
Defining and Detecting Environment
Discrimination in Android Apps

Yunfeng Hong1(B), Yongjian Hu2, Chun-Ming Lai1, S. Felix Wu1,
Iulian Neamtiu3, Patrick McDaniel4, Paul Yu5, Hasan Cam5,

and Gail-Joon Ahn6

1 University of California, Davis, USA
{yfhong,cmlai,sfwu}@ucdavis.edu

2 University of California, Riverside, USA
yhu009@cs.ucr.edu

3 New Jersey Institute of Technology, Newark, USA
iulian.neamtiu@njit.edu

4 Pennsylvania State University, State College, USA
mcdaniel@cse.psu.edu

5 U.S. Army Research Laboratory, Maryland, USA
{paul.l.yu.civ,hasan.cam.civ}@mail.mil

6 Arizona State University, Tempe, USA
Gail-Joon.Ahn@asu.edu

Abstract. Environment discrimination—a program behaving differ-
ently on different platforms—is used in many contexts. For example, mal-
ware can use environment discrimination to thwart detection attempts:
as malware detectors employ automated dynamic analysis while run-
ning the potentially malicious program in a virtualized environment,
the malware author can make the program virtual environment-aware
so the malware turns off the nefarious behavior when it is running in
a virtualized environment. Therefore, an approach for detecting envi-
ronment discrimination can help security researchers and practitioners
better understand the behavior of, and consequently counter, malware.
In this paper we formally define environment discrimination, and pro-
pose an approach based on abstract traces and symbolic execution to
detect discrimination in Android apps. Furthermore, our approach dis-
covers what API calls expose the environment information to malware,
which is a valuable reference for virtualization developers to improve
their products. We also apply our approach to the real malware and
third-party-researcher designed benchmark apps. The result shows that
the algorithm and framework we proposed achieves 97% accuracy.

Keywords: Android · Malware detection
Environment discrimination

1 Introduction

In the past decade, the smartphone has replaced the PC as the most frequently-
used Internet access device [1]. Along with the rising popularity of mobile devices,
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

X. Lin et al. (Eds.): SecureComm 2017, LNICST 238, pp. 510–529, 2018.

https://doi.org/10.1007/978-3-319-78813-5_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78813-5_26&domain=pdf

Defining and Detecting Environment Discrimination in Android Apps 511

malware is also rapidly growing in terms of both quantity and sophistication.
For example, reports show that in the first quarter of 2017, 8,400 new malware
samples were discovered every day [2], which results in the high demanding of
malware detection and analysis. Dynamic analysis is a popular approach for ana-
lyzing application behaviors, and is usually deployed on virtual environments for
performance and security reasons. However, malware authors are only interested
in “real” phones used by actual customers. In contrast to the desktop/server plat-
form, smartphone sandboxes have very limited use on mobile platforms (for both
application development and dynamic analysis) because sensors which drive app
behavior (such as GPS, camera, microphone) have to be mocked, which compli-
cates development and analysis [3]. Thus, malware authors intentionally develop
malware that detects the running environment and adjust malware behavior
accordingly, as shown in Fig. 1, when running on virtual environments, “smart”
malware hides its suspicious behavior to evade dynamic analysis, and such behav-
ior will be exposed when running on a real device. Some imparities between real
devices and virtual machines such as CPU performance and battery consump-
tion are difficult to be eliminated. Furthermore, it is infeasible to enumerate all
heuristics that differentiate real devices and virtual machines. Thus, simple mit-
igation approach such as blacklist filtering is not capable to solve the problem,
and a more fundamental and comprehensive approach is required to mitigate
environment discrimination in Android applications.

Environment discrimination has been used in many other fields, besides
dynamic analysis evasion. For example, some smartphone manufacturers detect
when certain benchmarks are running and drive the CPU to maximum power in
order to reach an edge in their benchmark ratings [4–6]. In another example from
the automotive world, in certain Volkswagen models, the diesel engine controller
software detects whether the car is running on a test bench, and changes engine
parameters accordingly to subvert emission tests [7].

This paper has three major contributions: First, we formally define envi-
ronment discrimination by leveraging the concepts of abstract specification and
trace assertion [8–10]. Secondly, our work use these abstractions to construct an
algorithm that is able to detect both already-known and unknown discriminat-
ing behaviors in linear time. Finally, by combining trace assertion with symbolic
execution, our algorithm efficiently discovers the set of API calls that trigger
environment discrimination: instead of exploring a potentially infinite set of exe-
cution paths as a static approach would do, our technique bounds the exploration
space to permit efficient analysis: O(n), where n is the size of the trace.

The evaluation result shows that the detection accuracy is 100% when the
discrimination is executed during testing, and 97% for all test cases. We also
show that the environment discrimination technique is not widely employed in
the real malware, but as emulation becomes more and more common over time,
we will see more discrimination behaviors in the future.

Note that a program discriminating the environment does not necessarily
imply malicious intent. Benign programs can behave differently in different envi-
ronment as well. For example, Google Maps behaves differently in a virtual

512 Y. Hong et al.

Applications

Real Device Virtual Machine

API calls 1 API calls 2

Access Contact Info
Access Banking Account
Access SMS
...

Normal Behavior

Fig. 1. Example of an application discriminating between virtual machine and real
device to evade dynamic analysis.

environment compared to a real device due to lack of GPS in a virtual setting.
Accordingly, this paper focuses on detecting environment discrimination, e.g.,
as employed by malware, but we do not attempt to detect malicious behavior
per se.

The rest of this paper is organized as follow: Sect. 2 gives the definition of
environment discrimination and the algorithm in theory. The application of def-
inition and algorithm is illustrated in Sect. 3. Section 4 discusses the time com-
plexity and robustness of our algorithm. Sects. 5 and 6 present related work and
conclude the paper, respectively.

2 Definition of Environment Discrimination

In this section, we first explain the concept of trace equivalence and trace abstrac-
tion, and then discuss the relevance of the two concepts in defining environment
discrimination. Finally, we describe symbolic execution against a trace for finding
discriminating contributors.

This section proposes the theoretical background of the environment discrim-
ination detection of Android app in Sect. 3. However, readers who do not want
to dive into theory may directly jump to Sect. 3 without concern.

Defining and Detecting Environment Discrimination in Android Apps 513

2.1 Trace Equivalence

A trace of a program, which is a description of a sequence of calls on func-
tions starting with the program in initial state, consists of O-functions and
V-functions [8]. V-functions return values that give information about parts of
program, while O-functions only change internal data. To begin, we formalize
function calls F and traces T .

A function call F consists of its name, parameter list, and return values.
Return values are always empty in O-functions. Two calls, F1 and F2, are equiv-
alent if and only if all three parts are exactly the same (denoted as F1 ≡ F2;
we will describe this check in detail in Sect. 2.2). A trace T is described by the
following syntax:

<T> :: = {<subtrace>}.<tailtrace>
<subtrace> :: = {<O−function>}.<V −function>
<tailtrace> :: = {<O−function>}

{∗} represents any number of occurrences of ∗.

Fijk is the kth function call in jth subtrace in ith trace. The definition of the
size of trace T is the number of subtraces and tailtrace, denoted as |T |. S is a
subtrace.

A trace T is legal, denoted λ(T), if the functions in T will not result in a
trap. Note that an empty trace is always legal (λ() = true); and the prefix of
any legal trace is always legal, i.e., λ(T.S) = true => λ(T) = true.

If λ(T.X) = true, and X is a syntactically correct V-function call, V (T.X)
describes the value returned by X after the execution of T .

Trace specification consists of syntax and semantics. The syntax provides the
name, parameter types and return value types of each function. The semantics
comprises of three types of assertions: (1) legality assertions which describe how
to call functions that will not result in a trap; (2) equivalence assertions which
specify a set of equivalence relations in traces; and (3) V-function assertions
expressed in terms of values returned by V-functions.

We now exemplify these trace concepts by providing Bartussek and Parnas [8]
integer stack specification.

Syntax
PUSH : <integer> × <stack> → <stack>
POP : P <stack> → <stack>
TOP : <stack> → <integer>
DEPTH : <stack> → <integer>

Legality
λ(T)=> λ(T.PUSH(a))
λ(T.TOP)<=> λ(T.POP)

Equivalences
T.DEPTH ≡ T
T.PUSH(a).POP ≡ T

514 Y. Hong et al.

λ(T.TOP)=> T.TOP ≡ T
Values

λ(T)=> V (T.PUSH(a).TOP) = a
λ(T)=> V (T.PUSH(a).DEPTH) = 1 + V (T.DEPTH)
V (DEPTH) = 0

The “equivalence” in the above specification is a set of assertions defining
the semantics of the trace specification, while “trace equivalence” in environment
discrimination indicates that the behavior of a program in two environments is
not distinguishable from two traces.

Definition 1. TRACE EQUIVALENCE

Given 2 traces T1 and T2, we claim T1 is equivalent to T2 (denoted as T1 ≡ T2)
when all the following conditions hold:

(1) Both T1 and T2 contain tailtraces or neither one contains a tailtrace.
(2) T1 and T2 have the same number of subtraces n.
(3) For each pair of subtraces in T1 and T2, we formalize subtrace Tij (i = 1 or 2,

1 ≤ j ≤ n) as:
Tij ::=Oij1...Oijk...Oijo−1Vij

where o is the length of Tij , and 0 ≤ k < o.
For each pair of subtraces T1j and T2j , where p, q are the lengths of T1j and
T2j :
(i) λ(T1jp−1.V2j) = true
(ii) λ(T2jq−1.V1j) = true
(iii) V (T1j) = V (T2j)

Ideally, the legality is ruled by a set of assertions so that all λ expressions
above are checked through the pre-defined assertions. However, in practice, it
is infeasible to provide a complete set of legality assertions. Thus, we either
ignore the legality rules above or enforce the name of V-function of subtraces
are identical if the legality assertions are not available. Both approaches admit
that λ(T1jp−1.V2j) and λ(T2jq−1.V1j) are true by default.

We show an example to further illustrate trace equivalence: A stack for integer
values S1 is specified as previously discussed. The other stack S2 is similar to S1.
The only difference between S1 and S2 is the size of each element. Specifically,
the size of each element in S2 is 2 instead of 1:

λ(T)=> V (T.PUSH(a).DEPTH) = 2 + V (T.DEPTH)
Assume that a program P, defined next, runs on S1 and S2, respectively:

1 PUSH (1)

2 PUSH (2)

3 if (TOP == 1)

4 PUSH (3)

5 POP

6 if (DEPTH == 2)

7 PUSH (4)

Defining and Detecting Environment Discrimination in Android Apps 515

8 PUSH (5)

9 TOP

10 DEPTH

11 else

12 PUSH (6)

13 TOP

14 TOP

15 POP

We denote the traces generated by the two executions as T1 and T2:
T1 ::=PUSH(1).PUSH(2).TOP.POP.DEPTH.PUSH(6).TOP.TOP.POP
T2 ::= PUSH(1).PUSH(2).TOP.POP.DEPTH.PUSH(4).PUSH(5)

.TOP.DEPTH.POP

T1 contains 4 subtraces: PUSH(1).PUSH(2).TOP , POP.DEPTH,
PUSH(6).TOP , and TOP along with a tail trace: POP . T2 also contains 4 sub-
traces: PUSH(1).PUSH(2).TOP , POP.DEPTH, PUSH(4).PUSH(5).TOP ,
and DEPTH along with a tail trace: POP . Based on these results, conditions
(1) and (2) in Definition 1 hold. T11 and T21 have the same V-functions and
return values: 2. However, V (T12) = 1 and V (T22) = 2 which violates condition
(3)(iii). The pairs T13 & T23 and T14 & T24 violate condition (3) as well; therefore
T1 �≡ T2.

The definition of trace equivalence reveals the equivalent relation of 2 exe-
cutions from the observation of traces. Note that two equivalent traces are not
necessarily identical. For example if we define
T3 ::=PUSH(1).POP.DEPTH
T4 ::=DEPTH
then T3 ≡ T4 but they are not identical.

2.2 Trace Abstraction and Defining Environment Discrimination

Given two specific traces, Definition 1 is an effective tool for determining execu-
tion equality, or semantic similarity. However, finding a proper trace is a chal-
lenge. Thus, we propose trace abstraction as a procedure for checking T1 ≡ T2

efficiently. Algorithm 1 (described shortly) lists the steps of trace abstraction.
Before introducing the algorithm, the concept of LCCS is introduced.

We first define the longest common call subsequence (LCCS), which is similar
to the longest common substring (LCS) but replaces characters with function
calls. LCCS is defined within the boundary of a subtrace or tail trace (but not
the whole trace). To observe discriminating behaviors, we are interested in how
a program reacts after a particular return value is obtained.

Parameter lists in function calls will be ignored. Consider how parameters
can potentially influence the execution path of a program: given a pair of traces,
if a function call returns the same return value regardless of different parameters,
the parameter has no effect on the execution path by calling functions. On the
other hand, if different parameters cause different return values, we are still able

516 Y. Hong et al.

to observe differences by examining return values. Another question worth taking
into account is where the different parameters come from. One possible answer
is that they are derived from previous different return values. It is interesting
to find that even a randomized program can be reduced to this answer because
the program always has to call a function to derive the random value. Another
possible answer is that the source of different parameters is not captured in the
trace, which is not discussed in this paper. Thus, the partial order in a function
call abstraction is shown below:

ignore return value ≤ ignore function call

The aforementioned partial order indicates that ignoring the function call is
more abstract than ignoring the return value.

Algorithm 1 describes the procedure of trace abstraction: the algorithm takes
two traces T1 and T2 as input and returns a new trace T , which is the abstrac-
tion of the input traces. We use the T1 and T2 from the previous subsection to
illustrate the algorithm.

Algorithm 1. Abstraction for two traces
1: function main(T1,T2)
2: Tsubtrace1 :=get subtrace list(T1)
3: Tsubtrace2 :=get subtrace list(T2)
4: T :=empty trace
5: Tsubtrace :=LCSS(Tsubtrace1, Tsubtrace2)
6: i:=0 � i is the index of Tsubtrace

7: for each pair of subtraces S1, S2 in Tsubtrace do
8: T := T + Abstract(S1, S2)
9: end for

10: Ttail:=LCCS(T1tail,T2tail)
11: T := T + Ttail

12: return T
13: end function
14:
15: function Abstract(subtrace1, subtrace2)
16: T0:=LCCS(subtrace1, subtrace2)
17: subtrace1:=subtrace1-T0

18: subtrace2:=subtrace2-T0

19: T1:=LCCS(subtrace1, subtrace2)
20: T :=in order merge(T0, T1)
21: return T
22: end function

The Algorithm starts with the MAIN() function; lines 2 and 3 cut T1 and T2

into subtraces, splitted by V-functions. Line 5 finds the Longest Common Sub-
trace Subsequence (LCSS) by only matching the function name of V-functions.
In this example, Tsubtrace will be {T11, T21}, {T12, T22}, and {T13, T23}. Subtraces

Defining and Detecting Environment Discrimination in Android Apps 517

that are not in Tsubtrace will not appear in T . The for loop on lines 7–9 calls
Abstract() for each pair of subtraces in Tsubtrace and reassembles them into
T . Lines 10 and 11 find the LCCS for the tail trace and append Ttail to the end
of T .

Abstract() finds the minimal abstraction making two subtraces equiva-
lent. T0 is the LCCS for two traces without ignoring return values or function
calls. In our example, when subtrace1 and subtrace2 are T13 and T23, T0 =
PUSH. Lines 17 and 18 remove the function calls which appeared in T0. Thus,
subtrace1 = TOP and subtrace2 = PUSH.TOP after line 17 and 18 are exe-
cuted. T1 is the LCCS ignoring return values, T1 = TOP . Line 20 merges T0 and
T1 in order, Abstract() returns subtrace: PUSH.TOP . Similarly Abstract()
returns PUSH.PUSH.TOP for {T11, T21} and POP.DEPTH for {T12, T22}.
Finally, T := PUSH.PUSH.TOP.POP.DEPTH.PUSH.TOP.POP .

Definition 2. ENVIRONMENT DISCRIMINATION

If T1 ≡ T2 under the abstraction of trace T , we say that program P does not
discriminate the two environments under the abstraction of trace T . Program P
does not discriminate both environments when T1 ≡ T2 without any abstraction
(T1 ≡ T2 ≡ T).

It is clear that T is not guaranteed to hold its original trace specification;
rather it is designed to capture as many common parts in the two executions as
possible.

Finally, we claim that minimum abstraction T gives the lower bound of
abstraction. Thus, the alias of T is Tlow. Any abstraction that is finer grained
(less abstract) than Tlow cannot guarantee the equivalence relation between T1

and T2. The upper bound of abstraction assuring the correctness of detecting
environment discrimination is not ignoring the function calls before p0, denoted
as Tup. Any abstraction T ′ holding Tup ≥ T ′ ≥ Tlow is acceptable to detect
environment discrimination and its contributor.

2.3 Finding Discrimination Contributors with Symbolic Execution

In order to find relevant/discriminating function calls (i.e., calls that expose
environment information leading to programs behaving differently) accurately
and efficiently, we propose the use of symbolic execution against traces.

Symbolic execution [11,12] is widely used in software engineering for generat-
ing test inputs, e.g., to explore different execution paths. One major limitation of
symbolic execution is path explosion. Symbolically executing all program paths
cannot scale to large programs because the number of paths grows exponentially
with the number of conditional statements encountered: Θ(2n), where n is the
number of conditional statements encountered. When applying symbolic execu-
tion to find the subset of {S}, our algorithm matches the execution path with
the trace to avoid path explosion.

We come back to the example of program P in Sect. 2.1 to illustrate sym-
bolic execution against the trace. In order to find the discrimination contribu-
tor, the symbolic executor needs to run against T1 and T2, respectively. When

518 Y. Hong et al.

the symbolic executor runs against T1, initially, symbolic σ = ∅, path con-
straint PC = true, and a pointer ptr is pointing to the first function call in
trace T1. Whenever a function call is encountered, the algorithm checks the
consistency between the current function call and the function ptr is point-
ing to in T1. If they are consistent, ptr moves one function forward and sym-
bolic execution continues. Thus, after line 2 is executed, ptr → TOP . Every
time a V-function is executed, the return values will be marked as a sym-
bolic variable. TOP in line 3 leads to σ = {TOPline3 → 2}. When if is exe-
cuted, PC → TOPline3 = 1, which is the constraint of basic block on line 4.
PC ′ → ¬TOPline3 = 1, ptr → POP . During the execution of line 4, PUSH
and POP do not match. Thus, the current branch is not executed in the trace.
As a result, PC ′ will be accepted as PC; ptr stays still, and the rest of the
current branch does not need to be executed as well. When line 6 is executed,
PC → DEPTHline6 = 2∧¬TOPline3 = 1, which covers the basic block on lines
7–10. When the program symbolically executes to the diverge point of T1 and T2

(line 7 and line 12 in our example), PCT1 → DEPTHline6 = 2∧¬TOPline3 = 1.
Similarly, PCT2 → ¬DEPTHline6 = 2 ∧ ¬TOPline3 = 1 after running symbolic
executor against T2. The discrimination contributors are the variables in the
pairs of terms that are exactly reversed in 2 path constraints, which is DEPTH
in our example.

The time complexity of the algorithm to detect discriminating behavior and
find contributors is O(n), where n is the size of trace.

3 Detecting Environment Discrimination on Android

In this section, our theory is applied to detect environment discrimination on
the Android platform. Before illustrating our approach, we introduce a proto-
type malware: Pi Calculator. To detect its inappropriate behavior, we first find
an appropriate abstraction of the trace, and by applying the concept of trace
equivalence, the algorithm is able to determine whether an application is behav-
ing differently in two environments. Finally, with the help of symbolic execution,
the algorithm finds discrimination contributor.

The procedure of detecting environment discrimination is shown in Fig. 2.
The trace collector first collects traces from the emulator (Temulator) and the
real device (Tdevice), then checks their equivalence under proper abstraction (dis-
cussed in detail in Sect. 3.2). If Temulator �≡ Tdevice, the discrimination contribu-
tor is found by performing symbolic execution against Temulator and Tdevice.

3.1 Pi Calculator: An Environment-Discriminating Malware

We have developed a prototype malware, Pi Calculator, that discriminates envi-
ronments. It is a CPU benchmark application that evaluates CPU single-core
performance by recording the time it takes to calculate π to 5,000, 10,000, 15,000,
or 20,000 digits (Fig. 3).

Defining and Detecting Environment Discrimination in Android Apps 519

emulator device

Temulator Tdevice

trace collector trace collector

equivalence
checker

Application
symbolic
execution

discrimination
contributor

Algorithm stops here
if Temulator ≡ Tdevice

Fig. 2. Overview of our approach.

Fig. 3. Pi Calculator screenshot.

Device performance is reflected in the duration of the calculation (a slower
device takes longer to compute π), which is uploaded to a remote database. We
compute a device score by dividing the number of devices slower than current
device by the number of all devices in the database. However, as a malware,
Pi Calculator also uploads contact information to the server without informing
the user. This application has bypassed the security check provided by one of
the major Android markets. Due to privacy concerns, we only upload the first 5
digits of phone numbers (we do not upload the actual contact’s name).

Table 1 presents the calculation time on various devices. Note that the CPU
performance of the Android emulator is much higher than that of ARM-based
real devices. As we mentioned before, dynamic analysis is usually performed
on virtual machines. To evade dynamic analysis, Pi Calculator takes advantage
of this phenomenon and determines its running environment as a real device
if it takes more than 2, 6, 15, 25 s to compute π to 5,000, 10,000, 15,000, and
20,000 digits, respectively. The app will access the contact list and upload all

520 Y. Hong et al.

Table 1. Pi Calculator calculation time. Note that real devices are much slower than
the emulator.

Device 5,000 digits 10,000 digits 15,000 digits 20,000 digits

Avg (s) StDev (s) Avg (s) StDev (s) Avg (s) StDev (s) Avg (s) StDev (s)

Emulator (Linux) 1.258 0.020 4.937 0.007 10.044 0.016 17.521 0.023

Mi Note Pro (5.0.2) 2.317 0.058 9.246 0.040 21.193 0.159 39.428 0.235

Google Nexus 6 (5.0.1) 4.304 0.017 18.335 0.022 41.352 0.179 74.398 0.538

Meizu MX3 (5.0.1) 4.970 0.168 19.916 0.480 48.055 1.112 85.559 0.841

information to remote server only when a real device is detected but will not
collect contact information when a virtual environment is detected.

The rest of this section explains how our algorithm detects the discrimination
behavior employed by Pi Calculator in detail.

3.2 Detecting Environment Discrimination and Contributors

Selecting a proper trace is a key factor that determines the success and efficiency
of discrimination detection. Our trace collector collects 3 kinds of function calls:
application internal function calls, application calling API, and API internal
function calls. Removing API internal calls is important because API internal
calls may introduce non-determinism. Application internal call is also removed
because it is not our interest. The two generated trace are denoted as Tdevice

and Temulator.
Instead of applying minimum abstraction T , we abstract Tdevice and Temulator

by ignoring all method return values, denoted as T ′, and then check trace equiv-
alence. Accuracy is guaranteed because Tup ≥ T ′ ≥ Tlow. Almost all Android
API calls have return values. So we regard all API calls in application level as
V-functions. To apply the definition of environment discrimination, we need to
check the definition of trace equivalence (Definition 1): Condition (1) of trace
equivalence holds because both traces do not have a tail trace. Condition (2) is
determined by whether two traces have the same size. The legality conditions
((i) and (ii)) in condition (3) are always true because there is no O-function
in the trace. Thus, the trace equivalence check in our case simply reduces to
comparing whether two traces call the same functions in order.

Now we consider composing symbolic execution with traces. As shown in
Fig. 4, despite different approaches, in order to discriminate, a program first
collects information about its environment and determine the environment based
on the collected data. Next, the program will behave differently according to
the environment, which is the diverge point. We emphasize that information
collection and computation are not necessarily in order, and can even be mixed.
Thus, we split the trace into two parts. The first part is information collection
and computing, and the second part is the divergent part. In this section, we
only focus on the first part, that is, T→p0. Specifically, the symbolic executor
runs against Tdevice→p0 and Temulator→p0.

Defining and Detecting Environment Discrimination in Android Apps 521

Diverge Part

Information collection and computation

T->p0

Temulator p0->end Tdevice p0->end

p0Divergence point

Fig. 4. Relationship between execution and trace.

The following rules describe the process of execution.

· Initially, ptr points to the first call in Tdevice/Temulator.
· Whenever symbolic execution encounters an API call, the algorithm checks

if the API is the same to the API that the pointer is pointing to in
Tdevice/Temulator. If not, it indicates this particular branch is not executed in
trace, and we mark the PC belonging to that branch as false. If yes, we move
the pointer to the next API call and continue executing.

· In Tdevice and Temulator, the first pair of API calls after T→p0 actu-
ally are the first pair of API calls in two branches resulting from envi-
ronment discrimination. Thus, symbolic execution runs until reaching p0.
(Tdevice→p0/Temulator→p0)

· The discrimination contributors are the variables in the pairs of terms that
are exactly reversed in PCTdevice→p0 and PCTemulator→p0

We use Pi Calculator as an example to illustrate the procedure of finding
discrimination contributor in detail.

In Fig. 5, each box is an API method call. In each call, the first field is
the method name, the second field is the method ID, and the third field is
the class name the method belongs to; <init> indicates a constructor call. We
are not able to locate a unique function call solely by method name because
different classes might have methods that have the same method name, so
method ID and method declaring class help us recognize a unique method call.
During one execution, each method has a unique method ID. However, the
same method usually owns a different ID in two executions. We determine a
method call in different traces by matching both the method name and method
declaring class. For instance, <init>(0x70c25f20, GetT ime.java) is called twice
in Tdevice, and this constructor is also called in Temulator, which is <init>
(0x70ab5c20, GetT ime.java), although the method ID is different. The algo-
rithm determines that Pi Calculator discriminates the environment by finding a
different pair of method calls: <init>(0x75471a58, ContactsContract.java) and
<init>(0x708e92b0,DefaultHttpClient.java), which is where p0 located.

Below is the code segment from Pi Calculator. During the course of symbolic
execution against Tdevice→p0, symbolic state σ and path constraint PCdevice are

522 Y. Hong et al.

<init> / 0x70c25f20 / GetTime.java

getCurrentNetworkTime / 0x70c25e70 / GetTime.java

<init> / 0x70ab5c20 / GetTime.java

getCurrentNetworkTime / 0x70ab5c70 / GetTime.java

getCurrentNetworkTime / 0x70ab5c70 / GetTime.java

Tdevice

…...

<init> / 0x70c25f20 / GetTime.java <init> / 0x70ab5c20 / GetTime.java

getCurrentNetworkTime / 0x70c25e70 / GetTime.java

setText / 0x70b05f18 / TextView.java

<init> / 0x7074c2b0 / DefaultH pClient.java

<init> / 0x75471a58 / ContactsContract.java

<init> / 0x7074c2b0 / DefaultH pClient.java

…...

setText / 0x70ca2f18 / TextView.java

Temulator

…...

…...

<init> / 0x708e92b0 / DefaultH pClient.java

<init> / 0x708e92b0 / DefaultH pClient.java

…...

<init> / 0x7074c2b0 / DefaultH pClient.java

p0

…...

…...

…...…...

…...

Fig. 5. Two traces generated from Pi Calculator.

maintained. All return values from API call will be marked as symbol. When line
4 and 5 are executed, σ = {start time → start time0, end time → end time0}.
start has not been added to σ until line 7 because it receives a return value
from getCurrentNetworkT ime. At the end of line 12, σ = {start time →
start time0, end time → end time0, start → start0, end → end0, result text →
null, time → start0 − end0}, and PCdevice = φ. Note that symbolic execution
does not execute a path that is not reflected in trace. In our example, lines 4 and
5 match the first two method calls in the trace. Similarly, lines 7 and 10 match
the third and fifth calls in the trace. Line 9 matches the fourth call but we assign
result text as null because setText does not have a return value. As mentioned
before, all API calls are regarded as V-functions. Assigning null to setText does
not influence the result. 0x7074c2b0 is recorded from line 45 that is called from
line 13. In line 14, PCdevice is updated to PCdevice = {end0 − start0 > 2000},
corresponding to the basic block on line 15. The if branch line 19 is satisfied. Line
32, called by line 20, matches <init>(0x75471a58, ContactsContract.java) in
Tdevice. The symbolic execution stops because 0x75471a58 is where p0 located.
PCdevice = {end0 − start0 > 2000 ∧ real device = true} Similarly, after run-
ning symbolic execution against Temulator, PCemulator = {¬end0 − start0 >
2000 ∧ ¬real device = true}. Following the rules in Sect. 2.3, discrimination
contributors are 2 calls to: getCurrentNetworkTime(). Specifically, Pi Cal-
culator determines its running environment by measuring the time it takes to
calculate π. If the calculation takes less than 2 s, Pi Calculator regards its envi-
ronment as an emulator. The execution tree is illustrated in Fig. 6.

Defining and Detecting Environment Discrimination in Android Apps 523

time > 2000

realdevice = true

new
DefaultHttpClient()

…...

realdevice
== true

falsetrue

new
Contacts()

PC unsatisfiable

falsetrue

…...

realdevice
== true

falsetrue

…...

Tde vice

Temulator

PC unsatisfiable

Fig. 6. Execution tree of Pi Calculator.

1 public class option extends ActionBarActivity {
2 private void clicked (int digit) {
3 ...
4 GetTime start_time = new GetTime();
5 GetTime end_time = new GetTime();
6 boolean realdevice = false;
7 start = start_time.getCurrentNetworkTime();
8 String pi = my_calculator.get_pi(digit);
9 result_text.setText(pi);
10 end = end_time.getCurrentNetworkTime();
11 time = end - start;
12 if (digit == 5000) {
13 new upload_score_5000().execute();
14 if (time > 2000) {
15 realdevice = true;
16 }
17 }
18 else {...}
19 if (realdevice == true) {
20 readAllContacts();
21 }
22 lower = new grab_lower_score().execute((long)digit, time).get();
23 }
24 private class upload_contacts extends AsyncTask<Contacts, Void, Void> {
25 protected Void doInBackground (...) {
26 HttpClient httpclient = new DefaultHttpClient();
27 ...
28 }
29 }
30 public void readAllContacts() {
31 while (cursor.moveToNext()) {
32 Contacts cur = new Contacts();
33 ...read each contacts info...
34 new upload_contacts().execute(cur);
35 }
36 }
37 private class grab_lower_score extends AsyncTask<Long, Void, Integer> {
38 protected Void doInBackground (...) {
39 HttpClient httpclient = new DefaultHttpClient();
40
41 }
42 }
43 private class upload_score_5000 extends AsyncTask<Score, Void, Void> {

524 Y. Hong et al.

44 protected Void doInBackground (...) {
45 HttpClient httpclient = new DefaultHttpClient();
46
47 }
48 }
49 }

Note that the key advantage of combining symbolic execution with trace
is that this combined analysis shrinks down the time complexity of symbolic
execution since we do not execute branches that do not appear in the trace.

4 Evaluation and Discussion

4.1 Practical Malware Evaluation

We apply the framework described in Sect. 3 to 18 real world malware. They
come from 10 different apps along with their variants. The result shows that
none of the 18 apps discriminates the virtual machine and real device before
exposing anomalous behavior, which indicates that the discrimination technique
has not been widely applied by the malware developers. Even though discrim-
ination behaviors cannot be found in a while, as emulation becomes more and
more common over time, we will see more discrimination behaviors in the future
(Table 2).

Table 2. List of practical malware evaluated

App name Number of variants

DroidKungFu4 3

FakeNetflix 1

Geinimi 1

GGTracker 1

GingerMaster 2

SndApps 2

Tapsnake 2

zHash 2

NickySpy 2

HippoSMS 2

Our detection algorithm is efficient. Checking environment discrimination
behavior is in linear time, O(n), where n is the size of trace. The time complex-
ity of detecting discrimination contributors is also O(n), where n is the number
of lines of code. The reason is that running symbolic execution against trace
matching shrinks down the time complexity of symbolic execution because exe-
cuter will not execute a path if it cannot be found in trace.

Defining and Detecting Environment Discrimination in Android Apps 525

4.2 Benchmark Malware Evaluation

Because environment discrimination is not widely applied in practical malware,
we invite the third party researchers who have no knowledge in our algorithm
injecting the environment discrimination code into the practical malware, and
evaluate the framework against the test bench to perform a blind testing. In
particular, the benchmark contains a set of malware injected with environment
discrimination code with varieties of heuristics and malware that does not have
such behaviors.

Table 3. Benchmark malware set evaluation result

Heuristics # of apps Apps

discriminate

during execution

Detection rate Contributor

detection rate

Accuracy

Property (API) heuristics 5 5 100% 100% 100%

File heuristics 5 5 100% 100% 100%

Component heuristics 5 5 100% 100% 100%

Sophisticated heuristics 5 4 80% 80% 80%

No discrimination 10 0 100% N/A 100%

Overall 30 19 N/A N/A 97%

Table 3 lists the evaluation result. 30 apps contained in the benchmark are
categorized into 5 categories. The property (API) heuristics take advantage of
the API call artifacts such as getDeviceId() and Build.MODEL(). The apps
leveraging file and component heuristics check the existance of a specific file or
hardware component, respectively. Sophisticated heuristics are more difficult to
detect. For example, one app in benchmark tests whether the call log is empty.
Another app checks whether the battery is always charging and remaining at
50%, which is the default configuration in most emulators. The last category is
a set of apps without any discrimination behaviors for us to evaluate the false
positive.

The overall accuracy is 97%, and the only case that fails is an app leveraging
the time bomb to discriminate. The time bomb is not exposed during evalua-
tion, thus it is not captured in the trace. Also, even though the false positive is
0%, it is not guaranteed that some discrimination behavior is not intended to
differentiate the virtual machine and physical device. For example, false positive
may occur when Google Map behaves differently as no GPS signal is found,
and virtual machine usually does not provide location information if not config-
ured. However, in this paper, we do not attempt to differentiate the intention of
discrimination.

The major limitation of this work is that the detection framework will never
be able to detect the discrimination behavior if such behavior is not captured
in trace. For instance, our framework failed to detect the time bomb planted in
one of the benchmark app because the time bomb was not triggered during the

526 Y. Hong et al.

process of trace collection. Even though the time bomb does not directly dif-
ferentiate the virtual environment from the physical device, malware developers
understand the time of malware being tested by security analysts is significantly
shorter than the time of the app used by a real user. One potential approach to
mitigate this problem is to run static analysis and generate all potential traces.
As a trade off, this approach may bring false positive and the runtime can be
up to O(2n), where n is the length of program.

5 Related Work

5.1 Dynamic and Tainting Analysis

Many dynamic analysis tools have been developed to analyze malware. This
section cites and introduces the dynamic analysis works often used in either
industry or academic. DroidScope [13] is a virtualization-based Android mal-
ware analysis platform, which reconstructs the OS-level and Java-level semantics
seamlessly and simultaneously. Various analysis tools is also developed on top of
DroidScope to collect native and Dalvik instruction traces, profiling API-level
activity, and tainting analysis. TaintDroid [14] is an efficient and system-wide
dynamic taint tracking and analysis system capable of tracking multiple sources
of sensitive data, which leverages different levels of instrumentation to perform
the analysis. Even though TaintDroid introduces only 14% overhead, modifying
the components of Android exposes TaintDroid to some detection and evasion
techniques [15–17]. Andrubis [18] combines static analysis with dynamic analysis
on both Dalvik VM and system level, as well as several stimulation techniques
to increase code coverage, which is built based on TaintDroid [13] and Droid-
Box [19].

Besides the tools introduced above, many other dynamic analysis tools have
been developed to analyze malware, most of which extract API calls or system
calls [20–24]. Several dynamic analysis tools record traces with in-guest tech-
nologies such as Norman Antivirus Sandbox [22] and CSSandbox [20]. Tools
such as Ether [23] and HyperDBG [25] are implemented based on hardware-
supported virtualization technology. However, for convenience and security rea-
sons, more dynamic analysis tools are deployed on virtual environments. For
instance, Google Boucer [26], VMScope [27] and TT-Analyze [21] are based on
QEMU [28], which is a popular virtual machine.

5.2 Virtual Machine Evasion

On traditional platforms such as PCs, dynamic analysis systems are usually
built based on virtualization. Consequently, PC malware developers design mal-
ware that is aware of virtual environments and exhibit benign behavior in such
cases [29–31]. However, virtualization has matured in recent years. Many users

Defining and Detecting Environment Discrimination in Android Apps 527

even migrate physical environments to virtual instances, e.g., as in the Cloud,
hence malware that discriminate virtual environments, stand to lose a large
number of victim systems.

On the other hand, the application of virtualization on mobile platforms is
quite limited. A normal user is very unlikely to run a mobile OS in a virtual
environment but dynamic analysis does, as we mentioned before. Recent work
has shown that malwares on mobile platforms discriminate running environments
to evade dynamic analysis based on virtualization [3,32].

Few efforts have focused on environment discrimination. Morpheus gener-
ates heuristics to detect Android emulators and classifies heuristics as file, API,
and system property [33]. BareCloud automatically detects evasive malware by
using hierarchical similarity-based behavioral profile comparison; profiles are col-
lected by running a malware sample in bare-metal, virtualized, emulated, and
hypervisor-based analysis environments [34]. Balzarotti’s paper is similar to our
project [35], which also collects and compares the trace to find split personalities
in malware. However, our work formally defines environment discrimination and
employs symbolic execution against trace to find the discrimination contributors,
which differentiates from Balzarotti’s work.

6 Conclusion

The concept of environment discrimination has been applied in many areas.
Dynamic analysis is a convenient and efficient approach to analyze program
behavior, but some malware is able to detect the existence of virtual environ-
ments and evade detection. Some detection strategy such as evaluating hardware
performance is infeasible to block in practice.

In this work, we define environment discrimination and an efficient algo-
rithm to detect and describe such behavior. The time complexity to detect dis-
crimination behavior and discrimination contributor is O(n). The framework we
proposed reaches 97% detection accuracy when testing against a malware bench-
mark developed by the third party researchers. We also examine 18 real world
malwares and show that the environment discrimination has not been widely
employed by the malware developers.

Acknowledgement. The effort described in this article was partially sponsored by
the U.S. Army Research Laboratory Cyber Security Collaborative Research Alliance
under Contract Number W911NF-13-2-0045. The views and conclusions contained in
this document are those of the authors, and should not be interpreted as representing
the official policies, either expressed or implied, of the Army Research Laboratory or
the U.S. Government. The U.S. Government is authorized to reproduce and distribute
reprints for Government purposes notwithstanding any copyright notation hereon.

528 Y. Hong et al.

References

1. Chaffey, D.: Mobile marketing statistics compilation. http://www.smartinsights.
com/mobile-marketing/mobile-marketing-analytics/mobile-marketing-statistics/.
Accessed 5 June 2017

2. Christian, L.: 8,400 new android malware samples every day. https://www.
gdatasoftware.com/blog/2017/04/29712-8-400-new-android-malware-samples-
every-day/. Accessed 25 May 2017

3. Vidas, T., Christin, N.: Evading android runtime analysis via sandbox detection.
In: Proceedings of the 9th ACM Symposium on Information, Computer and Com-
munications Security, pp. 447–458. ACM (2014)

4. Shimpi, A.L., Klug, B.: They’re (almost) all dirty: the state of cheating in
android benchmarks. http://www.anandtech.com/show/7384/state-of-cheating-
in-android-benchmarks/. Accessed 19 May 2017

5. Hruska, J.: Samsung goes legit, stops cheating on benchmarks with lat-
est android update. http://www.extremetech.com/computing/177841-samsungs-
latest-android-update-no-longer-cheats-on-benchmarks/. Accessed 11 June 2017

6. Mack, E.: HTC admits boosting one M8 benchmarks; makes it a feature. http://
www.cnet.com/news/is-the-htc-one-m8-that-good-benchmark-cheating-alleged-
again/. Accessed 10 June 2017

7. Hotten, R.: Volkswagen: the scandal explained. http://www.bbc.com/news/
business-34324772/. Accessed 4 Jun 2017

8. Bartussek, W., Parnas, D.L.: Using assertions about traces to write abstract spec-
ifications for software modules. In: Bracchi, G., Lockemann, P.C. (eds.) ECI 1978.
LNCS, vol. 65, pp. 211–236. Springer, Heidelberg (1978). https://doi.org/10.1007/
3-540-08934-9 80

9. Guttag, J.V., Horning, J.J.: The algebraic specification of abstract data types.
Acta Inform. 10(1), 27–52 (1978)

10. McLean, J.: A formal method for the abstract specification of software. J. ACM
(JACM) 31(3), 600–627 (1984)

11. James, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–
394 (1976)

12. Clarke, L.A.: A program testing system. In: Proceedings of the 1976 Annual Con-
ference, pp. 488–491. ACM (1976)

13. Yan, L.K., Yin, H.: Droidscope: seamlessly reconstructing the OS and Dalvik
semantic views for dynamic Android malware analysis. In: USENIX Security Sym-
posium, pp. 569–584 (2012)

14. Enck, W., Gilbert, P., Han, S., Tendulkar, V., Chun, B.G., Cox, L.P., Jung, J.,
McDaniel, P., Sheth, A.N.: Taintdroid: an information-flow tracking system for
realtime privacy monitoring on smartphones. ACM Trans. Comput. Syst. (TOCS)
32(2), 5 (2014)

15. Sarwar, G., Mehani, O., Boreli, R., Kaafar, M.A.: On the effectiveness of dynamic
taint analysis for protecting against private information leaks on android-based
devices. In: SECRYPT, pp. 461–468 (2013)

16. Slowinska, A., Bos, H.: Pointless tainting? Evaluating the practicality of pointer
tainting. In: Proceedings of the 4th ACM European Conference on Computer Sys-
tems, pp. 61–74. ACM (2009)

17. Cavallaro, L., Saxena, P., Sekar, R.: On the limits of information flow techniques
for malware analysis and containment. In: Zamboni, D. (ed.) DIMVA 2008. LNCS,
vol. 5137, pp. 143–163. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-70542-0 8

http://www.smartinsights.com/mobile-marketing/mobile-marketing-analytics/mobile-marketing-statistics/
http://www.smartinsights.com/mobile-marketing/mobile-marketing-analytics/mobile-marketing-statistics/
https://www.gdatasoftware.com/blog/2017/04/29712-8-400-new-android-malware-samples-every-day/
https://www.gdatasoftware.com/blog/2017/04/29712-8-400-new-android-malware-samples-every-day/
https://www.gdatasoftware.com/blog/2017/04/29712-8-400-new-android-malware-samples-every-day/
http://www.anandtech.com/show/7384/state-of-cheating-in-android-benchmarks/
http://www.anandtech.com/show/7384/state-of-cheating-in-android-benchmarks/
http://www.extremetech.com/computing/177841-samsungs-latest-android-update-no-longer-cheats-on-benchmarks/
http://www.extremetech.com/computing/177841-samsungs-latest-android-update-no-longer-cheats-on-benchmarks/
http://www.cnet.com/news/is-the-htc-one-m8-that-good-benchmark-cheating-alleged-again/
http://www.cnet.com/news/is-the-htc-one-m8-that-good-benchmark-cheating-alleged-again/
http://www.cnet.com/news/is-the-htc-one-m8-that-good-benchmark-cheating-alleged-again/
http://www.bbc.com/news/business-34324772/
http://www.bbc.com/news/business-34324772/
https://doi.org/10.1007/3-540-08934-9_80
https://doi.org/10.1007/3-540-08934-9_80
https://doi.org/10.1007/978-3-540-70542-0_8
https://doi.org/10.1007/978-3-540-70542-0_8

Defining and Detecting Environment Discrimination in Android Apps 529

18. Lindorfer, M., Neugschwandtner, M., Weichselbaum, L., Fratantonio, Y., Van Der
Veen, V., Platzer, C.: ANDRUBIS -1,000,000 apps later: a view on current android
malware behaviors. In: Proceedings of the the 3rd International Workshop on
Building Analysis Datasets and Gathering Experience Returns for Security (BAD-
GERS) (2014)

19. Lantz, P., Desnos, A., Yang, K.: Droidbox: Android application sandbox (2012)
20. Willems, C., Holz, T., Freiling, F.: Toward automated dynamic malware analysis

using CWSandbox. IEEE Secur. Priv. 2, 32–39 (2007)
21. Bayer, U., Kruegel, C., Kirda, E.: TTAnalyze: a tool for analyzing malware. (na,

2006)
22. Norman safeground antivirus software. http://www.norman.com/. Accessed 8 June

2017
23. Dinaburg, A., Royal, P., Sharif, M., Lee, W.: Ether: malware analysis via hard-

ware virtualization extensions. In: Proceedings of the 15th ACM Conference on
Computer and Communications Security, pp. 51–62. ACM (2008)

24. Rastogi, V., Chen, Y., Enck, W.: Appsplayground: automatic security analysis of
smartphone applications. In: Proceedings of the Third ACM Conference on Data
and Application Security and Privacy, pp. 209–220. ACM (2013)

25. Fattori, A., Paleari, R., Martignoni, L., Monga, M.: Dynamic and transparent
analysis of commodity production systems. In: Proceedings of the IEEE/ACM
International Conference on Automated Software Engineering, pp. 417–426. ACM
(2010)

26. Hruska J.: Android and security. http://googlemobile.blogspot.it/2012/02/
android-and-security.html/. Accessed 11 May 2017

27. Jiang, X., Wang, X.: “Out-of-the-Box” monitoring of VM-based high-interaction
honeypots. In: Kruegel, C., Lippmann, R., Clark, A. (eds.) RAID 2007. LNCS,
vol. 4637, pp. 198–218. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-74320-0 11

28. Bellard, F.: QEMU, a fast and portable dynamic translator. In: USENIX Annual
Technical Conference, FREENIX Track, p. 41 (2005)

29. Fogla, P., Lee, W.: Evading network anomaly detection systems: formal reasoning
and practical techniques. In: Proceedings of the 13th ACM Conference on Com-
puter and Communications Security, pp. 59–68. ACM (2006)

30. Lau, B., Svajcer, V.: Measuring virtual machine detection in malware using DSD
tracer. J. Comput. Virol. 6(3), 181–195 (2010)

31. Paleari, R., Martignoni, L., Roglia, G.F., Bruschi, D.: A fistful of red-pills: how
to automatically generate procedures to detect CPU emulators. In: Proceedings of
the USENIX Workshop on Offensive Technologies (WOOT), vol. 41, p. 86 (2009)

32. Petsas, T., Voyatzis, G., Athanasopoulos, E., Polychronakis, M., Ioannidis, S.: Rage
against the virtual machine: hindering dynamic analysis of Android malware. In:
Proceedings of the Seventh European Workshop on System Security, p. 5. ACM
(2014)

33. Jing, Y., Zhao, Z., Ahn, G.J., Hu, H.: Morpheus: automatically generating heuris-
tics to detect Android emulators. In: Proceedings of the 30th Annual Computer
Security Applications Conference, pp. 216–225. ACM (2014)

34. Kirat, D., Vigna, G., Kruegel, C.: Barecloud: bare-metal analysis-based evasive
malware detection. In: 23rd USENIX Security Symposium (USENIX Security
2014), pp. 287–301 (2014)

35. Balzarotti, D., Cova, M., Karlberger, C., Kirda, E., Kruegel, C.M., Vigna, G.:
Efficient detection of split personalities in malware. In: NDSS (2010)

http://www.norman.com/
http://googlemobile.blogspot.it/2012/02/android-and-security.html/
http://googlemobile.blogspot.it/2012/02/android-and-security.html/
https://doi.org/10.1007/978-3-540-74320-0_11
https://doi.org/10.1007/978-3-540-74320-0_11

	Defining and Detecting Environment Discrimination in Android Apps
	1 Introduction
	2 Definition of Environment Discrimination
	2.1 Trace Equivalence
	2.2 Trace Abstraction and Defining Environment Discrimination
	2.3 Finding Discrimination Contributors with Symbolic Execution

	3 Detecting Environment Discrimination on Android
	3.1 Pi Calculator: An Environment-Discriminating Malware
	3.2 Detecting Environment Discrimination and Contributors

	4 Evaluation and Discussion
	4.1 Practical Malware Evaluation
	4.2 Benchmark Malware Evaluation

	5 Related Work
	5.1 Dynamic and Tainting Analysis
	5.2 Virtual Machine Evasion

	6 Conclusion
	References

