
Stealth Migration:
Hiding Virtual Machines on the Network

S. Achleitner, T. La Porta and P. McDaniel
Pennsylvania State University

Computer Science and Engineering
{sachleitner,tlp,mcdaniel}@cse.psu.edu

S. V. Krishnamurthy
University of California, Riverside
Computer Science and Engineering

krish@cs.ucr.edu

A. Poylisher, C. Serban
Applied Communication Sciences
{apoylisher,cserban}@appcomsci.com

Abstract—Live virtual machine (VM) migration is commonly
used for enabling dynamic resource or fault management, or
for load balancing in datacenters or cloud platforms. A service
hosted by a VM may also be migrated to prevent its visibility to
an external adversary who may seek to disrupt its operation
by launching a DDoS attack against it. We first show that
current systems cannot adequately hide a VM migration from an
external adversary. The key reason for this is that a migration
typically manifests a traffic pattern with distinguishable statistical
properties. We introduce two new attacks that can allow an ad-
versary to effectively track a migration in progress, by leveraging
observations of these properties. As our primary contribution, we
design and implement a stealth migration framework that causes
migration traffic to be indistinguishable from regular Internet
traffic, with a negligible latency overhead of approximately 0.37
seconds, on average.

I. INTRODUCTION
Today, use of virtualized computing is more the norm than

the exception. For purposes such as dynamic load balancing,
or for fault management, virtual machines or even entire
virtual operating systems are moved between servers within
a datacenter or across distributed datacenter establishments.

In this paper, we ask the question: “Can a VM migration
be identified by an external adversary if it transmitted between
datacenter establishments over the Internet?”. In a security-
agnostic setting, an adversary can easily do so by examining
the IP addresses and port numbers associated with migration
flows, and in some cases, may even be able to examine the
payloads in the flow.

There have been proposals for protecting VM migrations
to some extent. Some of these for example, are based upon
encrypting the payloads in such flows, or the establishment of
virtual LANs [12], [13]. However, these are not fool proof;
for example, an attacker can still potentially examine IP
addresses and port numbers, even if the payloads themselves
are encrypted. In order to hide the end-points of a migration,
anonymous or onion routing techniques such as Tor [19] can
be used. Unfortunately, as we show in this work, while this
could work for general types of traffic, it may not suffice
for VM migrations which, exhibit specific timing patterns; by
observing these timing patterns (which manifest themselves
even if the migration flow is mixed with other Internet traffic)
an adversary can effectively track the flow and overcome
anonymous routing.

Next, we ask: “How can we prevent an attacker from
analyzing the traffic to infer VM migration patterns?”. In
other words, how can we design a stealth migration system

to make VM migration traffic indistinguishable from generic
Internet traffic flows? Unfortunately, one cannot blindly apply
pre-existing traffic camouflaging techniques that have been
previously proposed ([27], [11], [16]). This can adversely
affect the service in terms of its performance (drastically
increased downtimes) or create other signatures that can easily
be identified by an adversary. Thus, as the first challenge,
we need to implement traffic shaping techniques that are
effective (make the migration traffic virtually indistinguishable
from other traffic) and yet, keep the performance degradation
experienced by the migration process to a minimum. Second,
the stealth migration system has to dynamically, and fairly
rapidly adapt to changes in variations in both migration traffic
and normal traffic. Thus, it needs to be adaptive while still
ensuring that the performance of the migration is unaffected.

As our main contribution, we design and implement a
stealth migration framework that effectively addresses the
above challenges. Our framework incorporates a novel adaptive
transmission rate variation scheme along with highly dynamic
and flexible traffic chaffing, to achieve extremely high accuracy
in terms of making the migration traffic indistinguishable from
normal traffic, but with minimum performance penalties. In
more detail, the following is a summary of our contributions:
• Showcasing the vulnerabilities of VM migrations: We show

that live VM migration can be effectively profiled via the
statistical features of its flow.

• Design and implementation of a stealth migration frame-
work: We design and build a stealth migration framework
that intelligently combines transmission rate variation and
chaffing to hide migration traffic from outsider adversaries
that monitor flows.

• Experimental evaluations: We perform extensive experi-
mental evaluations using real traces of both Internet traffic
and migration flows to demonstrate via statistical tests
that our framework virtually renders VM flow migration
traffic indistinguishable from regular Internet traffic. We
also demonstrate that our framework has a minimal impact
on the migration process itself, increasing the VM service
downtime by a miniscule 0.37 seconds on average.

II. BACKGROUND AND DEFINITIONS
A. Live VM migration

Most modern hypervisors (also called Virtual Machine
Monitors or VMM) can support live VM migration. A key goal
during migration is to minimize the downtime of the service
provided by the VM. The total migration time refers to the



duration between when a migration is initiated until the time
when the original VM may be discarded. Different mechanisms
can be used for live VM migration. A pre-copy approach is
used by the hypervisors we use in our experiments; further
details can be found in [15].

B. Motivation: Distinguishable migration characteristics
While we defer a detailed discussion of our experimental

testbeds and set up to later sections, we present a result which
in essence, motivates our work. We inject a mixture of real
Internet traffic traces in our test network and perform a live
migration. We then present the observed traffic profile.

Specifically, in Figure 1 the distinguishable traffic char-
acteristics of the VM migration (rate limited to 4MB/s) are
shown. Note that these results are without our stealth migration
system in place; we will refer to these migrations as native
migrations in the rest of the paper. In more detail, the migration
injects a constant periodic burst of packets onto the network.
We analyzed approximately 80,000 network packet flows from
a source IP:port to a destination IP:port with realistic Internet
traffic (without migration flows), and compared it to the case
with migration flows. We found that distinguishing features
that reveal a migration from a regular flow include (i) vari-
ability in throughput and (ii) inter-packet transmission times.
These features can be easily used in a maximum-entropy based
detection algorithm and to perform pattern-matching, to detect
VM migration flows. In Section IV, we show that one can
identify over 90% of the VM migration flows (in our test set)
with a false-positive rate of about 2%.

Fig. 1. Throughput characteristics of a live VM migration

C. Discussion of state-of-the-art defense techniques
Recent published algorithms that enable traffic analysis

attacks identify a packet stream based on its statistical char-
acteristics. These traffic characteristics depend on features
such as the unique distribution of inter-packet times or packet
sizes. The proposed defense techniques against traffic analysis
attacks introduced in recent publications, such as [27], [11] or
[16], are often based on injecting dummy packets into a data
stream or padding packets so all packets have the same size.
These methods are effective in changing the statistical features
exploited in a traffic analysis attack, such as in website-
fingerprinting, but have the drawback of causing significant
overheads. Applying these techniques on network traffic which
includes VM migration flows, causes a significant latency
overhead (300% on average with the system proposed in [16]).
It is important to minimize the latency overhead since the
process of live VM migration is very sensitive to increased
latency, which can have a significant impact on the VM
downtime as observed during our experiments and shown in
[15]. The introduced delay of a defense system applied on live

VM migrations can even cause a state where the migration
process is not able to finish, leaving the sender and receiver
in an idle state occupying resources on source and destination
host. In comparison to existing approaches, our system only
causes a latency overhead of 10-20%, which results in an
additional VM downtime of 0.37 seconds on average. This
makes our system a lightweight defense approach.

In addition, altering the size of packets in a VM migration
flow is not necessary to hide it. According to the most
recent Global Internet Phenomena Report [4], over 50% of
today’s Internet traffic consists of packets from video stream-
ing platforms. Traffic from video-streaming applications, such
as Youtube or Netflix, mainly consist of full-size TCP packets,
[26], [10], as does VM-Migration traffic. However, as we
discuss later and show in Figure 1, the timing characteristics
of VM flows are unique, even compared to streaming and
FTP flows, so attackers can distinguish VM flows based on
these characteristics. This motivates our proposed attack- and
defense-strategies which are focused on traffic analysis based
on timing features.

III. EXPERIMENTAL SETUP

To analyze virtual machine migration traffic on the network
and perform experiments we used two different testbeds:
(i) a small hardware testbed of Linux hosts connected with
100Mbit/s routers and (ii) a NS3 based network emulator for
VM migration. By using two independent test-environments,
we were able to confirm that the distinct traffic pattern of VM
migration flows is caused by the actual migration process.
To confirm that the traffic pattern of a VM migration is
preserved even on Tor networks, we also performed multiple
VM migrations over the real-world Tor network between two
hosts located in two US states as discussed in Section IV-D.

A. Virtualization platform
We use libvirt [6] as a virtualization management platform.

It supports multiple hypervisors, such as KVM/QEMU, XEN,
VMWare, LXC, OpenVZ and VirtualBox. In this paper we
present data observed during the use of KVM/QEMU which
is one of the most used open-source hypervisors. We omit the
data for other hypervisors due to space issues. The distinct
traffic pattern of VM migrations shown in Figure 1 is caused
by the transmission speed control mechanism in the libvirt
platform. Therefore the traffic pattern of VM migrations are
not specific to certain hypervisors, but are manifested during
VM migrations which are executed using the libvirt platform.
We also confirmed in our experiments that the current state of
a VM has no impact on the manifested migration traffic pattern
on the network. Several cloud computing platforms including
Eucalyptus, Nimbus or OpenStack [6] are based on libvirt.
Multiple options for VM migration are offered by libvirt.
We tested different combinations of these options during our
experiments as listed in Table I.

TABLE I. VIRTUAL MACHINE MIGRATION TYPES AND FEATURES
Migrated OSs Ubuntu 14.04 32/64, Alpine Linux 3.2 32/64
Apps on VM XAMPP, MySQL Server, Lighttpd, OpenOffice
Hypervisor KVM/QEMU
VM sizes 1GB, 150MB, 85MB
Migration speeds 2, 4, 5, 6, 8, 10, 12MB/s
Transmission types encrypted libvirt tunnel, TLS, unencrypted
Authentication certificate, public key, username/password
Migration types Live, Offline



B. Hardware testbed

To analyze virtual machine migration on actual network
hardware we used a small setup of Linux hosts connected
with 100Mbit/s routers to a local subnet. All hosts were
running Ubuntu 14.04 with 64bits, and use the program Virtual
Machine Manager, a user interface for libvirt, to trigger VM
migrations. In our experiments we used two of the Linux hosts
to serve as the source and destination for VM migrations, and
one host to eavesdrop on the network traffic and execute traffic
analysis attacks to detect a migration flow.

1) Background traffic: For introducing background traffic
into our hardware testbed we replay network traffic trace files
from the Japanese WIDE project. The WIDE project operates
a nationwide test-network in Japan focusing on research and
development of global-scale networks specifically for data-
centers and cloud computing systems. The WIDE project is
maintaining a repository of traffic traces [8] from a 150Mbps
upstream link to an Internet Service Provider. We used several
of these traces from 2012, 2014 and 2015 as background traffic
in our local test-network.

C. Emulation testbed
In addition to analyzing virtual machine migration traffic

on our hardware testbed, we also used a NS3 based network
emulation testbed, to run experiments. Our test-setup consists
of two server farms migrating virtual machines over the
network and a man-in-the-middle adversary performing traffic
analysis attacks. The remaining hosts connected to the network
generate background traffic based on a Markov model creating
realistic short- and longterm network connections, typical for
Internet traffic as discussed below.

1) Background traffic: Background traffic in the emulation
testbed is generated based on historical Internet user activity
patterns. This user model generates transitions between activi-
ties using a Markov transition matrix to predict the next activity
a user will perform on the Internet. Such user activities include
website browsing, blog interaction, e-mail, video streaming
and downloading files via FTP. The Markov model interacts
with actual applications such as Firefox, Thunderbird or a
Linux FTP client, and uses real servers (Apache, etc.) to
produce benign traffic. To generate this user activity model, we
use a dataset as discussed in [18]. The resulting background
traffic consists of realistic short- and longterm HTTP, TCP and
FTP connections typical for network traffic on the Internet.

D. VM types
We migrate different types of virtual machines over the

network in our experiments. Table I provides a summary of
the different operating systems and settings we used in our
migration experiments. The settings like migration speed or
transmission type can be tuned using the libvirt virtualization
platform. For evaluating the attack channels and defense
mechanism as we introduce in Section IV and V, different
combinations of the migration types and settings presented in
Table I were used.

IV. DETECTION AND ATTACK CHANNELS

In this Section we introduce two highly effective, traffic
analysis attacks to detect VM migrations on the network.

A. Threat model
We consider an adversary using Internet route hijacking to

place itself as a man-in-the-middle on routes over the Internet
to intercept inter-data center VM migration traffic. It has been
observed in recent reports [5] that such attacks are emerging
and represent real security threats. There are multiple ways
an attacker can place itself on the transmission channel. One
such way is to hijack a route [2], [5]. A targeted attack on
the migration process can be executed by an attacker as a
counter-maneuver when VM migration is used as a proactive
defense mechanism as discussed in [30]. In our experiments
we discovered that a VM migration process is very sensitive to
disruptions on the network. As we show in Figure 2, a simple
malicious packet dropping attack, as discussed in [28], on the
migration process is able to increase the service downtime by
a factor of 3-6, or even prevent the process from finishing if
more than 10% of packets are dropped.

Fig. 2. Packet dropping attack on intercepted VM migration flow
The pre-condition for launching such a targeted attack is

that an adversary is able to identify the exact VM migration
flow on the network. In our experiments we assume that state-
of-the-art security measures like encryption, onion routing
and/or the use of secure tunnels are applied on the migration
stream as discussed in the literature [19], [12], [13], [25].
Even if all these mechanisms are in place, an attacker can
still perform a traffic analysis attack to detect a VM migration
flow based on its traffic characteristics, and observe critical
information such as the migration size, duration, transmission
speed and the endpoint VMMs involved, as discussed in [20],
[22] and launch a targeted attack on the migration flow. For
detecting a VM migration flow and distinguishing it from
realistic background traffic, we introduce two different traffic
analysis attacks. First we consider an attacker who is able
to actively monitor the network traffic and apply a pattern
matching algorithm to identify a migration by its distinct traffic
pattern. As a second attack we consider an adversary who is
able to constantly monitor the network traffic. This attacker
has a historical collection of migration flows which are used
for training a classifier; the attacker then executes a maximum-
entropy based detection algorithm to identify an ongoing VM
migration, based on its traffic features.

B. Pattern matching detection
We consider an adversary who can actively monitor the

network traffic. Our experiments reveal that the very specific
traffic patterns exhibited by migration flows are caused by
the transmission speed control mechanism of the virtualization
platform. The observed traffic pattern in different test environ-
ments are shown in Figure 1. For VM migration, these traffic
patterns depend on features like byte counts per unit of time
or inter-packet transmission intervals, and can be observed at
different locations in the network, and are usually independent
of the packet contents or encryption as discussed in [22]. The
traffic pattern we observed in our experiments is characterized



by bursts of packets which are sent out every 100ms. The
length of the packet burst depends on the specified migration
rate. Figure 1 shows the pattern caused by a VM migration
with a defined transmission speed of 4 MB/s. We observed
the same pattern in our hardware testbed (Section III-B), in the
emulation testbed (Section III-C) as well as when migrating
a VM over the real-world Tor network (Section IV-D). Being
aware of this pattern, an adversary is able to apply a pattern
matching algorithm to flows on the network and determine the
presence of a VM migration.

Algorithm 1 PatternAttack(PacketF low,Pwin,δ,PCt)
1: previousBurstT ime = 0;BurstList = {}; patternCounter = 0
2: while PacketF low do
3: for all trafficF low < IP : Port > in PacketF low do
4: if start of packet burst in PacketF low then
5: BurstList.add(1)
6: else
7: BurstList.add(0)
8: end if
9: if BurstList.length > Pwin then

10: Comment: Determine distance between spikes
11: V ariationList = {}
12: BurstCounter = 0
13: for all b in BurstList do
14: BurstCounter + +
15: if b == 1 then
16: V ariationList.add(BurstCounter)
17: BurstCounter = 0
18: end if
19: end for
20: varCoef = StDev(V ariationList)/Avg(V ariationList)
21: if varCoef < δ then
22: patternCounter + +
23: end if
24: BurstList = {}
25: end if
26: if patternCounter > PCt then
27: return Migration at connection IP : port detected
28: end if
29: end for
30: end while

1) Pattern matching detection algorithm: As shown in Fig-
ure 1, packet bursts transmitted at very constant time intervals
are characteristic traffic patterns of VM migrations. Counting
the number of burst intervals within multiple packet windows
and calculating the variation coefficient of the distance between
packet bursts, allows the detection of a migration flow. First,
Algorithm 1 determines the start time of a packet burst and
calculates the time duration between the previous and current
packet burst. If the start of a packet burst is detected in a packet
flow from source < IP : port > to destination < IP : port >,
a ’1’ is added to the list of bursts for that flow; else a ’0’ is
added (lines 4-8). This results in a list of 0s and 1s; the distance
between 1s reflects the distance between packet bursts. This is
done for all packets within a specified packet window. In lines
9-19, all observed packets between two burst are counted and
stored in a list. We then calculate the variation coefficient of
the observed packets within the specified window in line 20.
The variation coefficient c is defined as the standard deviation
divided by the mean:

c =

√
1
n

n∑
i=1

(xi − x̄)2

x̄
(1)

TABLE II. COMPARISON OF VARIATION COEFFICIENTS OF TRAFFIC
FLOWS FOR DIFFERENT PACKET WINDOWS

Type 100 200 300 500 1000 2000 3000 Load Speed
TCP 0.862 0.890 0.865 0.932 1.205 1.104 1.104
TCP 0.393 0.407 0.494 0.466 0.715 0.715 0.674
TCP 0.615 0.709 0.599 0.707 0.366 0.503 0.336

Nat. Mig. 0.003 0.001 0.001 0.001 0.001 0.001 0.001 H 8MB/s
Nat. Mig. 0.146 0.119 0.114 0.113 0.107 0.097 0.098 M 8MB/s
Nat. Mig. 0.060 0.039 0.030 0.021 0.017 0.012 0.008 S 4MB/s

Since the distance between two packet bursts of a migration
flow has very little variance, a variation coefficient lower than
a defined threshold δ (lines 21-23), of the seen packets between
bursts, is an indication of a VM migration flow. If this pattern
was seen more than PCt times (lines 26-28) Algorithm 1
returns that a migration flow is detected.

2) Detection effectiveness: Figure 3 shows the detection
results with our pattern matching algorithm in terms of
identifying VM migration packet flows on the network and
distinguishing them from non-migration background traffic.
We show the effectiveness of our pattern matching detection
algorithm by comparing the number of packet flows of detected
migrations, the total number of migrations, the false-positives
(on the left y-axis) and the number of non-migration packet
flows (on the right y-axis). The values on the bars in Figure
3 show a comparison of the number of packet flows in our
experiments to evaluate the detectability of VM migration
based on its traffic pattern.

Our pattern matching detection algorithm is able to identify
about 80% of VM migration flows on the network, while
maintaining a false positive rate of approximately 1-2%. As
shown in Figure 3, the detection rate based on pattern matching
depends significantly on the algorithm parameters, especially
on the chosen packet window. The observed results suggest
that the use of a packet window of 1000, achieves the best
results. For the shown results, we used values of δ = 0.05 and
PCt = 3 to adjust the sensitivity of the algorithm. We wish to
point out here that with the above pattern-matching algorithm,
no historical training data is required.

Fig. 3. Detection results with the pattern matching algorithm

C. Maximum entropy based detection
For our second migration detection attack we also consider

an attacker positioned on the communication channel. Once
on the migration path, the attacker uses an anomaly detector
to identify a VM migration. Anomaly detectors are trained
to identify specific types of traffic anomalies by inspecting
traffic flows as discussed in [23], [24], [21]. Traffic anomalies
are specified by features that reflect a distinct traffic pattern
which distinguishes them from the rest of the traffic. A network
anomaly detector can be trained on distinct features of traffic
patterns to flag a packet flow when it matches the predefined
model.



1) Maximum entropy based detection algorithm: For this
detection attack, we use the principle of an anomaly detector
for a malicious purpose, i.e. as a method to identify a VM
migration flow on the network. Our anomaly detection based
attack algorithm uses maximum entropy estimation to identify
a VM migration flow. We use the MAXENT Library which is
part of the Apache OpenNLP [1] package to create a detection
model for VM migration flows. The most important part for
creating a detection model is to identify a distinct feature of a
network flow. We determined that native migration traffic flows
(Nat. Mig.) have a very low variability in terms of the number
of transfered bytes within a specified window of packets,
compared to common TCP packet flows as we show in Table
II. We use the recorded network traffic from our test network
for training and evaluating our migration detection model. To
measure the variability of a flow we calculate the variation
coefficient of the throughput within a specified window of
packets. In Table II we show the variation coefficient of the
throughput for different packet window sizes, as determined
by our maximum-entropy detection algorithm viz. 2.

Algorithm 2 MaximumEntropyAttack(Pwin)
1: HashMap ByteWindow < Window,List >
2: HashMap Flows < IP : port, ByteWindow >
3: while PacketStream do
4: Comment: Determine transmitted bytes within window
5: for all Flow IP : port in PacketStream do
6: for all Window w in Pwin do
7: List bytes = ByteWindow.get(w)
8: bytes.add(transmitted bytes in w of IP : port)
9: ByteWindow.put(w, bytes)

10: end for
11: Flows.put(IP : port, ByteWindow)
12: end for
13: Comment: Calculate detection features
14: for all IP : port in Flows do
15: HashMap bw = Flows.get(IP : port)
16: Features = {}
17: for all Window w in bw do
18: List bytes = bw.get(w)
19: varCoef = StDev(V ariationList)/Avg(V ariationList)
20: Features.add(varCoef)
21: end for
22: Comment: Determine prediction with pre-trained model based on

calculated features
23: if Predict(Features)[Migration] ≥ 0.5 then
24: return Migration at connection IP : port detected
25: end if
26: end for
27: end while

We compare common Internet traffic flows with native VM
migration flows. The column labeled Load in Table II shows
the background traffic load. We use the categories H(heavy =
> 80 % traffic), M(medium = 40 − 50% traffic) and S(small
= < 20% traffic) to describe the traffic load in the network
while the migration was performed. The last column shows
the transmission speed of the VM migration flow. As shown
in the table, common Internet traffic flows, which are using
the TCP protocol, have much higher variation coefficients of
their transmission rates compared to native VM migration
flows. We compare VM migrations to TCP flows, since the
TCP protocol is used by the Linux KVM VMM when a
migration is performed. We assume an attacker is performing
some sort of basic traffic flow filtering for migration detection,

based on known facts about VM migration (such as only
considering TCP streams and discarding flows that are too
short to be a migration). For each flow (IP:port), our algorithm
determines the number of transmitted bytes within consecutive
windows of packets passing through the detection system.
For our experiments, we use different window sizes between
100 and 3000 packets. As shown in Algorithm 2, lines 5-12,
for a flow defined by IP:Port, we determine the number of
transmitted bytes within a window of packets and store it in a
HashMap. For each flow, we calculate the variation coefficient
of transmitted bytes within different packet windows, as shown
in lines 14-21. This procedure results in a set of features for
each flow.

To specify a feature set in our detection model we use a
triplet of three different packet window sizes. In this paper
we present results for the following sets of packet windows:
Pwin = {{100,200,300}, {100,500,1000}, {500,1000,2000},
{1000,2000,3000}}. The resulting feature triple for each flow
is passed to our pre-trained detection model to determine a
migration prediction for a particular flow (line 23). In our
experiments we use a threshold of 50% for the prediction
result, to decide if a flow matches the features of a VM mi-
gration or not. If our maximum entropy based detection model
determines a value greater than 50% that the corresponding
packet flow matches the migration features, we mark the flow
as a VM migration.

2) Detection effectiveness: Our introduced maximum-
entropy detection attack is able to identify approximately 90%
of VM migration packet flows that are integrated with non-
migration packet flows. We note that our detection algorithms
only identify migration flows by their traffic characteristics and
do not analyze packet content, port numbers, host addresses,
etc. Traffic flows like large file transfers can have similar
features of a low throughput variability, causing false-positives
for an attacker. In our detection attack experiments we experi-
enced a false-positive rate of about 1-2%. Figure 4 shows the
effectiveness of our maximum-entropy based detection attack.
The values on the bars in Figure 4 show a comparison of
the number of packet flows in our experiments to evaluate the
detectability of a VM migration based on its traffic pattern. For
the results in Figure 4, we use 80% of traffic data randomly
chosen for training and the remaining 20% for testing the
detection system. Our maximum-entropy based VM migration
detection algorithm is able to detect about 90% of the VM
migrations with a false positive rate of about 1-2%. These
results show that an attacker targeting VM migrations is able
to identify 90% of migration flows only based on their traffic
characteristics. In this case, using encryption, or anonymous
routing techniques to protect the VM migration would not
prevent an attacker from detecting it and identifying VMM
endpoints which can be used to launch further attacks as we
discuss in Section IV-A.

Fig. 4. Detection of VM migrations with a maximum entropy based detection
system



D. Detecting VM migration in Tor networks
Previous work has shown that low-latency anonymous

communication networks, such as Tor, are vulnerable to traffic
analysis attacks [17], [31]. Recently the authors of [17] show
that the endpoints of anonymous traffic flows can be identified
with an accuracy of 81% in a real-world Tor network. We
show in our experiments that traffic analysis attacks are able
to detect VM migration flows with an accuracy of 90%, even if
anonymization techniques, such as the Tor network, are used.
To demonstrate this, we setup an experiment to perform a VM
migration over the Tor network between two hosts located
in different US states. Both hosts were running a recent Tor
version (0.2.4.27) on a Linux OS. We used the command torify
to send the VM migration traffic over the Tor network to its
destination host. As in our previous experiments, libvirt was
used as the virtualization platform. Our migrations through Tor
were performed over three hops, the default number in the
real-world Tor network, to anonymize source and destination
of the VM traffic. We record the migration traffic at the migra-
tion destination after it exits the Tor network. Analyzing the
recorded migration traffic, we confirm that the distinct pattern
of a VM migration, is preserved while progressing through the
Tor network and results in the same traffic pattern as shown in
Figure 1. Observing the distinct pattern of VM migrations at
different locations in the Tor network, an adversary can track
the packet flow and can determine the source and destination
of the VM migration.

Overall token rate

qdisc root class

inner class

Migration
filter 

Chaffing
Token Bucket

Migration 
Token Bucket

Chaffing
filter

Migration 
rate

I
P
T
A
B
L
E
S

I
N
T
E
R
F
A
C
E

Packet flow

Chaffing
 rate

Overall rate

Rate variation algorithm Migration token rate

Borrows
tokens

Ceil rate

Guaranteed rate

Migration traffic
Chaffing traffic

Regular traffic

Optional

Fig. 5. Dynamic Hierarchy Token Bucket implementation

V. STEALTH MIGRATION SYSTEM

To defend against traffic analysis attacks on VM migrations
over unprotected networks, we seek to make the migration
packet flow indistinguishable from other traffic. Towards this,
we design a novel stealth migration framework which applies
different camouflaging techniques on the migration flow to
achieve a similar traffic profile comparable to common back-
ground traffic, while limiting the impact on the migration pro-
cess performance. The core component of our stealth system
is a Dynamic Hierarchy Token Bucket (DHTB) which adjusts
the transmission rate at high frequency and is able to balance
the load intelligently across the migration traffic, and chaffing
traffic that is injected when there is very low background
traffic load. The transmission rate of the VM migration flow is
dynamically adjusted by a Rate Variation Algorithm within the
DHTB. The Chaffing Generator creates an adjustable parallel

stream of dummy packets in a flexible and dynamic manner.
The composition of these techniques generate a traffic flow
with a randomized pattern, while avoiding high increases in
latency which would negatively affect the migration flow.
A. Hierarchy Token Bucket (HTB)

A Hierarchy Token Bucket is in essence a traffic shaper;
an inherent scheduling algorithm is used to transform a packet
flow into a defined form. Further details about the theory of
hierarchy token buckets can be found in [9].

1) Dynamic Hierarchy Token Bucket (DHTB): In our
stealth system we extend the concept of a HTB with a dynamic
rate variation algorithm and refer to it as Dynamic Hierarchy
Token Bucket as shown in Figure 5. In our implementation,
the token arrival rate for migration traffic is dynamically
adjusted by our rate variation algorithm, viz. 3, with a Linux
system command. The different classes of our DHTB can
be seen as multiple Token Buckets that are used in parallel
and are able to borrow tokens from each other. Our DHTB
also includes two filters and iptables rules, to distinguish the
migration and chaffing traffic based on their specified port
numbers and route it to their appropriate class. Regular non-
migration traffic transmitted from the migration host, is sent
into the network without any manipulation. Our rate variation
algorithm dynamically adjusts the token arrival rate of the
migration token bucket and helps shape the traffic into a
randomized pattern.
B. Dynamic rate variation

The purpose of dynamic rate variation is to adjust the token
arrival rate of the DHTB to vary the transmission rate of
migration packets and make the flow indistinguishable from
common network traffic. We measure the traffic variability in
a packet flow by computing the variation coefficient of the flow
throughput for different packet window sizes. A comparable
variation coefficient, similar to common Internet traffic, should
be achieved, while limiting the impact on the VM migration
process. As defined in Equation 1, the variation coefficient
is calculated of a series of n numbers, where xi represents
a transmission rate previously used in our DHTB to send
migration packets over the network.

In our defense system, we chose an approach to dynam-
ically determine the migration packet transmission rate by
generating a high variability within the given transmission
bounds while introducing randomness into the rate selection
process as shown in Algorithm 3. This makes the pattern
of a migration stream unpredictable while creating a traffic
variability similar to common Internet traffic.

To execute our rate variation algorithm, viz. 3, the lower
and upper transmission rate bounds (minR,maxR), the rate
update interval (int), the number of previous stored rates (win)
and the start rate (r) have to be supplied. The upper and
lower variation coefficient uC and lC are used to specify
bounds on the preferred variation coefficient. To determine the
next transmission rate for the migration flow, the algorithm
compares the current and previous variation coefficients and
decides how the current transmission rate should be adjusted
(lines 9-15). Depending on the difference between previous
and current variation coefficients, defined as d, the algorithm
determines if the current rate r should be increased or de-
creased by a specific factor. We make the resulting rates of our
algorithm unpredictable by using randomized values within the



predefined bounds. The value c on line 17 triggers a random
change in the direction, and ranges of the random values
([x1, y1], [x2, y2], [x3, y3], [x4, y4]) in lines 21-35 control the
adjustment of the rate change factor.

The variability of the generated transmission rates is con-
trolled by these ranges and should be adjusted according to the
specific application scenario of the stealth system. For exam-
ple, in a network were the majority of the traffic has a higher
variability, the numbers should be calibrated to make the mi-
gration traffic indistinguishable from the common background
flows. The ranges ([1.0, 1.4], [1.4, 1.9], [0.8, 1.0], [0.1, 0.8]) are
used for the results presented in this paper, which were
calibrated during our experiments. This calibration aims to
achieve a flow variability between lC = 0.5 and uC = 1 that
matches the variation coefficient of TCP streams we found, in
reported prior analysis of realistic Internet traffic (Table II).

For the presented results, we change the transmission rate
of our DHTB every 10ms and keep track of the previous
50 transmission rates. In Figure 6 we show the transmission
flow of a stealth VM migration. The introduced rate variation
algorithm generates a randomized traffic pattern that has a
similar variation coefficient as a common TCP flow and can
therefore not be identified by an attacker analyzing the network
traffic for flows with VM migration characteristics.

Fig. 6. Transmission variation of a stealth VM migration

C. Chaffing
We refer to chaffing as the technique of injecting a parallel

stream of dummy packets into the network, to camouflage
changes in the overall network load indicating the start- and
end-points of a VM migration. We use this defense technique
as an optional defense method which is primarily applied in
a network with a low traffic load to hide sudden changes in
the network traffic which could reveal the presence of VM
migration flows. For constructing a dummy packet generator,
we used existing tools, those in [7] and [3]. In addition to
creating dummy packets at the migration source, a dummy
virtual server should be used on a remote machine to generate
appropriate response packets when dummy TCP packets are
introduced. We also change the address and port numbers of
chaffing packets at random time intervals to make it appear
that normal connections are established to different hosts.

VI. EVALUATION OF INDISTINGUISHABILITY
The potency of traffic analysis attacks in identifying a

specific packet flow by its statistical characteristics depends
on the traffic pattern of the flow. This traffic pattern of a VM
migration can be specified in its entirety by the distribution
of its inter-packet arrival times as discussed earlier in Sections
II-B and II-C. To evaluate the indistinguishability of our stealth
traffic, we analyze the distribution of inter-packet arrival times
of VM migration flows. We define time categories and count
the number of packets which are associated with a specific
inter-packet time, in each category.

Algorithm 3 RateVariation(minR,maxR,int,win,r,d,c,lC,uC)
1: rates = {}; prevV arCoef = 0.0; varCoef = 0.0; direction =
true; changeRate = 1.0

2: while Stealth enabled do
3: prevV arCoef = varCoef
4: calculate stdDev = StandardDeviation(rates)
5: calculate avg = Average(rates)
6: calculate varCoef = stdDev/avg
7: Comment: Change direction if the difference to the previous variation

is greater than d
8: if (prevV arCoef - varCoef ) > d then
9: direction = !direction

10: end if
11: Comment: Change direction if variation didn’t change
12: if (prevV arCoef equals varCoef ) then
13: direction = !direction
14: end if
15: Comment: Randomly change direction with a chance of c%
16: if (RandomNumber(0, 100) ≤ c) then
17: direction = !direction
18: end if
19: if direction then
20: if varCoef < uC then
21: changeRate = RandomNumber([x1, y1])
22: end if
23: if varCoef < lC then
24: changeRate = RandomNumber([x2, y2])
25: end if
26: else
27: if varCoef < uC then
28: changeRate = RandomNumber([x3, y3])
29: end if
30: if varCoef < lC then
31: changeRate = RandomNumber([x4, y4])
32: end if
33: end if
34: r = r ∗ changeRate
35: if r < minR then
36: r = minR
37: end if
38: if r > maxR then
39: r = maxR
40: end if
41: Set DHTB migration class rate to r
42: if rates.size() > win then
43: remove oldest entry from rates
44: end if
45: rates.add(r)
46: wait(int)
47: end while

A category of inter-packet times is defined by a lower
time bound tl and an upper time bound tu where tu =
tl + 1 microsecond. For our analysis we considered time
categories starting from tl = 0 microseconds up to the highest
seen inter-packet time within a flow. To evaluate the differ-
ences in traffic patterns of migration flows and non-migration
flows, we compared the distribution of inter-packet times of
the 10 most common time categories of traffic flows. To
categorically demonstrate the indistinguishability of stealth
migration traffic from common background traffic, we show
that the distributions of inter-packet times of stealth- and
background traffic are statistically indistinguishable. Statistical
indistinguishability is achieved when the statistical distance
between two distributions is negligible as defined in [29]. We
define χ = {Xn}n∈N and ψ = {Yn}n∈N as sequences of
probability distributions. We say that χ and ψ are statistical
indistinguishable if ∆(Xn, Yn) = negligible(n).



TABLE III. CHI-SQUARE TEST RESULTS TO SHOW
INDISTINGUISHABILITY OF STEALTH MIGRATIONS

Compared flows Result If > α
Native migrations <> TCP flows 0.019 Distinguishable
Native migrations <> FTP flows 0.038 Distinguishable
Stealth migrations <> TCP flows 0.999 Indistinguishable
Stealth migrations <> FTP flows 0.999 Indistinguishable

To show that our stealth system shapes the migration traffic
into a statistically indistinguishable form, we perform a Chi-
Square test over the average inter-packet time distribution
of native migration, stealth migration and common TCP and
FTP flows. We define a significance level of α = 0.05 to
decide if the null-hypothesis of a test result should be rejected
or accepted. If the result of the Chi-Square test returns a
probability > α, we accept the null hypothesis which shows
that there is no statistically significant difference between two
traffic flows.

In Table III we show the Chi-Square test results of com-
paring the distributions of the average observed inter-packet
times of migration and background traffic flows. The resulting
values of comparing the traffic pattern of native VM migration
flows to common TCP and FTP traffic flows observed in
our test-environments are less than the defined significance
level α and therefore distinguishable. The test result of stealth
migration flows show a considerably higher value than the
defined significance level and thus these flows are statistically
indistinguishable from background traffic.

VII. EVALUATION OF DEFENSE TECHNIQUES

To demonstrate the effectiveness of our defense techniques,
we applied the introduced traffic analysis algorithms on VM
migration flows, after they pass through our stealth migration
system.

TABLE IV. COMPARISON OF VARIATION COEFFICIENTS OF TRAFFIC
FLOWS FOR DIFFERENT PACKET WINDOWS

Type 100 200 300 500 1000 2000 3000 Load
Nat. Mig. 0.074 0.057 0.047 0.037 0.025 0.008 0.007 M

TCP 0.752 0.842 0.859 0.870 0.870 0.945 0.686
TCP 0.746 0.913 0.965 1.044 0.955 0.726 0.453

Ste. Mig. 0.634 0.657 0.653 0.655 0.639 0.600 0.572 S
Ste. Mig. 1.074 1.049 0.923 0.826 0.680 0.453 0.312 M
Ste. Mig. 0.718 0.744 0.751 0.754 0.743 0.712 0.687 H

A. Evaluation of dynamic rate variation

By dynamically adjusting the transmission rate for migra-
tion traffic (using the rate variation algorithm described in Sec-
tion V-B), our stealth migration system effectively modulates
the distribution of inter-packet times in a way that it cannot be
distinguished from non-migration packet flows. In Table IV we
compare the variation coefficients for different types of flows
via experimentation on our hardware testbed. We find that the
variation coefficients for stealth migration flows (Ste. Mig.)
are very similar to that of non-migration TCP flows. The last
column in Table IV characterizes the background traffic load
(Load) in the network during the migration process. We use the
categories H(heavy = ∼ 80% traffic), M(medium = 40− 50%
traffic) and S(small = < 20% traffic). Our stealth system
performs well even with different coexisting network loads;
the observed variation coefficients are always comparable to
common TCP flows.

Fig. 7. Detection of stealth VM migrations with our pattern matching attack

Fig. 8. Detection of stealth VM migrations with our maximum entropy attack

In Figure 7 we show the results from our experiments,
when the pattern matching algorithm is applied on stealthy VM
migration flows. The pattern matching attack, was not able to
identify any stealthy VM migrations, since the traffic pattern
is randomized and cannot be exploited. In Figure 8 we present
detection results of the maximum-entropy based detection
algorithm when our stealth system is applied on VM migration
flows. Again, the attack cannot distinguish the migration traffic
from non-migration traffic, since the stealth system effectively
camouflages the traffic pattern of the migration. Our results
show that we are able to reduce the detectability with different
traffic analysis attack channels of VM migrations, to 0% and
therefore significantly reduce the attack surface.
B. Stealth migration performance

In this section we evaluate the performance of our stealth
migration system with regards to total migration time and VM
downtime; we compare the results with that of native migra-
tions without any stealth techniques. In these experiments, we
migrated a 32bit Alpine Linux operating system with 80MB
RAM in our emulation testbed.

VM downtime: The downtime of a virtual machine during a
live migration process refers to the time for which the service
provided by a virtual machine is completely unavailable. This
downtime is usually significantly lower than the overall mi-
gration time. We measure the service downtime of a migration
process by sending frequent ping messages (every 10ms) from
a remote host to the migrated VM. The service downtime is
then calculated as the number of lost ping messages, multiplied
by the ping interval. The impact on the VM service downtime
of our stealth migration system is minor. We observed an
increase of 0.44 seconds (from 1.24s to 1.68s) on average when
the virtualization platform is migrating a VM with 4MB/s and
0.31s on average (from 0.81s to 1.12s) with a rate of 8MB/s.
On average, our stealth migration system delays the VM
service downtime by an additional 0.37 seconds. A fractional
increase like this is not observable by users of cloud computing
services, hosting websites or video streaming platforms (to
name a few examples). The reason for downtime variability of
VMs during live migration is discussed in [15].

Total Migration time: The total migration time of a virtual
machine refers to the time frame between when a migration is
triggered at the original VM host until the process is finished
and the virtual machine is running on the destination host.
Users of services provided by virtual machines are usually
not affected by the overall migration time. To compute the



migration time, we collected timing data of multiple migrations
when transmission rates of 4MB/s and 8MB/s are used. The
overall migration time, when our stealth system is applied to
the migration flow, is only increased by 1.8s (from 59s to
60.8s) on average with a rate of 4MB/s and 5.5s (from 41s to
46.5s) on average with a migration rate of 8MB/s. Comparing
the latency overhead ratios of our system to recently proposed
traffic analysis defense systems, such as CS-BuFLO [16], [11],
shows a significant difference as we present in Table V.

TABLE V. COMPARISON OF LATENCY OVERHEAD RATIOS
Latency overhead ratio

CS-BuFLO Stealth Migration
Lower Upper Lower Upper

2.7 3.4 1.1 1.3

As shown, current state-of-the-art traffic analysis defense
systems, such as CS-BuFLO have a latency overhead ratio of
over 3.0 on average. In comparison, our system only has an
average latency overhead ratio of 1.2, making our system a
lightweight defense approach.

VIII. RELATED WORK

In [15] different design options for migrating running
services of an operating system from a source to a destination
host in cluster environments and data centers are introduced.
Different attacks against live VM migrations in the context
of the control plane, data plane and migration module are
explored in [25]. By using techniques like ARP spoofing, DNS
poisoning or route hijacking [2], an attacker is able to logically
position themself in the migration transit path. Even if proper
encryption and identity management is used, it is still possible
to gain valuable information such as the endpoint VMMs
involved in the migration process. We show in this paper that
by using our stealth system an attacker is not able to identify
a migration stream, which is the foundation for a successful
attack. The authors of [13] address the problem of different
legislation and untrustworthy destinations when VMs, contain-
ing user data, are migrated across national borders. In [22] the
weaknesses of censorship circumvention systems which mimic
specific network traffic flows are discussed. Mimicking typical
network protocols to bypass censorship systems of specific
network traffic is very complex and error-prone and does not
address changing of typical traffic patterns. In particular, it
is stated in [22] that: Many protocols produce characteristic
patterns of packet sizes, counts, inter-packet intervals, and
flow rates. These patterns are often stable across the network,
observable even when packet contents are encrypted, and can
be exploited for traffic analysis.

The process of inter-datacenter VM migration is discussed
in [14]. The authors analyze the traffic features observed during
VM migrations between geographical regions over the Internet.
The results in the paper show that background traffic on routes
used for inter-datacenter migration is comparable to common
Internet background traffic. In [20] the authors introduce coun-
termeasures for traffic analysis attacks on unprotected links.
In particular, they discuss link padding, a technique where
dummy packets are introduced into a packet flow to change the
transmission rate and therefore its traffic pattern. Our system
proposes a more efficient way to vary the transmission rate of
a packet flow by using a traffic shaper.

IX. CONCLUSIONS
In this paper, we demonstrate that explicit patterns that

manifest themselves during a VM migration, allows an adver-
sary to detect and profile the migration. To prevent attackers
from launching targeted attacks against a VM migration flow,
we introduce a stealth migration system that prevents the de-
tection of a migration flow by making it indistinguishable from
normal Internet traffic. We perform extensive experimental
evaluations to showcase the benefits of our system in hiding
migration flows and showing that it is lightweight.

ACKNOWLEDGMENT

The effort described in this article was sponsored by the
U.S. Army Research Laboratory Cyber Security Collaborative
Research Alliance under Cooperative Agreement W911NF-13-
2-0045. The views and conclusions contained in this document
are those of the authors, and should not be interpreted as
representing the official policies, either expressed or implied,
of the Army Research Laboratory or the U.S. Government.
The U.S. Government is authorized to reproduce and distribute
reprints for Government purposes, notwithstanding any copy-
right notation hereon.

REFERENCES

[1] Apache opennlp. http://opennlp.apache.org/. Accessed: 2015-04-14.
[2] Bgp hijacking. https://www.blackhat.com/docs/us-15/materials/

us-15-Gavrichenkov-Breaking-HTTPS-With-BGP-Hijacking-wp.pdf.
Accessed: 2015-10-20.

[3] Bittwist. http://bittwist.sourceforge.net/. Accessed: 2015-04-17.
[4] Global inet report. https://www.sandvine.com. Accessed: 2015-10-12.
[5] Hierarchy token bucket theory. http://research.dyn.com/2013/11/

mitm-internet-hijacking/. Accessed: 2015-10-13.
[6] libvirt. http://www.libvirt.org/. Accessed: 2015-07-23.
[7] Mausezahn. http://netsniff-ng.org/. Accessed: 2015-04-17.
[8] Mawi archive. http://mawi.wide.ad.jp/mawi/. Accessed: 2015-07-23.
[9] The new threat: Targeted internet traffic misdirection. http://luxik.cdi.

cz/∼devik/qos/htb/manual/theory.htm. Accessed: 2016-03-14.
[10] V. K. Adhikari, S. Jain, and Z.-L. Zhang. Youtube traffic dynamics and

its interplay with a tier-1 isp: an isp perspective. In Proceedings of the
10th ACM SIGCOMM conference on Internet measurement, 2010.

[11] X. Cai, R. Nithyanand, and R. Johnson. New approaches to website
fingerprinting defenses. arXiv preprint arXiv:1401.6022, 2014.

[12] A. et al. Secure live virtual machines migration: issues and solutions.
In Advanced Information Networking and Applications Workshops
(WAINA), 2014 28th International Conference on.

[13] B. et al. Improving security of virtual machines during live migrations.
In Privacy, Security and Trust (PST), 2013 Eleventh Annual Interna-
tional Conference on.

[14] C. et al. A first look at inter-data center traffic characteristics via yahoo!
datasets. In INFOCOM, 2011 Proceedings IEEE.

[15] C. et al. Live migration of virtual machines. In Proceedings of
the 2nd conference on Symposium on Networked Systems Design &
Implementation-Volume 2 2005. USENIX Association.

[16] C. et al. Cs-buflo: A congestion sensitive website fingerprinting defense.
In Proceedings of the 13th Workshop on Privacy in the Electronic
Society, 2014.

[17] C. et al. On the effectiveness of traffic analysis against anonymity
networks using flow records. In Passive and Active Measurement, 2014.

[18] D. et al. A comparison of test statistics for computer intrusion detection
based on principal components regression of transition probabilities.
COMPUTING SCIENCE AND STATISTICS 1998.

[19] D. et al. Tor: The second-generation onion router. Technical report,
DTIC Document, 2004.



[20] F. et al. On effectiveness of link padding for statistical traffic analysis
attacks. In Distributed Computing Systems, 2003. Proceedings. 23rd
International Conference on.

[21] G. et al. Detecting anomalies in network traffic using maximum entropy
estimation. In Proceedings of the 5th ACM SIGCOMM conference on
Internet Measurement 2005.

[22] H. et al. The parrot is dead: Observing unobservable network commu-
nications. In Security and Privacy (SP), 2013 IEEE Symposium on.

[23] L. et al. Characterization of network-wide anomalies in traffic flows.
In Proceedings of the 4th ACM SIGCOMM conference on Internet
measurement 2004.

[24] L. et al. Diagnosing network-wide traffic anomalies. In ACM SIG-
COMM Computer Communication Review 2004.

[25] O. et al. Empirical exploitation of live virtual machine migration. In
Proc. of BlackHat DC convention, 2008.

[26] R. et al. Network characteristics of video streaming traffic. In Proceed-
ings of the Seventh Conference on emerging Networking Experiments
and Technologies, 2011.

[27] W. et al. Effective attacks and provable defenses for website finger-
printing. In Proc. 23th USENIX Security Symposium (USENIX), 2014.

[28] Z. et al. Malicious packet dropping: how it might impact the tcp
performance and how we can detect it. In Network Protocols, 2000.
Proceedings. International Conference on.

[29] O. Goldreich. Foundations of cryptography: volume 2, basic applica-
tions. Cambridge university press, 2004.

[30] S.-J. Moon, V. Sekar, and M. K. Reiter. Nomad: Mitigating arbitrary
cloud side channels via provider-assisted migration. In Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications
Security, 2015.

[31] S. J. Murdoch and G. Danezis. Low-cost traffic analysis of tor. In
Security and Privacy, 2005 IEEE Symposium on.


