT based on RTT timing behaviors from multiple
vantage points: The two tests described above are combined
to improve the accuracy of the co-residency determination and
decrease the time required to get accurate results. Multiple
observers are again used. However, each observer analyzes
the similarity between the time series of the observed RTTs
(as in the first test) as opposed to using the minimum RTT a
signature (as in the second test). If from most (80 % or higher)
vantage points, the behaviors of the time series obtained with
respect to the attack and victim VMs are deemed similar, the
attacker assumes that its process has successfully co-resided
with its victim. We call this test the “hybrid timing test.”

B. Implementation of prior co-residency tests
We implement and test (a) previously proposed ICTs and (b)

the only prior ECT that is still effective on EC2. The former
tests serve as ground truth to evaluate the ECTs, and the latter
serves as a benchmark for comparing the effectiveness of our
newly proposed timing tests. In this subsection, we briefly
summarize these tests; details can be found in the citations.

Bus contention based ICT and ECT: Bus contention tests
were designed and evaluated in [1] and [9]. The key idea
in the ICT is for the attack VM to create contention on the
memory bus and cause it to lock. If the victim VM observes
a significant increase in the memory access time (around
3X), the conclusion is that the the two VMs share the same
machine. With the ECT, the attacker uses an external presence
which engineers a set of external requests to the victim VM,
which causes the latter to access the memory bus. Internally,
the attack VM locks the memory bus as in the case of the
ICT. If the response times to the engineered requests increase
compared to a case where there is no locking of the memory
bus, the attacker infers that the two VMs co-reside on the same
physical machine; if there is no significant increase, the two
VMs are likely to reside on different physical machines.

LLC based ICT: In this test the attack VM creates con-
tention on the LLC and if this increases the LLC access
time (≈ 2X) for the victim VM, it concludes that it shares
a CPU with the victim. To create contention, the attacker VM
allocates 1 or more GB of memory and regularly reads and
writes in multiple page size increments (to ensure page misses
for the victim VM). The LLC in our experiments is the L3
cache; its size is 25.6 MB with a cache line size of 64 bytes
and an associativity of 20. The page size is 4096 bytes.

ICT with L1 cache: Two VMs that share the same CPU do
not necessarily share the same core. The attacker can cause

contention on the L1 cache to determine if it shares a core
with the victim [20]. As in the previous test, the attack VM
repeatedly evicts the L1 cache by requesting data that is not in
the cache. The victim process will as a consequence experience
misses and thus see an increase in access times (1.5 to 3X).

C. Experimental results
Next, we provide our experimental results on Amazon EC2

with regards to (i) the accuracy and (ii) the time taken for
successful co-residency with the different tests.

Launching and Termination times: Launch and termina-
tion times are part of the overheads incurred by an attacker
while trying to achieve co-residency. They could differ from
datacenter to datacenter. Note that the attacker may have to try
different sizes of attack VMs to achieve co-residency since the
cloud providers placement policies may result in the placement
of VMs of different sizes on different physical machines (e.g.,
according to load) [21].

Fig 1 shows the minimum, maximum and average launch
times over five months. The average launch time is ≈ 1.5
minutes. The termination times are longer in general than
launch times as shown in Fig 2. The average termination
time is 2.5 minutes. Upon closer examination, we find that
VMs that are on a heavily loaded physical machine (longer
response times) take longer to terminate. We also find that
larger VMs take longer to terminate (see Fig. 4); this is because
the deallocation of resources takes longer in such cases.

Hit rate of ICTs: We next quantify the hit rates of the ICTs
on Amazon’s EC2. Table II shows the hit rates with the ICTs
discussed earlier. We find that in approximately 21% of the
cases the bus based ICT indicates that attack and victim VMs
shared the same physical machine. A significant percentage of
these also shared the same CPU (> 90%); the LLC cache test
was a success. In only 9% of the cases an attack VM shared
a core with a victim VM (L1 cache test succeeded).

Accuracy of the ECTs: Next, we present the measured
accuracies with the ECTs in Tables III-VI. We report the
results with 3 different services. Each service was tested for
5 consecutive days. We approximately conducted 50 runs per
day. We used the bus contention based ICT to establish the
ground truth (that test was also conducted and its result was
considered the truth). This is because, first, the work in [9]
shows that this test has very high accuracy in determining the
co-residency of two VMs. Second, the bus test is the only test
for which we have both the ICT and ECT tests. Finally, if the
bus test is successful, as discussed above, it is very likely that
the LLC cache test will also be successful.

For each ECT we measure the number of (i) true positives
(TP), (ii) true negatives (TN), (iii) false positives (FP) and (iv)
false negatives (FN). We compute the true positive rate (aka
sensitivity [22]) to be TP

TP+FN . Similarly, the true negative rate
(aka specificity [22]) is TN

FP+TN . The results show that the bus
based ECT and the hybrid timing test exhibit similar (very
high) sensitivity and specificity. They are both more accurate
than the behavioral and signature based timing tests. Note
however that designing the requests for the bus contention
based ECT is complex. It needs to be tailored to the type of
service running on the victim VM. Furthermore, some services
do perform heavy memory transfers; if a victim VM hosts such
a service, (e.g., ownCloud) it is difficult for an adversary to
successfully carry out a bus based ECT. This suggests that
for some workloads, the bus contention ECT may not be
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Application Sensitivity Specificity
Taiga 0.94 0.84

MediaServer 0.95 0.88
ownCloud 0.95 0.96

TABLE III: Sensitivity/Speci-
ficity with the behavioral ECT.

Application Sensitivity Specificity
Taiga 0.92 0.89

MediaServer 0.93 0.88
ownCloud 0.93 0.95

TABLE IV: Sensitivity/Speci-
ficity with the signature ECT.

Application Sensitivity Specificity
Taiga 0.95 0.95

MediaServer 0.95 0.95
ownCloud 0.90 0.94

TABLE V: Sensitivity/Speci-
ficity with the hybrid ECT.

Application Sensitivity Specificity
Taiga 0.95 0.95

MediaServer 0.95 0.95
ownCloud 0.81 0.95

TABLE VI: Sensitivity/Speci-
ficity with the bus ECT.

effective; the hybrid timing tests seem to work well with all
the workloads we considered. Finally, we argue that the RTT
based methods are less invasive and thus harder to detect.

A microscopic view: In Figs. 5 and 6, we show snapshots
of the normalized time series at a single observer (using
the hybrid timing ECT), when we have a mismatch and a
match, respectively. With a match or hit, the difference in the
normalized response times obtained with respect to the victim
and the attack VM is much smaller than 0.1 for each sample.
With a mismatch, this can be as high as 0.6. In the rare cases
with false positives (the ICT yields a mismatch), we find that
the normalized RTT is slightly higher (≈ 0.2 for some of the
sampled points); this could be because of the two VMs being
on the same rack but not on the same physical machine.

Machines on the same rack: Unfortunately, we cannot
categorically identify cases where two physical machines are
on the same rack on EC2. To examine the impact of cases
where the attacker and the victim VMs are on different
physical machines which are on the same rack (share the
same ToR switch), we perform experiments on our in house
cloud (details later). The VMs are placed on the same physical
machine or on different machines that share the same rack, and
the timing tests are carried out from vantage points from within
EC2. We find that the false positive rates are about 12.4 %
and the false negative rates are about 0.3 %. This demonstrates
the efficacy of our timing tests in filtering out cases where the
VMs are on different machines on the same rack.

Properly configuring the ECT tests: The work in [9]
discusses how to properly configure the parameters for an ef-
fective bus contention ECT (we follow the same approach). It
is obvious that increasing the number of observers, gathering a
larger number of samples, and low sampling rates improve the
fidelity of the timing tests. We find that choosing between 15
and 20 observers, an observation period of about 20 minutes,
and a 200 msec period between samples yields accuracies of
over 80 %. We find that further increasing the number of
observers, getting more samples or decreasing the sampling
interval does not provide significant additional benefits (we
reach a point of diminishing returns). We do not present
detailed results here due to space constraints.

Experimentally computed times for co-residency: In
Table VII we present the experimentally determined, average
times with the different ECTs. The times shown include the (a)

the launch time, (b) the time taken to determine co-residency
(for the tests described) and (c) the termination time. We note
that the average times in all cases are about 2 hours. We find
that 75 % of the tests took more than 72-93 minutes depending
on the ECT in use. More than 95 % took > 20 minutes. The
minimum times taken to successfully determine co-residency
could be small depending on the test (as seen above). However,
the attacker has to really get lucky and must be able to colocate
with the targeted victim VM with very few launches of his
VMs. We discuss risk assessment and various policies on VM
migration (when should a VM be migrated to minimize the
risk of long co-residency with an attacker?) in Section VI.

V. MODELING CO-RESIDENCY TIMES

The time taken for successful co-residency depends on (i)
the number of VMs the victim has on the cloud (e.g., a
web provider may have multiple replicas of his web server
running [23]) (ii) the number of attack VMs launched in
each iteration and (iii) the cloud provider’s policy in placing
a customer’s VMs. In our experiments described earlier, we
assumed that the attacker is able to launch 20 VMs in an
iteration and the victim has 20 VMs running on EC2. Note that
Amazon’s EC2 limits the number of VMs one can launch with
a single account to 20. The provider’s policy on VM placement
here is unknown. It is hard to consider all possible cases
and perform experiments to characterize the times taken for
establishing co-residency. Thus, we develop a simple model
that allows us to effectively estimate this time.

If u is the victim, and the probability of successfully co-
residing an attack process with any of the m replica VMs the
victim is running, in a given attempt, is pc(u), the expected
time for successful co-residency is given by:

ECR[pc(u)] = (tl + td + tc)

J∑
j=1

j(1− pc(u))j−1pc(u) (3)

where, J is the maximum number of attempts the attacker
makes at co-residency. Let pc(u,m) be the probability of
successful co-residency with the mth victim VM replica in
an attempt. We assume that a victim’s VM replica does
not share the same physical machine with another replica;
conservatively, this maximizes the attacker’s chances since he
has a better chance of hitting a victim VM replica in each
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ECT Test Average 75% 85% 95%
Behavioral 110 72 45 21
Signature 135 93 53 26

Hybrid 120 78 45 23
Bus 105 76 65 33

TABLE VII: Co-residency times: average and percentiles
(mins)

attempt. Then, the probability of co-residing an attack process
with any of the replica VMs is pc(u) =

∑
m pc(u,m).

It is hard to determine pc(u) without knowing the place-
ment policy of the provider. If a plurality of the attacker’s
VMs are placed on the same physical machine, then he is
at an inherent disadvantage (the number of unique physical
machines on which he can check for co-residency in that
attempt, is reduced). Thus, we conservatively (to minimize
the co-residency time) assume that the attack VMs are always
placed on different machines (as with the victim VMs). This
policy is not far from what is likely to happen in reality
(e.g., see [21]). For example, a provider may place the VMs
of a customer on different physical machines for reliability
(robustness to machine failures). With this policy, it is easy to
verify that the probability pc(u,m) can be bounded by:

pc(u,m) =
1

N
+

1

N − 1
. . .+

1

N −A
≤ A
N −A

(4)

where, A is the number of attacker VMs. Thus, if there are L
victim VM replicas, pc(u) = L×A

N−A .
Evaluating our model for co-residency time estimation:

We compare the co-residency estimates using our model, with
that from experiments on EC2. Figs. 7 and 8 depict the times
taken to co-reside with any of the victim replicas (we consider
8 and 4 replicas). The number of attacker VMs are varied (for
the experiments, we have two accounts and can have up to
40 VMs in total). The value of N can be estimated based on
the number of IP addresses made available on the provider’s
launch interface and the maximum number of VMs that can
be hosted per machine; we use N = 500 since EC2 provides
around 4000 available IP addresses and the Xen hypervisor
allows 8 VMs per physical machine. The model takes as
input, the average (possibly offline) measurements of tl, td
and tc with one attack VM. We see that with different number
of attack VMs, our model yields relatively good (but rough)
estimates of the co-residency times.

VI. DETERMINING WHEN TO MIGRATE

Risk indicators: Migrations should be invoked when a VM
is at a high risk of being attacked. Unfortunately, without
knowing the capabilities of an adversary it is hard to quantify
risk. To assess risk, we consider two measurable indicators,
the variations in which implicitly indicate an increase in risk.

These indicators are: (i) The time that a victim VM spends on
a physical machine relative to the time taken by an adversary
to successfully achieve co-residency. As evident, the longer a
VM spends on the same physical machine, the more probable
it is that an adversary will successfully co-reside with it on the
same machine. (ii) The level of utilization of the memory bus
on the physical host machine. This is the same side channel
used by an attacker using the bus contention ECT to ascertain
co-residency. From the perspective of the victim, a heavy
utilization of the bus can be because of this ongoing ECT.
It is quite possible that such heavy utilization is because of

benign congestion; we argue that even then, migration would
help in improving performance. With the timing based ECTs,
note that the second risk indicator is not useful.

Time indicator: The first very simple risk indicator is the
time for which the VM has resided on the current physical
machine and is represented by τ = t − ti where, t is the
current time, ti is the time at which the VM was first placed
on that physical machine. If one assumes that the timing based
ECTs are used, the time indicator is the only metric that can
be used to guide migration decisions.

Heavy memory bus utilization indicator: A heavy utiliza-
tion of the memory bus may indicate that the bus contention
ECT is underway. We sample the utilization U of the bus
periodically at intervals ts. If on machine m, U is greater
than a threshold for a specific sample (say j), we set a boolean
variable associated S(m, j) to 1 (and 0 otherwise). The risk
indicator V (m,K) is obtained by jointly considering (say) K
consecutive samples. Specifically,

V (m,K) =

k+K∑
j=k

S(m, j), (5)

for any k. If V (m,K) = K, then the bus experienced a high
U for the K consecutive samples; this suggests that the VM
is at risk of being subjected to a bus contention ECT.

Threshold for determining heavy bus contention: Typically,
for specific platforms, there are specifications for the maxi-
mum values associated with this heavy utilization indicator.
For example, for SDRAM, the specification says that the
maximum memory access time is 70 - 150 ns depending on
the vendor [24]. One could set the threshold to be a certain
fraction of the specified maximum value based on the user’s
risk averseness and the costs she is willing to bear. In our work,
we conduct extensive empirical experiments based on which,
we set the threshold to a pre-defined value (Th = 0.8 ) so as
to keep the false positive rate below 1 %. Similar thresholds
are used with the bus contention ECT [9]. We assume that this
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threshold is fixed and other parameters are tuned to determine
when VMs are to be migrated as discussed next.

Migration guidelines: Next, we formulate guidelines for
migration, based on the risk indicators. We assume that the
provider does not unilaterally migrate a user’s VM to reduce
risk (since some users may be unwilling to experience high
performance costs towards lowering risk). Instead, the provider
monitors the bus utilization at preset time intervals ts, and
based on her preferences (discussed later), migrates her VMs.

Our guidelines are characterized using the flow chart in
Fig. 9. A user’s virtual machine enters a safe state when
it is placed on a physical machine. The value of S(m, jts)
on that physical machine m, is checked by the provider at
each sampling instance of jts (sampling is done every ts
time units i.e., j = 1, 2, . . .). If this value is 1, the VM
enters the monitor state. If the VM remains in the monitoring
state for K consecutive monitoring instances, this implies that
V (m,K) = K and and it should be migrated. The machine
returns to the safe state if at any point while in the monitoring
state, the the value of S(m, (j+ l)ts) (where l < K) becomes
zero (i.e., the utilization of the bus gets back below the
chosen threshold). If the VM remains on the physical machine
(regardless of whether how long it spends in the safe or the
monitoring state) for τ seconds a decision is made to migrate.

User preferences: The parameters that define the user’s cost
and risk averseness are K and τ . If the values chosen for
these parameters are too small, the number of false positives
with respect to detecting a co-residency threat increases;
unnecessary high migration costs are experienced. On the other
hand, if the values chosen are too high, an attacker can succeed
in its attempt to co-reside and do so for long periods. If the
user continuously observes bus contention, her VM is migrated
every Kts seconds. Here, if the size of her VM is X MB, the
bandwidth cost will be 8X

Kts
; she will experience a downtime

every Kts s. This corresponds to her highest costs (typically
τ >> Kts). If there is no attack or if there is a timing
based ECT, migrations are triggered every τ seconds. The user
will experience bandwidth costs of 8X

τ Mbps and a downtime
every τ s. This is her best case in terms of cost. If there is
a bus-contention based ECT, the times between the migration
instances (and costs) will be somewhere in between (and not
excluding) the best and the worst case scenarios.

VII. EVALUATIONS

In this section, we experimentally evaluate our VM migra-
tion guidelines in terms of reduction in risk to malicious co-
residency and the incurred costs. Unfortunately, Amazon EC2
or other cloud providers do not yet offer a service wherein a
user can configure VM migrations for the purposes of security;
therefore, our evaluations are on an in house private cloud.

We consider the two best ECTs that can be used by the
attacker (the hybrid timing based ECT and the bus contention

ECT) to ascertain co-residency. We consider the two risk
indicators separately and jointly, to invoke migrations.

Our private cloud testbed: Our private cloud consists of
13 Servers (11 DELL and 2 HP), two Cisco 20-Port gigabit
switches and 9 DELL hosts. It can host up to 140 micro VMs
or 70 small VMs, simultaneously (equivalent to t2.micro and
t2.small on EC2, respectively). We run the KVM hypervisor
on top of Ubuntu 14.04. We deploy Apache CloudStack [6]
to provision the VMs. We perform live migration by using
virt-manager (KVM + QEMU). We host Taiga, ownCloud and
Mediaserver on the VMs and use 9 hosts to initiate requests
to the deployed VMs (background traffic). Although our
testbed is much smaller than commercial clouds, it suffices for
showcasing the effectiveness of our VM migration guidelines.
On commercial clouds, we believe that migration will be
even more effective (because of scale). All experiments were
conducted over periods of 15 days.

Metrics: The cost incurred by the victim is measured in
terms of (a) the downtime that it experiences and (b) the
bandwidth consumed. The bandwidth consumed corresponds
to the memory state (in MB) transferred during the live
migration of the victim VM. To capture the security provided,
we compute the ratio of the time for which the attack VM
co-resides with the victim VM to the total duration of the
experiment; we call this the attack efficiency.

Evaluation results: Next, we present our results. Migration
costs are averages over 24 hours unless specified otherwise.

Evaluations with a reactive attacker: In the first set of
results we consider the reactive attacker model described
in Section III; this is what the attacker can do to-day on
commercial clouds.

Migration based on time of residency: First, we consider
migration based on only the time of residency (value of τ ).
Here, we do not trigger alerts from the heavy bus contention
utilization indicator. The attacker uses the hybrid timing based
ECT strategy. Since the bus contention utilization indicator is
not used, the results are very similar when the attacker used
the bus contention ECT. We consider two values of τ viz., 60
and 120 minutes. These times correspond to approximately
60 % and 110 % of the expected time it takes for an attacker
to achieve co-residency (from the results in Section IV). A
smaller τ results in lower risk but higher costs in terms of
bandwidth consumed and downtimes for the user. The victim
VMs are either Taiga, Mediaserver or ownCloud.

We have two victim VMs. We populate the machines with
35 additional VMs which are randomly placed, in order to
reflect a real operational setting (the cloud has a utilization of
approximately 30 %). We consider two and four attacker VMs
(i.e., 1X and 2X the number of victim VMs). We summarize
the costs (downtimes and the traffic generated by migration)
and the attack efficiency in Tables VIII and IX. As expected,
the traffic volumes and the average downtimes are doubled
if the migration periodicity doubles. However, the attacker
efficiency is less than 1% if the VMs are migrated every hour,
compared to 5 % if the period is increased to 2 hours. The
drop in the attacker success rate is not linear with increased
migration frequency (it is better). We see that the costs in
terms of downtimes (< 2 s) and bandwidth (of the order of
MB over 24 hours) are reasonable.

Migration based on heavy memory utilization: Next, we
consider the case where the bus contention ECT is used by the
attacker. We only migrate a VM if the heavy bus contention



Interval Bandwidth Downtime Efficiency
1 hour 25.6M 1.4s 0.008
2 hour 13.2M 0.8s 0.05

TABLE VIII: Average cost and attack ef-
ficiency with proactive migration (1 victim
VM and 1 attack VMs).

Interval Bandwidth Downtime Efficiency
1 hour 25.6M 1.4s 0.03
2 hour 13.2M 0.8s 0.08

TABLE IX: Average cost and attack effi-
ciency with proactive migration (1 victim
VM, 2 attack VMs).

Victim VMs Bandwidth Downtime Attack Efficiency
1 13M 0.75s 0.11
2 14M 0.73s 0.11

TABLE X: Average cost and attack effi-
ciency for migration based on heavy mem-
ory utilization (varying victim VMs).

Victim VMs Bandwidth Downtime Attack Efficiency
1 16M 1.1s 0.03
2 16M 1.2s 0.028

TABLE XI: Average cost and attack ef-
ficiency for migration based on both resi-
dence time and heavy memory utilization
(Attack VMs = 2X Victim VMs).
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risk indicator is triggered. Note here that if the attacker uses
the hybrid timing based ECT, the victim’s VM will never be
migrated in this case. We set the access time threshold to
(100ns) (about 0.8 of the maximum specified time on our plat-
forms). The value of K is set to 10. Table X summarizes the
results. The costs of migration decrease significantly compared
to the case where migration is proactively performed based
on the time indicator (recall Tables VIII and IX). However,
since migration is only performed upon detecting long memory
access times, the attacker is able to co-reside with the victim
VM for slightly longer periods (in quite a few cases the heavy
utilization is not consistently above the chosen threshold);
thus, an increase in the attack efficiency is seen.

Jointly considering the two risk indicators: Next, we per-
form proactive migration once every τ = 2 hours, but in addi-
tion we perform reactive migration if the heavy bus memory
bus utilization indicator issues an alert. The attacker uses the
bus contention based ECT. Note here that if the attacker were
to use the hybrid timing ECT, the heavy utilization indicator
will never kick in and the results will be identical to where
only the timing based indicator was used. The results depicted
in Table XI, show that there are slight increases in downtimes
and bandwidth compared to the case with only proactive
migrations with the same τ (see Table IX, row 2). This is
because, additional migrations are now reactively invoked;
however, the risk in terms of attack efficiency is reduced by a
factor of ≈ 3. This suggests combining the indicators provides
better protection with a modest increase in cost.

Sampling overheads of memory access utilization: Fig. 10
shows the overhead of monitoring memory access times
with different sampling rates. We perform experiments with
ownCloud, varying the interval between the memory probes,
between 0.25 and 64 minutes. Each probe test lasts for 15
seconds. Approximately 7% of the CPU cycles were consumed

even with the smallest probing interval. We perform a similar
experiment with Taiga. In Fig. 11, we show the average
response times to web requests while varying traffic load, with
a probing interval of 0.25 minutes. We see that the response
times are relatively unaffected. This demonstrates that clients
can monitor the risk indicators with relatively very little impact
on performance with the applications we consider.

Performance with different attacker models: We next
consider the three different attacker models described in Sec-
tion III viz., the reactive attacker, the periodic attacker and
the static attacker. As mentioned in Section III, a periodic or
a static attacker continuously checks for co-residency since
it is unaware of when the victim VM is placed on its
physical machine. These experiments apply when migrations
are allowed on the cloud for all users (the attacker and the
victim); the users make decisions on configuring migrations.

The attacker uses the hybrid timing based ECT: In Fig. 12,
we show the average time taken by an attacker to co-reside
with its victim VM for different values of τ ; we assume that
the periodic attacker migrates its VM at the same rate as the
victim. The figure captures how often an attacker co-resides
with the victim (but not how long he stays with the victim).
We see that frequent migrations cause the victim to come
back to the same physical machine occupied by a static or
periodic attack VM often. Infrequent migrations would cause
the inter-coresidency times to increase. In the case of an
reactive attacker, the frequent migrations hurt the time taken
to get a co-residency hit (as one would expect).

Reducing the time taken to co-reside with the victim does
not necessarily translate to a longer co-residency time. Let
Wa represent the time for which the attack VM co-resides
with the victim VM. In the next three plots, we present the
complementary CDF of Wa (P(Wa > t)), for the three attacker
models, respectively. We see that more frequent migrations
result in lower overall co-residency times in all cases. The
reactive attacker is hurt the most by frequent migrations. With
τ = 1/2 hour, or 1 hour, the migrations occur even before
it can successfully carry out a co-residency attempt in many
cases. Combined with the fact that its average time to achieve
co-residency is high (as seen in Fig. 12), it is the least effective
strategy for the attacker. The static attacker gains time since it
does not have to terminate and relaunch its process; we find
that if a victim VM, is placed on its machine, the attacker
stays with it for the period of the migration (which is to the
attacker’s advantage). The periodic attacker does better than
the reactive attacker; however, it does not do as well as the
static attacker since, once the victim is placed on its current
physical machine, it may be migrated itself. In summary, the
above results suggest that if users are allowed to migrate their
VMs, staying put on the same physical machine is the best
strategy for an attacker. Performing frequent migrations (as
permitted by cost) is the best strategy for the victim.

The attacker uses the Bus Contention ECT: In Figs. 16, 17
and 18, we show the complementary CDF of Wa when the
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Fig. 13: Probability Wa > t
for a reactive attacker using
the hybrid timing ECT.

Fig. 14: Probability Wa > t
for a static attacker using the
hybrid timing ECT.

Fig. 15: Probability Wa > t
for a periodic attacker using
the hybrid timing ECT.

Fig. 16: Probability Wa >
t for a reactive attacker us-
ing the bus ECT.

Fig. 17: Probability Wa >
t for a static attacker using
the bus ECT.

Fig. 18: Probability Wa >
t for a periodic attacker
using the bus ECT.

attacker uses the bus contention ECT. Our migration guidelines
are in place. We see that regardless of the attacker strategy,
a migration is invoked after Kts = 5 mins with high
probability since the high memory bus utilization indicator
is triggered. Thus, the co-residency times are minimal. The
co-residency times are now much smaller from the attacker
perspective, compared to the case where it used the bus
contention based ECT. The results not only demonstrate the
efficacy of our migration guidelines with regards to minimizing
the co-residency periods, but also demonstrate that the bus
contention ECT is much less effective than our hybrid timing
based ECT from the attacker’s perspective.

VIII. CONCLUSIONS

Achieving co-residency with a victim VM on the cloud
allows an attacker to launch various side-channel attacks that
target information leakage. In this paper, we first perform an
extensive experimental study on Amazon EC2 to obtain an
in depth understanding of the ways and the effectiveness with
which an attacker can achieve co-residency. We also develop a
set of stealthy attacks to achieve co-residency in the process.
Subsequently, choosing VM migration as a countermeasure
strategy, we develop migration guidelines that can help a vic-
tim minimize its co-residency time with an attacker VM, given
constraints on performance costs. We evaluate our guidelines
extensively with different attacker strategies on our in house
cloud and show that they can limit the fraction of the time an
attack VM co-resides with its victim to about 1 %, with very
modest bandwidth and downtime costs.
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