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MACHINE LEARNING HAS  advanced radically over 
the past 10 years, and machine learning algorithms 
now achieve human-level performance or better 
on a number of tasks, including face recognition,31 
optical character recognition,8 object recognition,29 
and playing the game Go.26 Yet machine learning 
algorithms that exceed human performance in 
naturally occurring scenarios are often seen as failing 
dramatically when an adversary is able to modify their 
input data even subtly. Machine learning is already 
used for many highly important applications and will 
be used in even more of even greater importance in the 
near future. Search algorithms, automated financial 
trading algorithms, data analytics, autonomous 
vehicles, and malware detection are all critically 
dependent on the underlying machine learning 
algorithms that interpret their respective domain 
inputs to provide intelligent outputs that facilitate the 
decision-making process of users or automated

systems. As machine learning is used 
in more contexts where malicious ad-
versaries have an incentive to interfere 
with the operation of a given machine 
learning system, it is increasingly im-
portant to provide protections, or “ro-
bustness guarantees,” against adver-
sarial manipulation. 

The modern generation of machine 
learning services is a result of nearly 
50 years of research and development 
in artificial intelligence—the study of 
computational algorithms and systems 
that reason about their environment to 
make predictions.25 A subfield of artifi-
cial intelligence, most modern machine 
learning, as used in production, can es-
sentially be understood as applied func-
tion approximation; when there is some 
mapping from an input x to an output y 
that is difficult for a programmer to de-
scribe through explicit code, a machine 
learning algorithm can learn an approx-
imation of the mapping by analyzing 
a dataset containing several examples 
of inputs and their corresponding out-
puts. The learning proceeds by defin-
ing a “model,” a parametric function 
describing the mapping from inputs to 
outputs. Google’s image-classification 
system, Inception, has been trained 
with millions of labeled images.28 It can 
classify images as cats, dogs, airplanes, 
boats, or more complex concepts on 
par or improving on human accuracy. 
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 key insights
˽˽ Machine learning has traditionally been 

developed following the assumption that 
the environment is benign during both 
training and evaluation of the model; 
while useful for designing effective 
algorithms, this implicitly rules out the 
possibility that an adversary could alter 
the distribution at either training time or 
test time. 

˽˽ In the context of adversarial inputs at 
test time, few strong countermeasures 
exist for the many attacks that have been 
demonstrated. 

˽˽ To end the arms race between attackers 
and defenders, we suggest building more 
tools for verifying machine learning 
models; unlike current testing practices, 
this could help defenders eventually gain 
a fundamental advantage. 
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Increases in the size of machine learn-
ing models and their accuracy is the re-
sult of recent advancements in machine 
learning algorithms,17 particularly to 
advance deep learning.7 

One focus of the machine learning 
research community has been on de-
veloping models that make accurate 
predictions, as progress was in part 
measured by results on benchmark da-
tasets. In this context, accuracy denotes 
the fraction of test inputs that a model 
processes correctly—the proportion 
of images that an object-recognition 

algorithm recognizes as belonging to 
the correct class, and the proportion 
of executables that a malware detec-
tor correctly designates as benign or 
malicious. The estimate of a model’s 
accuracy varies greatly with the choice 
of the dataset used to compute the esti-
mate. The model’s accuracy is generally 
evaluated on test inputs that were not 
used during the training process. The 
accuracy is usually higher if the test in-
puts resemble the training images more 
closely. For example, an object-recogni-
tion system trained on carefully curated 
photos may obtain high accuracy when 
tested on other carefully curated photos 
but low accuracy on photos captured 
more informally by mobile phone users. 

Machine learning has traditionally 
been developed following the assump-
tion that the environment is benign 
during both training and evaluation 
of the model. Specifically, the inputs x 
are usually assumed to all be drawn in-
dependently from the same probabil-
ity distribution at both training and test 
time. This means that while test inputs 
x are new and previously unseen during 
the training process, they at least have 
the same statistical properties as the 
inputs used for training. Such assump-
tions have been useful for designing ef-
fective machine learning algorithms but 
implicitly rule out the possibility that an 
adversary could alter the distribution at 
either training time or test time. In this 
article, we focus on a scenario where an 
adversary chooses a distribution at test 
time that is designed to be exceptionally 
difficult for the model to process accu-
rately. For example, an adversary might 
modify an image (slightly) to cause it to 
be recognized incorrectly or alter the 
code of an executable file to enable it to 
bypass a malware detector. Such inputs 
are called “adversarial examples”30 be-
cause they are generated by an adversary. 

The study of adversarial examples 
is in its infancy. Several algorithms 
have been developed for their genera-
tion and several countermeasures pro-
posed. We follow with an overview of 
the foundations and advancements of 
this thriving research field and some 
predictions of where it might lead. 

Machine Learning Systems 
in Adversarial Settings 
To simplify our presentation in this 
article, we focus on machine learning 

Figure 1. Example machine learning task: 
traffic sign classification.27 
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Figure 2. Example problem with two classes: the ideal decision boundary between the two 
models and the approximate boundary learned by the model. 
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Figure 3. Example machine learning pipeline in the context of autonomous driving.23 
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model’s behavior this way stems from 
the implications of machine learning 
predictions on consequent steps of the 
data pipeline.23 In our running example 
of an autonomous vehicle, an adversary 
capable of crafting STOP signs clas-
sified as “yield” signs may cause the 
autonomous vehicle to disobey traffic 
laws and potentially cause an accident. 
Machine learning is also applied to oth-
er sensitive domains (such as financial 
fraud3 and malware detection1) where 
adversarial incentives to have the mod-
el mis-predict are evident. 

As is common in modeling the se-
curity of any domain, the domain of 
adversaries against machine learn-
ing systems can be structured around 
a taxonomy of capabilities and 
goals.2,22,23 As reflected in Figure 4, the 
adversary’s strength is characterized by 
its ability to access the model’s archi-
tecture, parameter values, and training 
data. Indeed, an adversary with access 
to the model architecture and param-
eter values is capable of reproducing the 
targeted system on its own machine and 
thus operates in a “white-box” scenario. 
In addition to different degrees of 
knowledge about the model internals, 
adversaries may also be distinguished 
by their ability to submit inputs directly 
to the machine learning model or only 
indirectly through the data pipeline 
in Figure 3. For instance, Kurakin et 
al.16 demonstrated that adversaries 
can manipulate a machine learning 

algorithms that perform “classifica-
tion,” learning a mapping from an in-
put x to a discrete variable y where y 
represents the identity of a class. As a 
unifying example, we discuss road-sign 
image recognition; the different values 
of y correspond to different types of 
road signs (such as stop signs, yield 
signs, and speed limit signs). Examples 
of input images and expected outputs 
are shown in Figure 1. Though we focus 
on image classification, the principles 
of adversarial machine learning apply 
to much more general artificial intelli-
gence paradigms (such as reinforce-
ment learning).12 

Anatomy of a machine learning task. 
A machine learning algorithm is ex-
pected to produce a model capable of 
predicting the correct class of a given 
input. For instance, when presented 
with an image of a STOP sign, the model 
should output the class designating 
“STOP.” The generic strategy adopted 
to produce such a model is twofold: a 
family of parameterized representa-
tions, the model’s architecture, is select-
ed, and the parameter values are fixed. 

The architecture is typically chosen 
from among well-studied candidates 
(such as support vector machines and 
neural networks). The choice is made 
through either an exhaustive search or 
expert knowledge of the input domain. 
The chosen architecture’s parameter 
values are fixed so as to minimize the 
model’s prediction error over large col-
lections of example pairs of inputs and 
expected outputs, the classes. 

When this training phase is com-
plete, the model can be used to predict 
the class of test inputs unseen during 
training. We can think of the classifier 
as defining a map of the input space, 
indicating the most likely class within 
each input region. The classifier will 
generally learn only an approximation 
of the true boundaries between regions 
for a variety of reasons (such as learning 
from few samples, using a limited para-
metric model family, and imperfect op-
timization of the model parameters), as 
shown schematically in Figure 2. The 
model error between the approximate 
and expected decision boundaries is 
exploited by adversaries, as explained 
in the following paragraphs. 

The machine learning pipeline. Ma-
chine learning models are frequently 
deployed as part of a data pipeline; in-

puts to the model are derived from a set 
of preprocessing stages, and outputs of 
the model are used to determine the 
next states of the overall system.23 For 
example, our running example of a 
traffic-sign classifier could be deployed 
in an autonomous vehicle, as illustrat-
ed in Figure 3. The model would be giv-
en as inputs images captured by a cam-
era monitoring the side of the road and 
coupled with a detection mechanism 
for traffic signs. The class predicted 
by the machine learning model could 
then be used to decide what action 
should be taken by the vehicle (such as 
come to a stop if the traffic sign is clas-
sified as a “STOP” sign). 

Attacking the system. As outlined 
earlier in this article, most machine 
learning models are designed, at least 
partially, based on the assumption that 
the data at test time is drawn from the 
same distribution as the training data, 
an assumption that is often violated. 
It is common for the accuracy of the 
model to degrade due to some rela-
tively benign change in the distribution 
of test data. For example, if a different 
camera is used at test time from the 
one used to collect training images, 
the trained model might not work well 
on the test images. More important, 
this phenomenon can be exploited by 
adversaries capable of manipulating 
inputs before they are presented to the 
machine learning model. The adver-
sary’s motivation for “controlling” the 

Figure 4. A taxonomy of adversaries against machine learning models at test time.22 
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robustness against adversarial inputs. 
Although such attacks are being stud-
ied and countermeasures considered 
by the research community, they are 
beyond the scope of this article. 

Adversarial Example Generation 
The challenge for the adversary is figur-
ing out how to generate an input with 
the desired output, as in the source-tar-
get-misclassification attack. In such an 
attack, the adversary starts with a sam-
ple that is legitimate (such as a STOP 
sign) and modifies it through a pertur-
bation process to attempt to cause the 
model to classify it in a chosen target 
class (such as the one corresponding to 
a YIELD sign). 

For an attack to be worth studying 
from a machine learning point of view, 
it is necessary to impose constraints 
that ensure the adversary is not able to 
truly change the class of the input. For 
example, if the adversary could physi-
cally replace a stop sign with a yield 
sign or physically paint a yield symbol 
onto a stop sign, a machine learning 
algorithm must be able to still recog-
nize it as a yield sign. In the context 
of computer vision, we generally con-
sider only modifications of an object’s 
appearance that do not interfere with 
a human observer’s ability to recog-
nize the object. The search for mis-
classified inputs is thus done with the 
constraint that these inputs should 
be visually very similar to a legitimate 
input. Consider the two images in Fig-
ure 5, potentially consumed by an au-
tonomous vehicle. To the human eye, 
they appear to be the same, and our 
biological classifiers (vision) identify 
each one as a stop sign. The image on 

the left is indeed an ordinary image of 
a stop sign. We produced the image 
on the right by adding a small, precise 
perturbation that forces a particular 
image classification deep neural net-
work to classify it as a yield sign. Here, 
the adversary could potentially use the 
altered image to cause the car to be-
have dangerously, if the car lacks fail-
safes (such as maps of known stop-
sign locations). In other application 
domains, the constraint differs. When 
targeting machine learning models 
used for malware detection, the con-
straint becomes that the input—or 
malware software—misclassified by 
the model must still be in a legitimate 
executable format and execute its ma-
licious logic when executed.10 

White-box vs. black-box. One way to 
characterize an adversary’s strength is 
the amount of access the adversary has 
to the model. In a white-box scenario, 
the adversary has full access to the 
model whereby the adversary knows 
what machine learning algorithm is 
being used and the values of the mod-
el’s parameters. In this case, we show 
in the following paragraphs that con-
structing an adversarial example can 
be formulated as a straightforward op-
timization problem. In a black-box sce-
nario, the attacker must rely on guess-
work, because the machine learning 
algorithm used by the defender and 
the parameters of the defender’s mod-
el are not known. Even in this scenario, 
where the attacker’s strength is limited 
by incomplete knowledge, the attacker 
might still succeed. We now describe 
the white-box techniques first because 
they form the basis for the more diffi-
cult black-box attacks. 

White-box attacks. An adversarial 
example x* is found by perturbing an 
originally correctly classified input x. 
To find x*, one solves a constrained op-
timization problem. One very generic 
approach, applicable to essentially 
all machine learning paradigms, is to 
solve for the x* that causes the most 
expected loss (a metric reflecting the 
model’s error), subject to a constraint 
on the maximum allowable deviation 
from the original input x; in the case of 
machine learning models solving clas-
sification tasks, the loss of a model can 
be understood as its prediction error. 
Another approach, specialized to clas-
sifiers, is to impose a constraint that 

image classification model’s predic-
tions through physical perturbations 
of images before they are recorded by 
a camera and pre-processed. It should 
also be noted that this characterization 
of an adversary’s strength significantly 
differs from bounds on available com-
putational resources as is commonly 
employed in various areas of security 
and cryptography. As the field of ad-
versarial machine learning matures, 
we expect the research community to 
reflect and expand on this preliminary 
measure of strength limited to the ad-
versary’s knowledge of a system’s po-
tential weakness(es). 

Moreover, adversarial incentives 
may define a range of attack goals. 
When the adversary is interested in 
having a given input classified in any 
class that is different from its correct 
class, we refer to this as an “untarget-
ed misclassification attack.” Instead, 
when the adversary is interested in 
defining the target class in which it in-
tends to have the model misclassify an 
input from any (correct) source class, 
this is a “source-target misclassifica-
tion attack” (also called a “targeted at-
tack” in the literature). 

Poisoning the model. Note that an 
adversary may also attack the training 
process itself. If the adversary can in-
sert its own samples or otherwise cor-
rupt the data used for training, the ad-
versary can thus influence the model to 
induce incorrect connections between 
input features and classes (called 
“false learning”) or reduce confidence 
in the labeling, decreasing model ac-
curacy. In either case, the corruption of 
the training process compromises the 
integrity of the model and decreases its 

Figure 5. Original image (left) and adversarial image (right). 
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an input will be misclassified. How-
ever, both approaches come at a high 
computational cost. It is possible to 
reduce that cost, usually at the price 
of also reducing the effectiveness of 
the attack. In general, attacks exist 
along a continuum. For example, it 
is possible to simply run the L-BFGS 
algorithm for fewer iterations to obtain 
a less-expensive attack with a lower 
success rate. 

One attack with especially low com-
putational cost is the FGSM,9 an ap-
proach that maximizes the model’s 
prediction error while keeping the 0 
norm of the perturbation added to the 
input constant. This attack is based on 
the observation that many machine 
learning models, even neural net-
works, are very linear as a function of 
the input x. One way to formulate an 
adversarial attack is 

	(2)

where Jf is the expected loss incurred 
by the machine learning model, and is 
a way to measure the model’s predic-
tion error. This optimization algorithm 
is typically intractable, but if the true Jf 
is replaced with a first-order Taylor se-
ries approximation of Jf formed by tak-
ing the gradient at x, the optimization 
problem can be solved in closed form 

	 	 (3)

Because the linear approximation 
used by the Taylor series expansion ap-
proximately holds, it often finds adver-
sarial examples despite its low runtime 
requirements. 

In the JSMA, the adversary chooses a 
target class in which the sample should 
be misclassified by the model.22 Given 
model f, the adversary crafts an adver-
sarial sample x* = x + δx by adding a 
perturbation δx to a subset of the input 
components xi. To choose the pertur-
bation, the adversary would sort the 
components by decreasing adversarial 
saliency value. Intuitively, a saliency 
value is a measure of how important 
a particular feature is to determining 
a given output class (such as the im-
portance of a particular pixel or group 
of pixels in determining what kind of 
sign is in an image). The adversarial 
saliency value S(f , x, t)[i] of component 
i for an adversarial target class t is de-

the perturbation must cause a misclas-
sification and solve for the smallest 
possible perturbation 

	 (1)

where x is an input originally correctly 
classified, || • || a norm that appro-
priately quantifies the similarity con-
straints discussed earlier, and t is the 
target class chosen by the adversary. In 
the case of “untargeted attacks,” t can 
be any class different from the correct 
class f (x). For example, for an image 
the adversary might use the 0 “norm” 
to force the attack to modify very few 
pixels, or the ∞ norm to force the at-
tack to make only very small changes 
to each pixel. All of these different ways 
of formulating the optimization prob-
lem search for an x* that should be 
classified the same as x (because it is 
very similar to x) yet is classified differ-
ently by the model. These optimization 
problems are typically intractable, so 
most adversarial example-generation 
algorithms are based on tractable ap-
proximations. 

Gradient-based search algorithms. 
The optimization algorithms de-
scribed earlier are, in principle, in-
tractable for most interesting models, 
because most interesting models use 
nonlinear, non-convex functions. In 
practice, gradient-based optimization 
algorithms reliably find solutions that 
cause misclassification, presumably 
because a point x* can cause misclassi-
fication without being an optimal solu-
tion to Equation (1). 

Several approaches using gradient-
based optimization have been intro-
duced to date. We present here three 
canonical examples of gradient-based 
attacks: the L-BFGS approach, the Fast 
Gradient Sign Method (FGSM), and the 
Jacobian Saliency Map Approach (JSMA). 

Szegedy et al.30 adapted the L-BFGS 
method to the constrained optimiza-
tion problem outlined earlier. They 
were the first researchers to demon-
strate perturbations indistinguishable 
from human observers that were suffi-
cient to force a computer-vision model 
to misclassify an image encoded by x*. 
Recently, the L-BFGS method was re-
visited by Carlini et al.4 who found that 
using the Adam optimizer along with 
customized objectives reduces the size 
of the perturbation required to ensure 

The adversary’s 
strength is 
characterized 
by its ability to 
access the model’s 
architecture, 
parameter values, 
and training data. 
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examples with relatively large perturba-
tions and is potentially easier to detect. 
JSMA and L-BFGS (or other iterative 
optimization algorithms) both pro-
duce stealthier perturbations at greater 
computational cost. FGSM sometimes 
works better than L-BFGS if the gradi-
ent is very small, because the sign op-
eration removes the dependence on 
the gradient magnitude. All of these 
algorithms can fail to fool the classifier. 
On typical machine learning bench-
mark problems, all three algorithms 
have a near-100% success rate against 
normal machine learning algorithms. 
Defense techniques can thwart a high 
percentage of FGSM and JSMA attacks, 
but L-BFGS is essentially a brute-force 
white-box approach that almost always 
succeeds regardless of defense tech-
niques, given enough runtime. 

Black-box attacks. Although in some 
cases it is possible for the adversary to 
have access to a model’s parameters, 

in most realistic threat models, the ad-
versary has access to the model only 
through a limited interface. Additional 
strategies are thus required to conduct 
attacks without access to the model’s 
gradients, which are unavailable in a 
limited-interface black-box scenario. 

In such threat models, a possible 
strategy for the adversary is to train 
another model, different from the one 
being targeted. This model, called the 
“substitute,” is used by an adversary to 
compute the gradients required for the 
attack. Assuming that both the substi-
tute and the targeted models operate 
in similar ways (such as they have a 
similar decision boundary), an adver-
sarial example computed using the 
substitute model is highly likely to be 
misclassified by the targeted one. This 
transfer of adversarial examples from a 
substitute model to a target model was 
first demonstrated by Szegedy et al.30 

There are two ways to pursue such a 
strategy. One is for the attacker to col-
lect and label the attacker's own train-
ing set.30 This approach works with 
absolutely no access to the model but 
can be expensive because it might re-
quire gathering a large number of real 
input examples and human effort to 
label each example. When the attack-
er is able to query the target model by 
sending it inputs and observing the 
returned outputs, a much less-expen-
sive approach is to strategically send 
algorithmically generated inputs in 
order to reverse engineer the target 
model, without any (or very little) 
training data. Such a strategy was in-
troduced by Papernot et al.21 and is il-
lustrated in Figure 6. In this work, the 
adversary has access only to the model 
through an API that returns the class 
predicted by the model for any input 
chosen by the adversary. That is, the 
API acts as an “oracle” for the model. 
In addition to the model architecture 
and training data being unavailable 
to the adversary, the adversary does 
not even need to know what type of 
architecture is used to create the ma-
chine learning model, as if the model 
is, say, a support vector machine, a 
neural network, or something else. 
Through interactions with the API, 
the adversary is going to create a 
training set for its substitute model, 
in a way that ensures the substitute 
makes predictions similar to the one 

fined as 

	 (4) 

where matrix 

is the model’s Jacobian matrix. Input 
components i are added to perturba-
tion δx in order of decreasing adver-
sarial saliency value S(x, t)[i] until the 
resulting adversarial sample x* = x + δx 
is misclassified by f. The perturbation 
introduced for each selected input 
component can vary, and larger pertur-
bations usually mean that fewer com-
ponents need to be perturbed. 

Each algorithm has its own benefits 
and drawbacks. The FGSM is well suit-
ed for fast crafting of many adversarial 

Figure 6. Black-box attack strategy introduced by Papernot et al.21 

Substitute data

Oracle

Substitute
accuracy

converged 

Generate new
synthetic inputs 

Train substitute

Oracle training data

Labeled substitute data 

Adversary’s machine Unavailable to the adversary

Query
with input 

Return
label

Train

If no, 
repeat 

Craft 
adversarial examples 

with substitute 

Submit adversarial
inputs

If yes



JULY 2018  |   VOL.  61  |   NO.  7   |   COMMUNICATIONS OF THE ACM     63

contributed articles

Defenses and Their Limitations 
Given the existence of adversarial sam-
ples, an important question is: What 
can be done to defend models against 
them? The defensive property of a ma-
chine learning system in this context 
is called “robustness against adversar-
ial samples.” We now explore several 
known defenses categorized into three 
classes: model training, input valida-
tion, and architectural changes. 

Model training. Adversarial train-
ing and defensive distillation are two 
techniques proposed to train models 
that explicitly attempt to be robust 
to adversarial examples. Adversarial 
training seeks to improve the gener-
alization of a model when presented 
with adversarial examples at test time 
by proactively generating adversarial 
examples as part of the training pro-
cedure. This idea was first introduced 
by Szegedy et al.30 but not yet practical 
due to the high computational cost 
of generating adversarial examples. 
Goodfellow et al.9 then showed how to 
generate adversarial examples inex-

made by the targeted model and is, 
in turn, a good indicator of where the 
targeted model will make mistakes. 
The idea is that the adversary uses the 
oracle to explore and reconstruct the 
decision boundary of the victim mod-
el. The key is being intelligent about 
that exploration. 

The main challenge resides in se-
lecting the inputs the adversary sends 
to the API to reduce the total number 
of queries made—to reduce the de-
tectability of the attack. The approach 
taken by Papernot et al.21 is to gener-
ate synthetic inputs using a few real 
inputs collected by the adversary. For 
instance, when targeting a traffic-sign 
classifier, the adversary would collect 
a small set of images of each traffic 
sign and then run the following aug-
mentation technique for each of these 
images to find new inputs that should 
be labeled with the API. The augmen-
tation technique takes a set of training 
inputs Sp, the labels they were given ∀x 
∈ Sp, f(x) by the targeted model f, and 
the current substitute model g 

	(5) 

where Jg denotes here the Jacobian ma-
trix of g. The substitute is trained by suc-
cessively labeling and augmenting Sp. 

When the substitute is sufficiently 
accurate, the adversary can use it to run 
one of the attacks described earlier, as 
in, for instance, the FGSM or the JSMA. 
The adversarial examples produced by 
these algorithms on the substitute g are 
likely to transfer to the targeted model 
f. This "transferability" property, first 
observed among deep neural networks 
and linear models by Szegedy et al.,30 
is known to hold across many types of 
machine learning models.20 Indeed, 
Figure 7 reports transferability rates, 
the number of adversarial examples 
misclassified by a model B, despite 
being crafted with a different model 
A, for several pairs of machine learn-
ing models trained on a standard im-
age-recognition benchmark as in the 
MNIST dataset of handwritten digits. 
For many such pairs, transferability is 
generally consistent between the two 
models. Adversarial examples even 
transfer to an ensemble of models that 
make predictions based on a majority 
vote among the class predicted by a col-
lection of independent models. 

Black-box attacks using these strat-
egies have been demonstrated against 
proprietary models and accessible 
through a “machine learning as a ser-
vice” query APIs (such as those from 
Google and Amazon21,33). 

Yet other strategies exist for black-
box attacks, with more identified every 
day. Notably, Xu et al.35 found that ge-
netic algorithms produce adversarial 
examples. However, this requires that 
the adversary is able to access the out-
put confidence values (such as output 
probabilities) returned by the model 
or at least to approximate these confi-
dence values.5 These probabilities are 
used to compute a fitness function for 
genetic variants of the original input, 
and, in turn, retain the variants that 
are most “fit” to achieve the adversarial 
goal of misclassification. A drawback of 
this strategy is that, compared to other 
black-box strategies,21,30 the algorithm 
must be able to make a large number 
of model-prediction queries before it 
finds evasive variants and is thus more 
likely to be detected at runtime. 

Figure 7. Transferability matrix. The source model is used to craft adversarial examples 
and the target model to predict their class. 

The transferability reported is the average rate of mistakes made by the target model on adver-
sarial examples crafted using the source model. The models considered are a deep neural network, 
logistic regression, support vector machine, decision tree, and k-nearest neighbor. The ensemble 
target model refers to an ensemble making predictions based on a majority vote among the class 
predicted by each of the five previous models. All adversarial examples were produced with similar 
perturbation norms.20 
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Perhaps the most obvious defense is to 
validate the input before it is given to 
the model and possibly preprocess it to 
remove potentially adversarial pertur-
bations. In many application domains 
there are verifiable properties of inputs 
that should never be violated in prac-
tice. For example, an input image from 
a camera sensor can be checked for re-
alism; for example, certain properties of 
cameras and light ensure certain pixel 
neighborhoods (such as neighbor pixels 
with exceptionally high contrast) never 
occur. Such defenses are limited in that 
they are highly domain dependent and 
subject to environmental factors. More-
over, it is not clear that the constraints 
placed on the domain just increase the 
difficulty of adversarial sample genera-
tion or provide broad protections. It is 
highly likely that the effectiveness of in-
put constraints as a countermeasure is 
also domain specific. 

Architecture modifications. It is also 
possible to defend against adversarial 
samples by altering the structure of the 
machine learning system. 

Highly nonlinear machine learning 
models are more robust to adversarial 
examples but also more difficult to 
train and generally do not perform well 
in a baseline non-adversarial setting.9 

Future work may reveal architec-
tures that resist adversarial examples 
yet are amenable to effective training. 

From Testing to Verification 
The limitations of existing defenses 
point to the lack of theory and practice 
of verification and testing of machine 
learning models. To design reliable sys-
tems, engineers engage in both testing 
and verification. By testing, we mean 
evaluating the system under various 
conditions and observing its behavior, 
watching for defects. By “verification,” 
we mean producing a compelling argu-
ment that the system will not misbehave 
under a broad range of circumstances. 

Machine learning practitioners 
have traditionally relied primarily on 
testing. A classifier is usually evaluated 
by applying the classifier to several ex-
amples drawn from a test set and mea-
suring its accuracy on these examples. 

To provide security guarantees, it is 
necessary to ensure properties of the 
model besides its accuracy on natu-
rally occurring test-set examples. One 
well-studied property is robustness to 

pensively with the fast-gradient-sign 
method and made it computationally 
efficient to continuously generate new 
adversarial examples every time the 
model parameters change during the 
training process. The model is then 
trained to assign the same label to the 
adversarial example as to the original 
example. 

Defensive distillation smooths the 
model’s decision surface in adversarial 
directions that could be exploited by 
the adversary.24 Distillation is a train-
ing procedure whereby one model is 
trained to predict the probabilities out-
put by another model that was trained 
earlier. Distillation was introduced by 
Hinton et al.11 aiming for a small mod-
el to mimic a large, computationally ex-
pensive model. Defensive distillation 
has a different goal—make the final 
model’s responses more smooth—so it 
works even if both models are the same 
size. It may seem counterintuitive to 
train one model to predict the output 
of another model with the same ar-
chitecture. The reason it works is that 
the first model is trained with “hard” 
labels (100% probability an image is a 
STOP sign rather than a YIELD sign) 
and then provides “soft” labels (95% 
probability an image is a STOP sign 
rather than a YIELD sign) used to train 
the second model. The second distilled 
model is more robust to attacks (such 
as the fast gradient sign method and 
the Jacobian-based saliency map ap-
proach). 

Both adversarial training and defen-
sive distillation suffer from limitations, 
however. They are generally effective 
against inexpensive white-box attacks 
but can be broken using black-box at-
tacks21 or computationally expensive 
attacks based on iterative optimiza-
tion.4 These two strategies are exam-
ples of defenses that perform gradient 
masking,21,23 removing the gradient of 
the model used by the adversary to find 
good-candidate directions to construct 
adversarial examples. However, the ad-
versary can still evade the model practi-
cally if it can find other ways to identify 
candidate adversarial directions (such 
as through a black-box attack) or start 
the gradient-based search outside the 
input region impacted by the defense 
(such as by first taking a step in a ran-
dom direction32). 

Input validation and preprocessing. 

Future work 
may reveal 
architectures that 
resist adversarial 
examples yet 
are amenable to 
effective training. 
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even from a theoretical point of view, 
straightforward testing can likewise be 
a challenge from a practical point of 
view. Suppose a researcher proposes a 
new defense procedure and evaluates 
that defense against a particular adver-
sarial example attack procedure. If the 
resulting model obtains high accuracy, 
does it mean the defense was effective? 
Possibly, but it could also mean the 
researcher’s implementation of the 
attack was weak. A similar problem oc-
curs when researchers test a proposed 
attack technique against their own 
implementation of a common defense 
procedure. 

To resolve these difficulties, we cre-
ated the CleverHans19 library with 
reference implementations of several 
attack and defense procedures. Re-
searchers and product developers can 
use CleverHans to test their models 
against standardized, state-of-the-art 
attacks and defenses. This way, if a 
defense obtains high accuracy against 
a CleverHans attack, the test would 
show that the defense overcomes this 
standard implementation of the attack, 
and if an attack obtains a high failure 
rate against a CleverHans defense, the 
test would show that the attack is able 
to defeat a rigorous implementation of 
the defense. While such standardized 
testing of attacks and defenses does 
not substitute in any way to rigorous 
verification, it does provide a common 
benchmark. Moreover, results in pub-
lished research are comparable to one 
another, so long as they are produced 
with the same version of CleverHans 
in similar computing environments. 

Future of Adversarial 
Machine Learning 
Adversarial machine learning is at a 
turning point. In the context of ad-
versarial inputs at test time, we have 
several effective attack algorithms but 
few strong countermeasures. Can we 
expect this situation to continue in-
definitely? Can we expect an arms race 
with attackers and defenders repeat-
edly seizing the upper hand in turn? Or 
can we expect the defender to eventu-
ally gain a fundamental advantage? 

We can explain adversarial ex-
amples in current machine learning 
models as the result of unreasonably 
linear extrapolation9 but do not know 
what will happen when we fix this 

adversarial examples. The natural way 
to test robustness to adversarial exam-
ples is simply to evaluate the accuracy 
of the model on a test set that has been 
adversarially perturbed to create adver-
sarial examples.30 

Unfortunately, testing is insufficient 
for providing security guarantees, as 
an attacker can send inputs that dif-
fer from the inputs used for the testing 
process. For example, a model that is 
tested and found to be robust against 
the fast gradient sign method of adver-
sarial example generation9 may be vul-
nerable to computationally expensive 
methods like attacks based on L-BFGS.30 

In general, testing is insufficient 
because it provides a “lower bound” 
on the failure rate of the system when 
an “upper bound” is necessary for pro-
viding security guarantees. Testing 
identifies n inputs that cause failure, 
so the engineer can conclude that at 
least n inputs cause failure; the engi-
neer would prefer to have a means of 
becoming reasonably confident that at 
most n inputs cause failure. 

Putting this in terms of security, a 
defense should provide a measurable 
guarantee that characterizes the space 
of inputs that cause failures. Conversely, 
the common practice of testing can only 
provide instances that cause error and is 
thus of limited value in understanding 
the robustness of a machine learning 
system. Development of an input-char-
acterizing guarantee is central to the 
future of machine learning in adversar-
ial settings and will almost certainly be 
grounded in formal verification. 

Theoretical verification of machine 
learning. Verification of machine learn-
ing model robustness to adversarial 
examples is in its infancy. Current ap-
proaches verify that a classifier assigns 
the same class to all points within a spec-
ified neighborhood of a point x. Huang 
et al.13 developed the first verification 
system for demonstrating that the out-
put class is constant across a desired 
neighborhood. This first system uses an 
SMT solver. Its scalability is limited, and 
scaling to large models requires mak-
ing strong assumptions (such as that 
only a subset of the units of the network 
is relevant to the classification of a par-
ticular input point). Such assumptions 
mean the system can no longer provide 
an absolute guarantee of the absence of 
adversarial examples, as an adversarial 

example that violates the assumptions 
could evade detection. Reluplex15 is an-
other verification system that uses linear 
programming solvers to scale to much 
larger networks. Reluplex is able to be-
come much more efficient by specializ-
ing on rectified linear networks6,14,18 and 
their piecewise linear structure. 

These current verification systems 
are limited in scope because they verify 
only that the output class remains con-
stant in some specified neighborhood 
of some specific point x. It is infeasible 
for a defender to fully anticipate all fu-
ture attacks when specifying the neigh-
borhood surrounding x to verify. For 
instance, a defender may use a verifica-
tion system to prove there are no adver-
sarial examples within a max-norm ball 
of radius ∈, but then an attacker may 
devise a new way of modifying x that 
should leave the class unchanged yet 
has a high max-norm. An even greater 
challenge is verifying the behavior of 
the system near new test points x′. 

In a traditional machine learning 
setting there are clear theoretical limits 
as to how well a machine learning sys-
tem can be expected to perform on new 
test points. For example, the “no free 
lunch theorem”34 states that all super-
vised classification algorithms have the 
same accuracy on new test points when 
averaged over all possible datasets. 

One important open theoretical 
question is: Can the no-free-lunch theo-
rem be extended to the adversarial set-
ting? If we assume attackers operate 
by making small perturbations to the 
test set, then the premise of the no-
free-lunch theorem, where the aver-
age is taken over all possible datasets, 
including those with small perturba-
tions, should not be ignored by the 
classifier, no longer applies. Depend-
ing on the resolution of this question, 
the arms race between attackers and 
defenders could have two different 
outcomes. The attacker might funda-
mentally have the advantage due to 
inherent statistical difficulties associ-
ated with predicting the correct value 
for new test points. If we are fortunate, 
the defender might have a fundamen-
tal advantage for a broad set of prob-
lem classes, paving the way for the 
design and verification of algorithms 
with robustness guarantees. 

Reproducible testing with Clever-
Hans. While verification is a challenge 
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particular problem; it may simply be 
replaced by another equally vexing 
category of vulnerabilities. The vast-
ness of the set of all possible inputs 
to a machine learning model seems 
to be cause for pessimism. Even for 
a relatively small binary vector, there 
are far more possible input vectors 
than there are atoms in the universe, 
and it seems highly improbable that 
a machine learning algorithm would 
be able to process all of them accept-
ably. On the other hand, one may 
hope that as classifiers become more 
robust, it could become impractical 
for an attacker to find input points 
that are reliably misclassified by the 
target model, particularly in the black-
box setting. 

These questions may be addressed 
empirically, by actually playing out 
the arms race as new attacks and new 
countermeasures are developed. We 
may also be able to address these ques-
tions theoretically, by proving the arms 
race must converge to some asymp-
tote. All these endeavors are difficult, 
and we hope many will be inspired to 
join the effort. 	
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