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Abstract—Directional detection predicts the angular component
of a gamma ray source’s location by analyzing the distribution
of counts received across an array of stationary detectors. The
array’s response to the source is a function of angle, as well
as other factors such as distance, energy, and obstructions. The
effectiveness of an angular prediction in a real-world environment
is therefore dependent on the inclusion of these phenomena
when processing the detector array data. With sufficiently rep-
resentative training data that captures these variables, it is
hypothesized that machine learning algorithms can aid in this
angular prediction process due to their success in other complex
data processing applications. A multi-step approach is introduced,
in which machine learning algorithms are tasked with addressing
specific complexities of the overall analysis. Initial results indicate
that this multi-step method is a viable option which can be
used to analyze different components of the array response.
Presented here is a proof-of-concept with simulated datasets of
three different isotopes, and measured datasets of two different
isotopes. Preliminary results indicate that a multi-step machine
learning approach improves the overall angle-prediction accuracy
compared to a single phase machine learning algorithm and a
least-squares comparison to a reference table.

Index Terms—Machine Learning, Source Search, Spectroscopic
Analysis

I. INTRODUCTION

THE localization of gamma ray sources is an important
component of many homeland and nuclear security appli-

cations. By analyzing the distribution of counts across detectors
within an array during a stationary acquisition, the angular
component of a source’s location can be predicted. Current
analysis methods include reference table based least squares
algorithms (RTLS) with stationary arrays [1], and maximum-
likelihood based methods with mobile arrays [2]. The ability
of these two methods to determine source direction is made
possible by two main effects: differences in each detector’s
solid angle with respect to the source, and self-occlusion of
the array. This yields a unique array response for each source
angle at a fixed stand-off distance, allowing for an angular
prediction by analysis of the detector outputs. A simulated
angular response curve for the detector array used in this work
is shown in Fig. 1.
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Fig. 1. Simulated angular response of the detector array used in this work for
a 300 cm fixed source stand-off distance. Radial values represent the fraction
of counts received in each detector, and diamonds represent detector positions.

In addition to angle, the array response to measurements
in real-world scenarios will also be a function of geometric
factors, gamma ray energy, and varying background. Thus, the
data analysis methods must be robust to the phenomena that
affect the array response.

Machine learning (ML) algorithms have shown promise in
various radiation detection applications, and incorporating a
multi-step ML analysis method has proven beneficial for some
applications, such as pulse shape discrimination [3]. ML has
not, however, been applied to stationary directional detection.
To address the many factors relevant to this domain, a multi-
step ML analysis is proposed. In this approach, dedicated
steps are assigned to classify the raw data, and based on that
classification, the data is ultimately processed by a specific
angular prediction algorithm. As a proof-of-concept, two al-
gorithmic phases are implemented in this analysis. The first
phase classifies the isotope to address the energy dependence
of the array response, and the second predicts the angular com-
ponent of the source’s location using isotope-specific training
data. Preliminary results are presented, where performance is
assessed in terms of accuracy, and compared against both a
single-step ML analysis and an RTLS based approach.

II. METHODS

The array used in this work consists of four 5.08 cm by
10.16 cm by 40.64 cm (2”x4”x16”) NaI detectors arranged in
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a 30 cm square with respect to the inner faces, with the 40.64
cm axis orthogonal to the source plane, as shown in Fig. 2.

Fig. 2. Detector array and associated electronics. Source holder (brown) can
be seen behind the array.

Simulated datasets were acquired utilizing Monte Carlo
n-Particle (MCNP6) [4], in which the detector array, point
source, and concrete floor were modeled and energy binned
pulse height tallies were recorded. Separate datasets of 10,000
individual trials each for 60Co, 137Cs, and 192Ir were simulated,
with different random source locations 0.5-5 m away from the
array center. Each trial was simulated with 10 million particles
with energies corresponding to each isotope. Measured datasets
included 225 60Co (7 µCi) trials and 150 137Cs (30 µCi) trials
with count times five and two minutes respectively. Distances
ranged from 0.5-5 m, and a CAEN digitizer was used for signal
collection and pulse processing.

For the proof of concept approach, a k-Nearest Neighbor
(KNN) algorithm was applied in both phases of the analysis,
first for isotope identification and then for source location.
A KNN algorithm takes the mode output value of the user
specified number of nearest neighbors in the input feature
space, as defined by the euclidean distance [5]. The simplified
input features for the isotope classification phase were taken as
the counts in each bin of a reduced ten-bin spectra, where each
bin had an energy width of 0.18 MeV over the range of 0.2-2
MeV. As developing an isotope identification method is not
the focus of this work, the reduced number of bins were used
for simplicity, and the input feature scheme was not optimized.
The inputs for the angular predictors were the fraction of counts
received in each detector. Due to the need for large quantities
of training data, simulated data was used for the training phase
for both the simulated and measured tests.

To test the utility of the multi-step approach, datasets were
trained in three ways: using single isotope training sets, using a
training set that combines isotopes, and using the multi-step ap-
proach in which the training set used for the angular predictions
is decided by the results of the isotope classifier. Additionally,
an RTLS analog was tested in each case. Reference tables were
generated from results produced with the source located at a
distance of 3 m from the detector at each angle. The 3 m
distance was chosen as it gave better results than other tested
distances. All three isotopes were tested for the simulations,

while due to availability only 60Co and 137Cs were tested for
the measurements. A k-fold cross validation scheme[5] was
implemented to iteratively split the datasets for training and
testing, to mitigate the effects of a specific split. Results in the
next section are therefore presented as a mean and standard
deviation across the k-folds.

III. PRELIMINARY RESULTS

The results of the simulated datasets are shown in Fig. 3,
where a yellower shade indicates higher accuracy.
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Fig. 3. Results of simulated tests

As expected, testing and training on the same isotope yielded
the best results. The last row in Fig. 3 gives the overall results
across all tested datasets. While there was improvement using
a combined training dataset, the multi-step approach yielded
the best results. Additionally, ML performance was greater
than that of the RTLS method across all tests, for example,
the overall multi-step approach of the LSRT yielded 0.3 %
accuracy. Measured results are shown in Fig. 4.
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Fig. 4. Results of measured tests

Similar trends were seen with the measured tests: the
best performance was achieved when the testing and training
datasets were of the same isotope, there was an improvement
in the overall results with the combined dataset, and the highest
accuracy (0.162) was seen with the multi-step approach. Here
again, ML out performed the RTLS approach. While results
of a ML algorithm are largely dependent on the agreement of
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testing and training data, the outcomes of this preliminary study
demonstrate that the complexities associated with directional
detection type measurements could benefit from a multi-step
algorithmic approach.

IV. CONCLUSION

To address the complexities associated with processing di-
rectional detection data, a multi-step ML approach is proposed
with algorithms applied to dedicated phases of the analysis.
Due to the energy dependence of the array’s angular response,
the preliminary scheme involved an isotope classifier, followed
by an isotope-specific angular predictor. Results of experimen-
tally measured and simulated datasets benefited from combined
datasets, but saw the highest accuracy when the multi-step
approach was used. The simulated tests, for example, saw an
overall improvement of approximately 20% with the multi-step
approach compared to using any single isotope in training. Fu-
ture work will include investigating the allowable discrepancies
between simulated and measured data when attempting to train
on simulations, as well as expanding and optimizing the multi-
step approach to address additional complexities in directional
detection.
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