
56 COMMUNICATIONS OF THE ACM | JULY 2018 | VOL. 61 | NO. 7

contributed articles

S
H

E
E

P
 A

N
D

 W
O

L
F

 I
L

L
U

S
T

R
A

T
I

O
N

S
 B

Y
 A

R
N

0

MACHINE LEARNING HAS advanced radically over
the past 10 years, and machine learning algorithms
now achieve human-level performance or better
on a number of tasks, including face recognition,31
optical character recognition,8 object recognition,29
and playing the game Go.26 Yet machine learning
algorithms that exceed human performance in
naturally occurring scenarios are often seen as failing
dramatically when an adversary is able to modify their
input data even subtly. Machine learning is already
used for many highly important applications and will
be used in even more of even greater importance in the
near future. Search algorithms, automated financial
trading algorithms, data analytics, autonomous
vehicles, and malware detection are all critically
dependent on the underlying machine learning
algorithms that interpret their respective domain
inputs to provide intelligent outputs that facilitate the
decision-making process of users or automated

systems. As machine learning is used
in more contexts where malicious ad-
versaries have an incentive to interfere
with the operation of a given machine
learning system, it is increasingly im-
portant to provide protections, or “ro-
bustness guarantees,” against adver-
sarial manipulation.

The modern generation of machine
learning services is a result of nearly
50 years of research and development
in artificial intelligence—the study of
computational algorithms and systems
that reason about their environment to
make predictions.25 A subfield of artifi-
cial intelligence, most modern machine
learning, as used in production, can es-
sentially be understood as applied func-
tion approximation; when there is some
mapping from an input x to an output y
that is difficult for a programmer to de-
scribe through explicit code, a machine
learning algorithm can learn an approx-
imation of the mapping by analyzing
a dataset containing several examples
of inputs and their corresponding out-
puts. The learning proceeds by defin-
ing a “model,” a parametric function
describing the mapping from inputs to
outputs. Google’s image-classification
system, Inception, has been trained
with millions of labeled images.28 It can
classify images as cats, dogs, airplanes,
boats, or more complex concepts on
par or improving on human accuracy.

Making
Machine Learning
Robust Against
Adversarial Inputs

DOI:10.1145/3134599

Such inputs distort how machine-learning-
based systems are able to function in
the world as it is.

BY IAN GOODFELLOW, PATRICK MCDANIEL,
AND NICOLAS PAPERNOT

 key insights
˽˽ Machine learning has traditionally been

developed following the assumption that
the environment is benign during both
training and evaluation of the model;
while useful for designing effective
algorithms, this implicitly rules out the
possibility that an adversary could alter
the distribution at either training time or
test time.

˽˽ In the context of adversarial inputs at
test time, few strong countermeasures
exist for the many attacks that have been
demonstrated.

˽˽ To end the arms race between attackers
and defenders, we suggest building more
tools for verifying machine learning
models; unlike current testing practices,
this could help defenders eventually gain
a fundamental advantage.

http://dx.doi.org/10.1145/3134599

JULY 2018 | VOL. 61 | NO. 7 | COMMUNICATIONS OF THE ACM 57

58 COMMUNICATIONS OF THE ACM | JULY 2018 | VOL. 61 | NO. 7

contributed articles

Increases in the size of machine learn-
ing models and their accuracy is the re-
sult of recent advancements in machine
learning algorithms,17 particularly to
advance deep learning.7

One focus of the machine learning
research community has been on de-
veloping models that make accurate
predictions, as progress was in part
measured by results on benchmark da-
tasets. In this context, accuracy denotes
the fraction of test inputs that a model
processes correctly—the proportion
of images that an object-recognition

algorithm recognizes as belonging to
the correct class, and the proportion
of executables that a malware detec-
tor correctly designates as benign or
malicious. The estimate of a model’s
accuracy varies greatly with the choice
of the dataset used to compute the esti-
mate. The model’s accuracy is generally
evaluated on test inputs that were not
used during the training process. The
accuracy is usually higher if the test in-
puts resemble the training images more
closely. For example, an object-recogni-
tion system trained on carefully curated
photos may obtain high accuracy when
tested on other carefully curated photos
but low accuracy on photos captured
more informally by mobile phone users.

Machine learning has traditionally
been developed following the assump-
tion that the environment is benign
during both training and evaluation
of the model. Specifically, the inputs x
are usually assumed to all be drawn in-
dependently from the same probabil-
ity distribution at both training and test
time. This means that while test inputs
x are new and previously unseen during
the training process, they at least have
the same statistical properties as the
inputs used for training. Such assump-
tions have been useful for designing ef-
fective machine learning algorithms but
implicitly rule out the possibility that an
adversary could alter the distribution at
either training time or test time. In this
article, we focus on a scenario where an
adversary chooses a distribution at test
time that is designed to be exceptionally
difficult for the model to process accu-
rately. For example, an adversary might
modify an image (slightly) to cause it to
be recognized incorrectly or alter the
code of an executable file to enable it to
bypass a malware detector. Such inputs
are called “adversarial examples”30 be-
cause they are generated by an adversary.

The study of adversarial examples
is in its infancy. Several algorithms
have been developed for their genera-
tion and several countermeasures pro-
posed. We follow with an overview of
the foundations and advancements of
this thriving research field and some
predictions of where it might lead.

Machine Learning Systems
in Adversarial Settings
To simplify our presentation in this
article, we focus on machine learning

Figure 1. Example machine learning task:
traffic sign classification.27

ML ML ML

No truck Stop Keep straight

Figure 2. Example problem with two classes: the ideal decision boundary between the two
models and the approximate boundary learned by the model.

Task decision boundary

Model decision boundary

Training points for class 1

Adversarial examples for class 1

Training points for class 2

Testing points for class 1

Note that in higher dimensions, all examples are “close” to decision boundaries, as illustrated in this
low-dimensional problem by the “pocket” of red class points included in the blue class.

Figure 3. Example machine learning pipeline in the context of autonomous driving.23

Machine Learning
Model

Physical Domain Digital
Representation

Physical Domain

3D tensor in [0,1] Class probabilitiesTraffic sign JPEG Car brakes

Camera Pre-processing Apply model Output analysis

JULY 2018 | VOL. 61 | NO. 7 | COMMUNICATIONS OF THE ACM 59

contributed articles

model’s behavior this way stems from
the implications of machine learning
predictions on consequent steps of the
data pipeline.23 In our running example
of an autonomous vehicle, an adversary
capable of crafting STOP signs clas-
sified as “yield” signs may cause the
autonomous vehicle to disobey traffic
laws and potentially cause an accident.
Machine learning is also applied to oth-
er sensitive domains (such as financial
fraud3 and malware detection1) where
adversarial incentives to have the mod-
el mis-predict are evident.

As is common in modeling the se-
curity of any domain, the domain of
adversaries against machine learn-
ing systems can be structured around
a taxonomy of capabilities and
goals.2,22,23 As reflected in Figure 4, the
adversary’s strength is characterized by
its ability to access the model’s archi-
tecture, parameter values, and training
data. Indeed, an adversary with access
to the model architecture and param-
eter values is capable of reproducing the
targeted system on its own machine and
thus operates in a “white-box” scenario.
In addition to different degrees of
knowledge about the model internals,
adversaries may also be distinguished
by their ability to submit inputs directly
to the machine learning model or only
indirectly through the data pipeline
in Figure 3. For instance, Kurakin et
al.16 demonstrated that adversaries
can manipulate a machine learning

algorithms that perform “classifica-
tion,” learning a mapping from an in-
put x to a discrete variable y where y
represents the identity of a class. As a
unifying example, we discuss road-sign
image recognition; the different values
of y correspond to different types of
road signs (such as stop signs, yield
signs, and speed limit signs). Examples
of input images and expected outputs
are shown in Figure 1. Though we focus
on image classification, the principles
of adversarial machine learning apply
to much more general artificial intelli-
gence paradigms (such as reinforce-
ment learning).12

Anatomy of a machine learning task.
A machine learning algorithm is ex-
pected to produce a model capable of
predicting the correct class of a given
input. For instance, when presented
with an image of a STOP sign, the model
should output the class designating
“STOP.” The generic strategy adopted
to produce such a model is twofold: a
family of parameterized representa-
tions, the model’s architecture, is select-
ed, and the parameter values are fixed.

The architecture is typically chosen
from among well-studied candidates
(such as support vector machines and
neural networks). The choice is made
through either an exhaustive search or
expert knowledge of the input domain.
The chosen architecture’s parameter
values are fixed so as to minimize the
model’s prediction error over large col-
lections of example pairs of inputs and
expected outputs, the classes.

When this training phase is com-
plete, the model can be used to predict
the class of test inputs unseen during
training. We can think of the classifier
as defining a map of the input space,
indicating the most likely class within
each input region. The classifier will
generally learn only an approximation
of the true boundaries between regions
for a variety of reasons (such as learning
from few samples, using a limited para-
metric model family, and imperfect op-
timization of the model parameters), as
shown schematically in Figure 2. The
model error between the approximate
and expected decision boundaries is
exploited by adversaries, as explained
in the following paragraphs.

The machine learning pipeline. Ma-
chine learning models are frequently
deployed as part of a data pipeline; in-

puts to the model are derived from a set
of preprocessing stages, and outputs of
the model are used to determine the
next states of the overall system.23 For
example, our running example of a
traffic-sign classifier could be deployed
in an autonomous vehicle, as illustrat-
ed in Figure 3. The model would be giv-
en as inputs images captured by a cam-
era monitoring the side of the road and
coupled with a detection mechanism
for traffic signs. The class predicted
by the machine learning model could
then be used to decide what action
should be taken by the vehicle (such as
come to a stop if the traffic sign is clas-
sified as a “STOP” sign).

Attacking the system. As outlined
earlier in this article, most machine
learning models are designed, at least
partially, based on the assumption that
the data at test time is drawn from the
same distribution as the training data,
an assumption that is often violated.
It is common for the accuracy of the
model to degrade due to some rela-
tively benign change in the distribution
of test data. For example, if a different
camera is used at test time from the
one used to collect training images,
the trained model might not work well
on the test images. More important,
this phenomenon can be exploited by
adversaries capable of manipulating
inputs before they are presented to the
machine learning model. The adver-
sary’s motivation for “controlling” the

Figure 4. A taxonomy of adversaries against machine learning models at test time.22

White-box

Architecture and
Training data

Confidence re
ductio

n

Miscla
ssifi

catio
n

Sourc
e/ta

rg
et

m
iscla

ssifi
catio

n

Training data

Oracle

Samples

Decreasing
knowledge

Increasing attack difficulty

Increasing
complexity

A
dv

er
sa

ri
al

 C
ap

ab
ili

ti
es

Adversarial Goals

Architecture

Black-box

60 COMMUNICATIONS OF THE ACM | JULY 2018 | VOL. 61 | NO. 7

contributed articles

robustness against adversarial inputs.
Although such attacks are being stud-
ied and countermeasures considered
by the research community, they are
beyond the scope of this article.

Adversarial Example Generation
The challenge for the adversary is figur-
ing out how to generate an input with
the desired output, as in the source-tar-
get-misclassification attack. In such an
attack, the adversary starts with a sam-
ple that is legitimate (such as a STOP
sign) and modifies it through a pertur-
bation process to attempt to cause the
model to classify it in a chosen target
class (such as the one corresponding to
a YIELD sign).

For an attack to be worth studying
from a machine learning point of view,
it is necessary to impose constraints
that ensure the adversary is not able to
truly change the class of the input. For
example, if the adversary could physi-
cally replace a stop sign with a yield
sign or physically paint a yield symbol
onto a stop sign, a machine learning
algorithm must be able to still recog-
nize it as a yield sign. In the context
of computer vision, we generally con-
sider only modifications of an object’s
appearance that do not interfere with
a human observer’s ability to recog-
nize the object. The search for mis-
classified inputs is thus done with the
constraint that these inputs should
be visually very similar to a legitimate
input. Consider the two images in Fig-
ure 5, potentially consumed by an au-
tonomous vehicle. To the human eye,
they appear to be the same, and our
biological classifiers (vision) identify
each one as a stop sign. The image on

the left is indeed an ordinary image of
a stop sign. We produced the image
on the right by adding a small, precise
perturbation that forces a particular
image classification deep neural net-
work to classify it as a yield sign. Here,
the adversary could potentially use the
altered image to cause the car to be-
have dangerously, if the car lacks fail-
safes (such as maps of known stop-
sign locations). In other application
domains, the constraint differs. When
targeting machine learning models
used for malware detection, the con-
straint becomes that the input—or
malware software—misclassified by
the model must still be in a legitimate
executable format and execute its ma-
licious logic when executed.10

White-box vs. black-box. One way to
characterize an adversary’s strength is
the amount of access the adversary has
to the model. In a white-box scenario,
the adversary has full access to the
model whereby the adversary knows
what machine learning algorithm is
being used and the values of the mod-
el’s parameters. In this case, we show
in the following paragraphs that con-
structing an adversarial example can
be formulated as a straightforward op-
timization problem. In a black-box sce-
nario, the attacker must rely on guess-
work, because the machine learning
algorithm used by the defender and
the parameters of the defender’s mod-
el are not known. Even in this scenario,
where the attacker’s strength is limited
by incomplete knowledge, the attacker
might still succeed. We now describe
the white-box techniques first because
they form the basis for the more diffi-
cult black-box attacks.

White-box attacks. An adversarial
example x* is found by perturbing an
originally correctly classified input x.
To find x*, one solves a constrained op-
timization problem. One very generic
approach, applicable to essentially
all machine learning paradigms, is to
solve for the x* that causes the most
expected loss (a metric reflecting the
model’s error), subject to a constraint
on the maximum allowable deviation
from the original input x; in the case of
machine learning models solving clas-
sification tasks, the loss of a model can
be understood as its prediction error.
Another approach, specialized to clas-
sifiers, is to impose a constraint that

image classification model’s predic-
tions through physical perturbations
of images before they are recorded by
a camera and pre-processed. It should
also be noted that this characterization
of an adversary’s strength significantly
differs from bounds on available com-
putational resources as is commonly
employed in various areas of security
and cryptography. As the field of ad-
versarial machine learning matures,
we expect the research community to
reflect and expand on this preliminary
measure of strength limited to the ad-
versary’s knowledge of a system’s po-
tential weakness(es).

Moreover, adversarial incentives
may define a range of attack goals.
When the adversary is interested in
having a given input classified in any
class that is different from its correct
class, we refer to this as an “untarget-
ed misclassification attack.” Instead,
when the adversary is interested in
defining the target class in which it in-
tends to have the model misclassify an
input from any (correct) source class,
this is a “source-target misclassifica-
tion attack” (also called a “targeted at-
tack” in the literature).

Poisoning the model. Note that an
adversary may also attack the training
process itself. If the adversary can in-
sert its own samples or otherwise cor-
rupt the data used for training, the ad-
versary can thus influence the model to
induce incorrect connections between
input features and classes (called
“false learning”) or reduce confidence
in the labeling, decreasing model ac-
curacy. In either case, the corruption of
the training process compromises the
integrity of the model and decreases its

Figure 5. Original image (left) and adversarial image (right).

JULY 2018 | VOL. 61 | NO. 7 | COMMUNICATIONS OF THE ACM 61

contributed articles

an input will be misclassified. How-
ever, both approaches come at a high
computational cost. It is possible to
reduce that cost, usually at the price
of also reducing the effectiveness of
the attack. In general, attacks exist
along a continuum. For example, it
is possible to simply run the L-BFGS
algorithm for fewer iterations to obtain
a less-expensive attack with a lower
success rate.

One attack with especially low com-
putational cost is the FGSM,9 an ap-
proach that maximizes the model’s
prediction error while keeping the 0
norm of the perturbation added to the
input constant. This attack is based on
the observation that many machine
learning models, even neural net-
works, are very linear as a function of
the input x. One way to formulate an
adversarial attack is

	(2)

where Jf is the expected loss incurred
by the machine learning model, and is
a way to measure the model’s predic-
tion error. This optimization algorithm
is typically intractable, but if the true Jf
is replaced with a first-order Taylor se-
ries approximation of Jf formed by tak-
ing the gradient at x, the optimization
problem can be solved in closed form

	 	 (3)

Because the linear approximation
used by the Taylor series expansion ap-
proximately holds, it often finds adver-
sarial examples despite its low runtime
requirements.

In the JSMA, the adversary chooses a
target class in which the sample should
be misclassified by the model.22 Given
model f, the adversary crafts an adver-
sarial sample x* = x + δx by adding a
perturbation δx to a subset of the input
components xi. To choose the pertur-
bation, the adversary would sort the
components by decreasing adversarial
saliency value. Intuitively, a saliency
value is a measure of how important
a particular feature is to determining
a given output class (such as the im-
portance of a particular pixel or group
of pixels in determining what kind of
sign is in an image). The adversarial
saliency value S(f , x, t)[i] of component
i for an adversarial target class t is de-

the perturbation must cause a misclas-
sification and solve for the smallest
possible perturbation

	 (1)

where x is an input originally correctly
classified, || • || a norm that appro-
priately quantifies the similarity con-
straints discussed earlier, and t is the
target class chosen by the adversary. In
the case of “untargeted attacks,” t can
be any class different from the correct
class f (x). For example, for an image
the adversary might use the 0 “norm”
to force the attack to modify very few
pixels, or the ∞ norm to force the at-
tack to make only very small changes
to each pixel. All of these different ways
of formulating the optimization prob-
lem search for an x* that should be
classified the same as x (because it is
very similar to x) yet is classified differ-
ently by the model. These optimization
problems are typically intractable, so
most adversarial example-generation
algorithms are based on tractable ap-
proximations.

Gradient-based search algorithms.
The optimization algorithms de-
scribed earlier are, in principle, in-
tractable for most interesting models,
because most interesting models use
nonlinear, non-convex functions. In
practice, gradient-based optimization
algorithms reliably find solutions that
cause misclassification, presumably
because a point x* can cause misclassi-
fication without being an optimal solu-
tion to Equation (1).

Several approaches using gradient-
based optimization have been intro-
duced to date. We present here three
canonical examples of gradient-based
attacks: the L-BFGS approach, the Fast
Gradient Sign Method (FGSM), and the
Jacobian Saliency Map Approach (JSMA).

Szegedy et al.30 adapted the L-BFGS
method to the constrained optimiza-
tion problem outlined earlier. They
were the first researchers to demon-
strate perturbations indistinguishable
from human observers that were suffi-
cient to force a computer-vision model
to misclassify an image encoded by x*.
Recently, the L-BFGS method was re-
visited by Carlini et al.4 who found that
using the Adam optimizer along with
customized objectives reduces the size
of the perturbation required to ensure

The adversary’s
strength is
characterized
by its ability to
access the model’s
architecture,
parameter values,
and training data.

62 COMMUNICATIONS OF THE ACM | JULY 2018 | VOL. 61 | NO. 7

contributed articles

examples with relatively large perturba-
tions and is potentially easier to detect.
JSMA and L-BFGS (or other iterative
optimization algorithms) both pro-
duce stealthier perturbations at greater
computational cost. FGSM sometimes
works better than L-BFGS if the gradi-
ent is very small, because the sign op-
eration removes the dependence on
the gradient magnitude. All of these
algorithms can fail to fool the classifier.
On typical machine learning bench-
mark problems, all three algorithms
have a near-100% success rate against
normal machine learning algorithms.
Defense techniques can thwart a high
percentage of FGSM and JSMA attacks,
but L-BFGS is essentially a brute-force
white-box approach that almost always
succeeds regardless of defense tech-
niques, given enough runtime.

Black-box attacks. Although in some
cases it is possible for the adversary to
have access to a model’s parameters,

in most realistic threat models, the ad-
versary has access to the model only
through a limited interface. Additional
strategies are thus required to conduct
attacks without access to the model’s
gradients, which are unavailable in a
limited-interface black-box scenario.

In such threat models, a possible
strategy for the adversary is to train
another model, different from the one
being targeted. This model, called the
“substitute,” is used by an adversary to
compute the gradients required for the
attack. Assuming that both the substi-
tute and the targeted models operate
in similar ways (such as they have a
similar decision boundary), an adver-
sarial example computed using the
substitute model is highly likely to be
misclassified by the targeted one. This
transfer of adversarial examples from a
substitute model to a target model was
first demonstrated by Szegedy et al.30

There are two ways to pursue such a
strategy. One is for the attacker to col-
lect and label the attacker's own train-
ing set.30 This approach works with
absolutely no access to the model but
can be expensive because it might re-
quire gathering a large number of real
input examples and human effort to
label each example. When the attack-
er is able to query the target model by
sending it inputs and observing the
returned outputs, a much less-expen-
sive approach is to strategically send
algorithmically generated inputs in
order to reverse engineer the target
model, without any (or very little)
training data. Such a strategy was in-
troduced by Papernot et al.21 and is il-
lustrated in Figure 6. In this work, the
adversary has access only to the model
through an API that returns the class
predicted by the model for any input
chosen by the adversary. That is, the
API acts as an “oracle” for the model.
In addition to the model architecture
and training data being unavailable
to the adversary, the adversary does
not even need to know what type of
architecture is used to create the ma-
chine learning model, as if the model
is, say, a support vector machine, a
neural network, or something else.
Through interactions with the API,
the adversary is going to create a
training set for its substitute model,
in a way that ensures the substitute
makes predictions similar to the one

fined as

	 (4)

where matrix

is the model’s Jacobian matrix. Input
components i are added to perturba-
tion δx in order of decreasing adver-
sarial saliency value S(x, t)[i] until the
resulting adversarial sample x* = x + δx
is misclassified by f. The perturbation
introduced for each selected input
component can vary, and larger pertur-
bations usually mean that fewer com-
ponents need to be perturbed.

Each algorithm has its own benefits
and drawbacks. The FGSM is well suit-
ed for fast crafting of many adversarial

Figure 6. Black-box attack strategy introduced by Papernot et al.21

Substitute data

Oracle

Substitute
accuracy

converged

Generate new
synthetic inputs

Train substitute

Oracle training data

Labeled substitute data

Adversary’s machine Unavailable to the adversary

Query
with input

Return
label

Train

If no,
repeat

Craft
adversarial examples

with substitute

Submit adversarial
inputs

If yes

JULY 2018 | VOL. 61 | NO. 7 | COMMUNICATIONS OF THE ACM 63

contributed articles

Defenses and Their Limitations
Given the existence of adversarial sam-
ples, an important question is: What
can be done to defend models against
them? The defensive property of a ma-
chine learning system in this context
is called “robustness against adversar-
ial samples.” We now explore several
known defenses categorized into three
classes: model training, input valida-
tion, and architectural changes.

Model training. Adversarial train-
ing and defensive distillation are two
techniques proposed to train models
that explicitly attempt to be robust
to adversarial examples. Adversarial
training seeks to improve the gener-
alization of a model when presented
with adversarial examples at test time
by proactively generating adversarial
examples as part of the training pro-
cedure. This idea was first introduced
by Szegedy et al.30 but not yet practical
due to the high computational cost
of generating adversarial examples.
Goodfellow et al.9 then showed how to
generate adversarial examples inex-

made by the targeted model and is,
in turn, a good indicator of where the
targeted model will make mistakes.
The idea is that the adversary uses the
oracle to explore and reconstruct the
decision boundary of the victim mod-
el. The key is being intelligent about
that exploration.

The main challenge resides in se-
lecting the inputs the adversary sends
to the API to reduce the total number
of queries made—to reduce the de-
tectability of the attack. The approach
taken by Papernot et al.21 is to gener-
ate synthetic inputs using a few real
inputs collected by the adversary. For
instance, when targeting a traffic-sign
classifier, the adversary would collect
a small set of images of each traffic
sign and then run the following aug-
mentation technique for each of these
images to find new inputs that should
be labeled with the API. The augmen-
tation technique takes a set of training
inputs Sp, the labels they were given ∀x
∈ Sp, f(x) by the targeted model f, and
the current substitute model g

	(5)

where Jg denotes here the Jacobian ma-
trix of g. The substitute is trained by suc-
cessively labeling and augmenting Sp.

When the substitute is sufficiently
accurate, the adversary can use it to run
one of the attacks described earlier, as
in, for instance, the FGSM or the JSMA.
The adversarial examples produced by
these algorithms on the substitute g are
likely to transfer to the targeted model
f. This "transferability" property, first
observed among deep neural networks
and linear models by Szegedy et al.,30
is known to hold across many types of
machine learning models.20 Indeed,
Figure 7 reports transferability rates,
the number of adversarial examples
misclassified by a model B, despite
being crafted with a different model
A, for several pairs of machine learn-
ing models trained on a standard im-
age-recognition benchmark as in the
MNIST dataset of handwritten digits.
For many such pairs, transferability is
generally consistent between the two
models. Adversarial examples even
transfer to an ensemble of models that
make predictions based on a majority
vote among the class predicted by a col-
lection of independent models.

Black-box attacks using these strat-
egies have been demonstrated against
proprietary models and accessible
through a “machine learning as a ser-
vice” query APIs (such as those from
Google and Amazon21,33).

Yet other strategies exist for black-
box attacks, with more identified every
day. Notably, Xu et al.35 found that ge-
netic algorithms produce adversarial
examples. However, this requires that
the adversary is able to access the out-
put confidence values (such as output
probabilities) returned by the model
or at least to approximate these confi-
dence values.5 These probabilities are
used to compute a fitness function for
genetic variants of the original input,
and, in turn, retain the variants that
are most “fit” to achieve the adversarial
goal of misclassification. A drawback of
this strategy is that, compared to other
black-box strategies,21,30 the algorithm
must be able to make a large number
of model-prediction queries before it
finds evasive variants and is thus more
likely to be detected at runtime.

Figure 7. Transferability matrix. The source model is used to craft adversarial examples
and the target model to predict their class.

The transferability reported is the average rate of mistakes made by the target model on adver-
sarial examples crafted using the source model. The models considered are a deep neural network,
logistic regression, support vector machine, decision tree, and k-nearest neighbor. The ensemble
target model refers to an ensemble making predictions based on a majority vote among the class
predicted by each of the five previous models. All adversarial examples were produced with similar
perturbation norms.20

38.27

6.31

2.51

0.82

11.75 42.89

12.22 8.85

36.56

23.02 64.32 8.36 20.72

44.1411.29

5.19

3.31

41.65 31.92

5.11

15.67

79.31

87.4291.43

100.0

82.16 82.95

80.03

89.29

91.64

S
ou

rc
e

M
ac

h
in

e
L

ea
rn

in
g

 T
ec

h
n

iq
u

e

Target Machine Learning Technique

DNN

DNN

LR SVM

LR

SVM

DT

DT

kNN

kNN

Ens.

64 COMMUNICATIONS OF THE ACM | JULY 2018 | VOL. 61 | NO. 7

contributed articles

Perhaps the most obvious defense is to
validate the input before it is given to
the model and possibly preprocess it to
remove potentially adversarial pertur-
bations. In many application domains
there are verifiable properties of inputs
that should never be violated in prac-
tice. For example, an input image from
a camera sensor can be checked for re-
alism; for example, certain properties of
cameras and light ensure certain pixel
neighborhoods (such as neighbor pixels
with exceptionally high contrast) never
occur. Such defenses are limited in that
they are highly domain dependent and
subject to environmental factors. More-
over, it is not clear that the constraints
placed on the domain just increase the
difficulty of adversarial sample genera-
tion or provide broad protections. It is
highly likely that the effectiveness of in-
put constraints as a countermeasure is
also domain specific.

Architecture modifications. It is also
possible to defend against adversarial
samples by altering the structure of the
machine learning system.

Highly nonlinear machine learning
models are more robust to adversarial
examples but also more difficult to
train and generally do not perform well
in a baseline non-adversarial setting.9

Future work may reveal architec-
tures that resist adversarial examples
yet are amenable to effective training.

From Testing to Verification
The limitations of existing defenses
point to the lack of theory and practice
of verification and testing of machine
learning models. To design reliable sys-
tems, engineers engage in both testing
and verification. By testing, we mean
evaluating the system under various
conditions and observing its behavior,
watching for defects. By “verification,”
we mean producing a compelling argu-
ment that the system will not misbehave
under a broad range of circumstances.

Machine learning practitioners
have traditionally relied primarily on
testing. A classifier is usually evaluated
by applying the classifier to several ex-
amples drawn from a test set and mea-
suring its accuracy on these examples.

To provide security guarantees, it is
necessary to ensure properties of the
model besides its accuracy on natu-
rally occurring test-set examples. One
well-studied property is robustness to

pensively with the fast-gradient-sign
method and made it computationally
efficient to continuously generate new
adversarial examples every time the
model parameters change during the
training process. The model is then
trained to assign the same label to the
adversarial example as to the original
example.

Defensive distillation smooths the
model’s decision surface in adversarial
directions that could be exploited by
the adversary.24 Distillation is a train-
ing procedure whereby one model is
trained to predict the probabilities out-
put by another model that was trained
earlier. Distillation was introduced by
Hinton et al.11 aiming for a small mod-
el to mimic a large, computationally ex-
pensive model. Defensive distillation
has a different goal—make the final
model’s responses more smooth—so it
works even if both models are the same
size. It may seem counterintuitive to
train one model to predict the output
of another model with the same ar-
chitecture. The reason it works is that
the first model is trained with “hard”
labels (100% probability an image is a
STOP sign rather than a YIELD sign)
and then provides “soft” labels (95%
probability an image is a STOP sign
rather than a YIELD sign) used to train
the second model. The second distilled
model is more robust to attacks (such
as the fast gradient sign method and
the Jacobian-based saliency map ap-
proach).

Both adversarial training and defen-
sive distillation suffer from limitations,
however. They are generally effective
against inexpensive white-box attacks
but can be broken using black-box at-
tacks21 or computationally expensive
attacks based on iterative optimiza-
tion.4 These two strategies are exam-
ples of defenses that perform gradient
masking,21,23 removing the gradient of
the model used by the adversary to find
good-candidate directions to construct
adversarial examples. However, the ad-
versary can still evade the model practi-
cally if it can find other ways to identify
candidate adversarial directions (such
as through a black-box attack) or start
the gradient-based search outside the
input region impacted by the defense
(such as by first taking a step in a ran-
dom direction32).

Input validation and preprocessing.

Future work
may reveal
architectures that
resist adversarial
examples yet
are amenable to
effective training.

JULY 2018 | VOL. 61 | NO. 7 | COMMUNICATIONS OF THE ACM 65

contributed articles

even from a theoretical point of view,
straightforward testing can likewise be
a challenge from a practical point of
view. Suppose a researcher proposes a
new defense procedure and evaluates
that defense against a particular adver-
sarial example attack procedure. If the
resulting model obtains high accuracy,
does it mean the defense was effective?
Possibly, but it could also mean the
researcher’s implementation of the
attack was weak. A similar problem oc-
curs when researchers test a proposed
attack technique against their own
implementation of a common defense
procedure.

To resolve these difficulties, we cre-
ated the CleverHans19 library with
reference implementations of several
attack and defense procedures. Re-
searchers and product developers can
use CleverHans to test their models
against standardized, state-of-the-art
attacks and defenses. This way, if a
defense obtains high accuracy against
a CleverHans attack, the test would
show that the defense overcomes this
standard implementation of the attack,
and if an attack obtains a high failure
rate against a CleverHans defense, the
test would show that the attack is able
to defeat a rigorous implementation of
the defense. While such standardized
testing of attacks and defenses does
not substitute in any way to rigorous
verification, it does provide a common
benchmark. Moreover, results in pub-
lished research are comparable to one
another, so long as they are produced
with the same version of CleverHans
in similar computing environments.

Future of Adversarial
Machine Learning
Adversarial machine learning is at a
turning point. In the context of ad-
versarial inputs at test time, we have
several effective attack algorithms but
few strong countermeasures. Can we
expect this situation to continue in-
definitely? Can we expect an arms race
with attackers and defenders repeat-
edly seizing the upper hand in turn? Or
can we expect the defender to eventu-
ally gain a fundamental advantage?

We can explain adversarial ex-
amples in current machine learning
models as the result of unreasonably
linear extrapolation9 but do not know
what will happen when we fix this

adversarial examples. The natural way
to test robustness to adversarial exam-
ples is simply to evaluate the accuracy
of the model on a test set that has been
adversarially perturbed to create adver-
sarial examples.30

Unfortunately, testing is insufficient
for providing security guarantees, as
an attacker can send inputs that dif-
fer from the inputs used for the testing
process. For example, a model that is
tested and found to be robust against
the fast gradient sign method of adver-
sarial example generation9 may be vul-
nerable to computationally expensive
methods like attacks based on L-BFGS.30

In general, testing is insufficient
because it provides a “lower bound”
on the failure rate of the system when
an “upper bound” is necessary for pro-
viding security guarantees. Testing
identifies n inputs that cause failure,
so the engineer can conclude that at
least n inputs cause failure; the engi-
neer would prefer to have a means of
becoming reasonably confident that at
most n inputs cause failure.

Putting this in terms of security, a
defense should provide a measurable
guarantee that characterizes the space
of inputs that cause failures. Conversely,
the common practice of testing can only
provide instances that cause error and is
thus of limited value in understanding
the robustness of a machine learning
system. Development of an input-char-
acterizing guarantee is central to the
future of machine learning in adversar-
ial settings and will almost certainly be
grounded in formal verification.

Theoretical verification of machine
learning. Verification of machine learn-
ing model robustness to adversarial
examples is in its infancy. Current ap-
proaches verify that a classifier assigns
the same class to all points within a spec-
ified neighborhood of a point x. Huang
et al.13 developed the first verification
system for demonstrating that the out-
put class is constant across a desired
neighborhood. This first system uses an
SMT solver. Its scalability is limited, and
scaling to large models requires mak-
ing strong assumptions (such as that
only a subset of the units of the network
is relevant to the classification of a par-
ticular input point). Such assumptions
mean the system can no longer provide
an absolute guarantee of the absence of
adversarial examples, as an adversarial

example that violates the assumptions
could evade detection. Reluplex15 is an-
other verification system that uses linear
programming solvers to scale to much
larger networks. Reluplex is able to be-
come much more efficient by specializ-
ing on rectified linear networks6,14,18 and
their piecewise linear structure.

These current verification systems
are limited in scope because they verify
only that the output class remains con-
stant in some specified neighborhood
of some specific point x. It is infeasible
for a defender to fully anticipate all fu-
ture attacks when specifying the neigh-
borhood surrounding x to verify. For
instance, a defender may use a verifica-
tion system to prove there are no adver-
sarial examples within a max-norm ball
of radius ∈, but then an attacker may
devise a new way of modifying x that
should leave the class unchanged yet
has a high max-norm. An even greater
challenge is verifying the behavior of
the system near new test points x′.

In a traditional machine learning
setting there are clear theoretical limits
as to how well a machine learning sys-
tem can be expected to perform on new
test points. For example, the “no free
lunch theorem”34 states that all super-
vised classification algorithms have the
same accuracy on new test points when
averaged over all possible datasets.

One important open theoretical
question is: Can the no-free-lunch theo-
rem be extended to the adversarial set-
ting? If we assume attackers operate
by making small perturbations to the
test set, then the premise of the no-
free-lunch theorem, where the aver-
age is taken over all possible datasets,
including those with small perturba-
tions, should not be ignored by the
classifier, no longer applies. Depend-
ing on the resolution of this question,
the arms race between attackers and
defenders could have two different
outcomes. The attacker might funda-
mentally have the advantage due to
inherent statistical difficulties associ-
ated with predicting the correct value
for new test points. If we are fortunate,
the defender might have a fundamen-
tal advantage for a broad set of prob-
lem classes, paving the way for the
design and verification of algorithms
with robustness guarantees.

Reproducible testing with Clever-
Hans. While verification is a challenge

66 COMMUNICATIONS OF THE ACM | JULY 2018 | VOL. 61 | NO. 7

contributed articles

3.	 Bolton, R.J. and Hand, D.J. Statistical fraud detection:
A review. Statistical Science 17, 3 (2002), 235–249.

4.	 Carlini, N. and Wagner, D. Towards evaluating the
robustness of neural networks. arXiv preprint, 2016;
https://arxiv.org/pdf/1608.04644.pdf

5.	 Dang, H., Yue, H., and Chang, E.C. Evading classifier
in the dark: Guiding unpredictable morphing using
binary-output blackboxes. arXiv preprint, 2017;
https://arxiv.org/pdf/1705.07535.pdf

6.	 Glorot, X., Bordes, A., and Bengio, Y. Deep sparse
rectifier neural networks. In Proceedings of the 14th
International Conference on Artificial Intelligence
and Statistics (Ft. Lauderdale, FL, Apr. 11–13, 2011),
315-323.

7.	 Goodfellow, I., Bengio, Y., and Courville, A. Deep
Learning. MIT Press, Cambridge, MA, 2016; http://
www.deeplearningbook.org/

8.	 Goodfellow, I.J., Bulatov, Y., Ibarz, J., Arnoud, S.,
and Shet, V. Multi-digit number recognition from
Street View imagery using deep convolutional neural
networks. In Proceedings of the International
Conference on Learning Representations (Banff,
Canada, Apr. 14–16, 2014).

9.	 Goodfellow, I.J., Shlens, J., and Szegedy, C. Explaining
and harnessing adversarial examples. arXiv preprint,
2014; https://arxiv.org/pdf/1412.6572.pdf

10.	 Grosse, K., Papernot, N., Manoharan, P., Backes, M.,
and McDaniel, P. Adversarial perturbations against
deep neural networks for malware classification. In
Proceedings of the European Symposium on Research
in Computer Security (Oslo, Norway, 2017).

11.	 Hinton, G., Vinyals, O., and Dean, J. Distilling the
knowledge in a neural network. arXiv preprint, 2015;
https://arxiv.org/abs/1503.02531

12.	 Huang, S., Papernot, N., Goodfellow, I., Duan, Y., and
Abbeel, P. Adversarial attacks on neural network
policies. arXiv preprint, 2017; https://arxiv.org/
abs/1702.02284

13.	 Huang, A., Kwiatkowska, M., Wang, S., and Wu, M.
Safety verification of deep neural networks. In
Proceedings of the International Conference on
Computer-Aided Verification (2016); https://link.
springer.com/chapter/10.1007/978-3-319-63387-9_1

14.	 Jarrett, K., Kavukcuoglu, K., Ranzato, M.A., and LeCun,
Y. What is the best multi-stage architecture for
object recognition? In Proceedings of the 12th IEEE
International Conference on Computer Vision (Kyoto,
Japan, Sept. 27–Oct. 4). IEEE Press, 2009.

15.	 Katz, G., Barrett, C., Dill, D., Julian, K., and
Kochenderfer, M. Reluplex: An efficient SMT solver
for verifying deep neural networks. In Proceedings
of the International Conference on Computer-Aided
Verification. Springer, Cham, 2017, 97–117.

16.	 Kurakin, A., Goodfellow, I., and Bengio, S. Adversarial
examples in the physical world. In Proceedings of the
International Conference on Learning Representations
(2017); https://arxiv.org/abs/1607.02533

17.	 Murphy, K.P. Machine Learning: A Probabilistic
Perspective. MIT Press, Cambridge, MA, 2012.

18.	 Nair, V. and Hinton, G.E. Rectified linear units improve
restricted Boltzmann machines. In Proceedings of the
International Conference on Machine Learning (Haifa,
Israel, June 21–24, 2010).

19.	 Papernot, N., Goodfellow, I., Sheatsley, R., Feinman,
R., and McDaniel, P. CleverHans v2.1.0: An adversarial
machine learning library; https://github.com/
tensorflow/cleverhans

20.	 Papernot, N., McDaniel, P., and Goodfellow, I.
Transferability in machine learning: From phenomena
to black-box attacks using adversarial samples. arXiv
preprint, 2016; https://arxiv.org/abs/1605.07277

21.	 Papernot, N., McDaniel, P., Goodfellow, I., Jha, S.,
Celik, Z.B., and Swami, A. Practical black-box attacks
against deep learning systems using adversarial
examples. In Proceedings of the ACM Asia Conference
on Computer and Communications Security (Abu
Dhabi, UAE). ACM Press, New York, 2017.

22.	 Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik,
Z.B., and Swami, A. The limitations of deep learning
in adversarial settings. In Proceedings of the 2016
IEEE European Symposium on Security and Privacy
(Saarbrücken, Germany, Mar. 21–24). IEEE Press,
2016, 372–387.

23.	Papernot, N., McDaniel, P., Sinha, A., and Wellman,
M. Towards the science of security and privacy
in machine learning. In Proceedings of the Third
IEEE European Symposium on Security and Privacy
(London, U.K.); https://arxiv.org/abs/1611.03814

24.	 Papernot, N., McDaniel, P., Wu, X., Jha, S., and
Swami, A. Distillation as a defense to adversarial
perturbations against deep neural networks. In

Proceedings of the 37th IEEE Symposium on Security
and Privacy (San Jose, CA, May 23–25). IEEE Press,
2016, 582–597.

25.	 Russell, S. and Norvig, P. Artificial Intelligence: A
Modern Approach. Prentice-Hall, Englewood Cliffs,
NJ, 1995, 25–27.

26.	 Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L.,
Van Den Driessche, G., Schrittwieser, J., Antonoglou,
I., Panneershelvam, V., Lanctot, M. et al. Mastering
the game of Go with deep neural networks and tree
search. Nature 529, 7587 (2016), 484–489.

27.	 Stallkamp, J., Schlipsing, M., Salmen, J., and Igel,
C. Man vs. computer: Benchmarking machine
learning algorithms for traffic sign recognition.
Neural Networks (2012); https://doi.org/10.1016/j.
neunet.2012.02.016

28.	 Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,
Anguelov, D., Erhan, C., Vanhoucke, V., and Rabinovich,
A. Going deeper with convolutions. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition. IEEE Press, 2015, 1–9.

29.	 Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and
Wojna, Z. Rethinking the Inception architecture for
computer vision. ArXiv e-prints, Dec. 2015; https://
arxiv.org/abs/1512.00567

30.	 Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J.,
Erhan, D., Goodfellow, I., and Fergus, R. Intriguing
properties of neural networks. In Proceedings
of the International Conference on Learning
Representations, 2014.

31.	 Taigman, Y., Yang, M., Ranzato, M.A., and Wolf,
L. DeepFace: Closing the gap to human-level
performance in face verification. In Proceedings of the
Computer Vision and Pattern Recognition Conference.
IEEE Press, 2014.

32.	 Tramèr, F., Kurakin, A., Papernot, N., Boneh, D., and
McDaniel, P. Ensemble adversarial training: Attacks
and defenses. arXiv preprint, 2017; https://arxiv.org/
abs/1705.07204

33.	 Tramèr, F., Zhang, F., Juels, A., Reiter, M.K., and
Ristenpart, T. Stealing machine learning models
via prediction APIs. In Proceedings of the USENIX
Security Conference (San Francisco, CA, Jan. 25–27).
USENIX Association, Berkeley, CA, 2016.

34.	 Wolpert, D.H. The lack of a priori distinctions between
learning algorithms. Neural Computation 8, 7 (1996),
1341–1390.

35.	 Xu, W., Qi, Y., and Evans, D. Automatically evading
classifiers. In Proceedings of the 2016 Network and
Distributed Systems Symposium (San Diego, CA, Feb.
21–24). Internet Society, Reston, VA, 2016.

Ian Goodfellow (goodfellow@google.com) is a staff
research scientist at Google Brain, Mountain View, CA,
USA, and inventor of Generative Adversarial Networks.

Patrick McDaniel (mcdaniel@cse.psu.edu) is the
William L. Weiss Professor of Information and
Communications Technology in the School of Electrical
Engineering and Computer Science at Pennsylvania State
University, University Park, PA, USA, and a fellow of both
IEEE and ACM.

Nicolas Papernot (ngp5056@cse.psu.edu) is a Google
Ph.D. Fellow in Security in the Department of Computer
Science and Engineering at Penn State University,
University Park, PA, USA.

Copyright held by the authors.

particular problem; it may simply be
replaced by another equally vexing
category of vulnerabilities. The vast-
ness of the set of all possible inputs
to a machine learning model seems
to be cause for pessimism. Even for
a relatively small binary vector, there
are far more possible input vectors
than there are atoms in the universe,
and it seems highly improbable that
a machine learning algorithm would
be able to process all of them accept-
ably. On the other hand, one may
hope that as classifiers become more
robust, it could become impractical
for an attacker to find input points
that are reliably misclassified by the
target model, particularly in the black-
box setting.

These questions may be addressed
empirically, by actually playing out
the arms race as new attacks and new
countermeasures are developed. We
may also be able to address these ques-
tions theoretically, by proving the arms
race must converge to some asymp-
tote. All these endeavors are difficult,
and we hope many will be inspired to
join the effort. 	

Acknowledgments
Author Nicolas Papernot is supported
by a Google Ph.D. Fellowship in Secu-
rity. Research was supported in part
by the Army Research Laboratory un-
der Cooperative Agreement Number
W911NF-13-2-0045 (ARL Cyber Secu-
rity CRA) and the Army Research Of-
fice under grant W911NF-13-1-0421.
The views and conclusions con-
tained in this article are those of the
authors and should not be interpret-
ed as representing the official poli-
cies, either expressed or implied, of
the Army Research Laboratory or the
U.S. government. The U.S. govern-
ment is authorized to reproduce and
distribute reprints for government
purposes notwithstanding any copy-
right notation hereon. 	

References
1.	 Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H.,

Rieck, K., and Siemens, C.E.R.T. Drebin: Effective and
explainable detection of Android malware in your
pocket. In Proceedings of the NDSS Symposium
(San Diego, CA, Feb.). Internet Society, Reston, VA,
2014, 23–26.

2.	 Barreno, M., Nelson, B., Sears, R., Joseph, A.D.,
and Tygar, J.D. Can machine learning be secure?
In Proceedings of the 2006 ACM Symposium on
Information, Computer and Communications Security
(Taipei, Taiwan, Mar. 21–24). ACM Press, New York,
2006, 16–25.

Watch the authors discuss
their work in this exclusive
Communications video.
https://cacm.acm.org/videos/
making-machine-learning-robust-
against-adversarial-inputs

