
Cyber Fighter Associate:
A Decision Support System for Cyber Agility

Charles Huber, Dr. Patrick
McDaniel

The Pennsylvania State University
State College, PA

cjh5466@cse.psu.edu

Scott E. Brown

Secure Mission Solutions
2457 Aviation Ave, Suite 200
North Charleston, SC 29406

scott.e.brown96.ctr@mail.mil

Dr. Lisa Marvel

U.S. Army Research Laboratory
APG, MD 21005

lisa.m.marvel.civ@mail.mil

Abstract— In the event of a cyber attack it is important for
network defenders to make quick, informed decisions to secure
assets. However, the human decision making process is slow and
inefficient compared to the speed at which cyber operations can
occur. The use of a decision support system (DSS) would help aid
agility decisions to shorten the amount of time a network is
insecure. In tactical military networks, such a DSS would need to
consider constrained resources such as battery life and
bandwidth as well as mission goals. In this paper we describe a
DSS (Cyber Fighter Associate (CyFiA)) to help select agility
maneuvers to contain and eliminate a malicious infection in a
mobile ad hoc network (MANET). A variety of scenarios
prioritizing factors such as node criticality, health, security and
capability are employed. Our results show that CyFiA selects the
best sequence of maneuvers for the scenarios and can reduce
energy costs when securing a MANET.

Keywords—Decision Support; Security; Cyber Agility

I. INTRODUCTION
In the event of a cyber attack it is important for network

defenders to make quick, informed decisions to secure assets.
A defender often must analyze massive amounts of data to
determine the type of attack, where the network is
compromised, as well as the course of action to restore the
network back to the desired security level. The process of
accurately analyzing large amounts of data and taking action
based on data analysis takes a long time for humans. In
addition, the process can be stressful and human biases can
cause poor decisions [1]. In a military environment, agility
decisions become even more important as information and
services can be vital to an operation and impact soldiers’ lives.
Therefore, it is necessary to find a way to expedite the
decision making process while still making informed choices
in the event of a cyber attack.
 Decision Support Systems (DSS) are computer applications
that help make important, informed decisions based on large
amounts of data [1]. As a precedent, the Pilot’s Associate [2]
was a decision support application that helped fighter pilots
make decisions while flying. The Pilot’s Associate consisted
of four subsystems. Two subsystems analyzed the outside
environment and two subsystems planned actions based on

information gathered from the environment. The planning
systems reacted to threats in a way that supported a predefined
mission plan. Additionally, there is the Warfighter Associate
[3]. The Warfighter Associate is DSS that aids troops and
mission command in obtaining and analyzing intelligence,
surveillance, and reconnaissance (ISR) assets. Many other
systems are currently under development. Here we propose
the use of a DSS in the cyber domain to help network
defenders make informed cyber agility decisions to secure a
network.
 To show the plausibility of a DSS in the cyber domain, we
devised an experiment in which a DSS (CyFiA) makes agility
decisions to secure a small tactical network of ten nodes. Our
experiment is designed to follow the framework outlined in
[4].
 In this agility evaluation framework, several metrics were
established to guide the selection of agility maneuvers to
accomplish a primary mission (security a critical path) as well
as a secondary mission of securing the entire network. An
NS-3 network simulation was leveraged to simulate a mobile
ad hoc network. The framework uses an exhaustive search to
evaluate all possible maneuver sequences, then selects the best
in terms of mission priorities (e.g., maintain capability over
security). However, cyber defenders cannot wait until the
mission is over to decide the best sequence of maneuvers in
these dynamic networks and a more proactive decision aid is
needed.

CyFiA provides this decision support and takes into account
network and node information such as resource constraints,
health, capability, and security when making decisions. At this
time CyFiA’s agility maneuver set uses those described in [4].
Our results show that CyFiA chooses maneuvers to secure and
critical path and then the entire network in a variety of
scenarios while keeping agility maneuver cost to a minimum.
 The remainder of the paper is organized as follows. We
introduce the concepts CyFiA and the software used to
implement it followed by the simulation procedure. We then
describe the potential maneuvers for two scenarios, securing a
critical path and then security the remaining network nodes
using different priorities. Experimental results from the

2016 Annual Conference on Information Science and Systems (CISS)

978-1-4673-9457-4/16/$31.00 ©2016 IEEE

simulations are then described. Finally, we conclude with a
summary of our findings and propose future work.

II. CYBER FIGHTER ASSOCIATE
The CyFiA is a DSS that uses the Solomon Engine by

Veloxiti Inc [5, 6]. Decision Support Systems are comprised
of three components: the database management system
(DBMS), the model-base management system (MBMS), and
the dialog generation and management system (DGMS). The
DBMS holds large amounts of information gathered from the
environment. The MBMS transforms the data held in the
DBMS into something useful for decision-making. The
MBMS may hold multiple models to solve multiple classes of
problems. The DGMS provides insight to the user in the form
of a user interface. The Solomon Engine supplies a solid
MBMS and DGMS, but leaves the DBMS design and
implementation up to the creator. Since there are so many
possible database designs, we will not touch on CyFiA’s
DBMS implementation.

A. CyFiA Model Base Management System
The Solomon Engine is a cognitive engine that makes

decisions based on Boyd’s observe-orient-decide-act (OODA)
loop model. The OODA loop has been accepted as a way to
model decision-making in military environments. It is
comprised of four steps.
 Observe – A user interacts with an environment, usually by
using sensors or querying for information.
 Orient – The data observed is organized and filtered by the
user to attain some situational awareness and understand the
current state of the environment
 Decide – The user uses information derived from the
orientation to prioritize plans and goals.
 Act – The user selects and carries out a plan to satisfy some
goal
 To implement the OODA loop model, the Solomon Engine
divides the decision making process into two graphs: the
Observe-Orient graph (OOG) and the Decide-Act graph
(DAG). The graphs are both coded using a domain specific
language (DSL) that has strong ties to the Java programming
language. The nodes of the graphs are represented by “*.kb”
files that are compiled into Java classes. The Solomon Engine
(herein referred to as “the engine”) and all its parts are
implemented in the Eclipse Kepler IDE.
 The OOG and DAG use different data structures, but it is
important to note that the structures that make up both graphs
contain similar functionality. The DSL that defines the syntax
and semantics of these structures accepts many basic variable
types including integer, float, double, string, and character.
Values are copied between nodes in the graphs, so structures
such as lists and queues need to be carefully handled, but

Veloxiti provides a data type of “immutable list” that can be
passed from node to node or graph to graph without warnings.
On top of normal type declarations, values within nodes
require another identifier of either “key” or “attribute”. Keys
are vital to node creation. The engine will not create an
instance of a node until all keys defined in the node definition
have values. Attributes, however, are optional and do not need
to be assigned values at creation time.

B. Observe-Orient Graph
The OOG is used to filter data gathered from sensors. It

uses data structures called beliefs to hold and pass
information. Belief nodes are the connections from the sensors
in the environment to the engine. Normally, beliefs have at
least one key, but it is possible to have a belief with no keys.

Otherwise, information can be passed from belief to belief via
links.
 Links are structures for sharing data between node instances
in the same graph. All links have a parent and a child node and
have provided methods for updating child node attributes and
keys. Links also have a constraint method that can restrict the
update of a child if a predefined condition is not met.

C. Decide-Act Graph
The DAG is a decision tree composed of data structures

called plans and goals. Plans and goals follow two basic rules:

 In order to be satisfied, all of a plan’s child goals must be
satisfied. Any of a goal’s child plans should be sufficient
for satisfying the goal. [6]

In addition, goals can only be children to plans and plans
children to goals.

Fig. 1. CyFiA OOG

2016 Annual Conference on Information Science and Systems (CISS)

 Plans are especially important in the DAG. Plan nodes are
where proposals and actions live. Proposals and actions are the
way the engine communicates its decisions to the outside
world. A proposal is simply a suggestion of what a user should
do given the current state of the environment. The engine may
give multiple proposals at once with the expectation that the
user will act on one of them. Actions are automated decisions
the DSS will carry out to change the environment without user
interaction.

 In order for the OOG and DAG to communicate, special
links are needed called monitors. Monitors have the same
basic functions as the link class, however it is possible to
output alerts from a monitor to give information to a user.
Fig. 1 shows the OOG and the monitor connections to the
DAG in Fig. 2.

III. CYFIA IMPLEMENTATION
The Cyber Fighter Associate uses a simple implementation of
the Solomon Engine knowledge base as well as a database
containing information about the simulation network to make
network agility decisions. The goal of these agility decisions is
to prevent malicious software from propagating across the
network and eliminate it. Since our experiment was specific to
a single attack, CyFiA’s OOG is rather basic, specifically
looking for infected (malicious) nodes or newly immune
(patched) nodes. The OOG consists of two singleton beliefs
and two monitors as shown in Fig. 2. The first belief is used to
filter information in the database and begin agility decision-
making. The second belief is to change agility priorities during
the simulation. CyFiA’s DAG would determine which node to
perform agility on and which agility maneuver to perform.
The determination of which node to perform an agility

maneuver upon is calculated based on node security, energy
cost, and capability. Each of these calculations finds nodes
with maximum security, capability or minimum energy cost in
the network.
 Clearly the order in which agility calculations are carried

out has an effect on the node that is subjected to them.
Therefore CyFiA allows a priority to be set that determines the
order that the calculations will be done. This priority is
initially set when the engine is created and can be changed
real-time to alter agility calculation order to reflect priorities.
Additionally, CyFiA allows for an overall mission priority
where nodes that are critical to the current mission (critical
nodes) are considered for agility first.
 After a node has been selected for agility, CyFiA chooses
one of four maneuvers (same as those used in [4]):
 Patch – patches the selected node with a patch from another
node, making it immune to the malicious software.
 Healing – The selected node rewrites its code to fix the
vulnerability the malicious software will exploit.
 Quarantine – The selected node will stop using the function
or functions the malicious software will exploit.
 Blocking – The selected node will sever a connection or
connections in the network cutting off communication with
other nodes and preventing the malicious software from
spreading.

Currently, we lack an appropriate way to distinguish how
these agility maneuvers should be selected. CyFiA selects a
maneuver based on the battery life of the selected node, but
the decision to implement CyFiA this way was arbitrary and
can be modified. We later will see that due to simulation
battery values, the patching agility maneuver is always

Fig. 2. Portion of CyFiA DAG, reads top-down, left to right

Fig. 3. CyFiA OODA-loop Implementation

2016 Annual Conference on Information Science and Systems (CISS)

selected. Also, only one agility maneuver is selected at a time,
which ensures that CyFiA will not continuously send the same
agility maneuver thus allowing the simulator to update node
information. Fig. 3 shows a high level look of CyFiA’s
decision-making process.

IV. SIMULATION PROCEDURE
To test the basic concepts of a DSS in performing cyber

agility, CyFiA was used as part of a network simulation. The
(NS-3) network simulator propagates malicious software
through a small tactical network of ten nodes. All nodes begin
in identical state (health, capability, battery budget, etc.).

A. Initialization
The simulation is composed of three separate entities: NS-3,

a publish-and-subscribe server (PASS), and CyFiA. The PASS
acts as an intermediary between the simulator and CyFiA.
While a PASS is not necessarily needed in this scenario, it is
useful to use with a DSS as it helps group information from
many different sources (often called producers) and update
clients (consumers) with new information. In our experiment,
NS-3 is the only producer and CyFiA is the only consumer.
We decided to send data directly from CyFiA to NS-3 instead
of back through the PASS to keep information flow one way.

B. Assumptions
We make some fundamental assumptions to ensure the

simulation runs smoothly. Firstly, we assume that CyFiA
omniscient: it has all information about every node and the
network graph prior to receiving its first infected node. To
satisfy this assumption, NS-3 sends this information to CyFiA
prior to the simulation starting. Secondly, we assume that a
patch for the vulnerability being exploited exists and that
some node within our network has that patch. This is not a
requirement for CyFiA to operate correctly (if a patch does not
exist, the patching agility maneuver will not be selected).

C. Procedure
Our experiment runs in a turn-based style system.

Information is created and sent to the PASS by NS-3. The
PASS then forwards this information to CyFiA. CyFiA makes
an agility decision and sends that decision back to the NS-3 so
new information can be created. The NS-3 uses a queue
structure for simulation updates, so the simulator may queue
its own propagation events before an agility event, even
though the agility event was sent before the propagation event
was created. It is necessary to pause NS-3 while CyFiA makes
its decision and then un-pause the simulator once an agility
maneuver has been queued.

As stated in our assumptions, the first set of information
sent is all the attribute information for every node and the
network graph. Once the simulation begins, i.e. the first
infected node update is received, CyFiA will make an agility
decision, send that decision back to NS-3. NS-3 will then
update the simulation, including malware propagation, and

then send new information to CyFiA. There is an 80% chance
of malware propagation on every turn. It is also possible that
NS-3 will attempt to infect a node that already has the patch,
wasting a turn. The new information sent to CyFiA is only
information about nodes that has changed since the previous
turn. This cycle continues until all the nodes in the network
have been patched.

V. EXPERIMENTAL MEASURES
We tested CyFiA by comparing results of a patching

mission to that of an exhaustive list of possible patch orders.
The best-case results are determined in [4] using the
previously established notional metrics of health, capability
and security for the agility maneuvers.

TABLE I. TABLE TYPE STYLES

Values 0 25 50 75 100
Health H(i) H(s) --- H(v) H(p)
Capability C(b) C(i) C(q) C(h) C(p)
Security S(i) S(h) S(q) S(b) S(p)

A. Notational Measures
Notional measures of health, capability and security are

based on a maneuver state of a node and were numerical set
based on their interrelationship.

Health is defined as the overall network health, this value
ranges from 0-100 depending on the current state of the node:
i) infected; s) susceptible, node shares a connection with an
infected node; v) vulnerable, if the node if vulnerable to the
infection but not infected, and p) patched, if the node is
patched and therefore immune to the current infection.

Capability and Security are a function of the agility
maneuver: p: Patch, h: Healing q: Quarantine and
b: Blocking and Table 1 lists the numerical values for the node
states.

B. Calculating Costs
The second parameter is cost of patching, each time the

patch is transmitted between nodes in the MANET there is a
cost associated with transmitting and receiving the patch, and
therefore it is important that nodes are patched in an efficient
way. We repeat the cost of patch calculation [4] here for the
reader’s ease. We define the data transfer rate in bytes/second
for a link between node i and j as Ti,j. The energy required to
receive data at a node is prx and the energy required to transmit
data is ptx, both in units of Joules. As an example, assume that
the network nodes are linked between Node m and Node r
with r - m intermediate hops. Node m holds the patch needed
by Node r. Given a patch of size, b bytes, the cost to patch
can be calculated as:

 !"($, &) = 	∑ +
,-,-./

(012 + 042) + 	05467
89: 	 							(1)	

2016 Annual Conference on Information Science and Systems (CISS)

It is reasonable to assume that the energy required for

applying a patch, pa, can be calculated offline and represented
as a constant value. The cost of other maneuvers does not
depend on network node links are assumed to be computed off
line. It is also reasonable to assume that energy estimates to
heal vulnerable software, quarantine a function, and update
routing tables to block a node can all be calculated offline
using nodes similar to that in the network and that they can be
represented as a constant as is the case when calculating the
energy cost necessary to apply the patch.

VI. EXPERIMENTAL RESULTS
Each of these parameters is tested separately using CyFiA,

and the results were compared to that of the exhaustive list of

possible results. We can then determine if CyFiA was
successful in achieving the best possible solution. In addition,
there were two separate scenarios that we consider. The first
focuses on securing the entire network, patching each node
according to their current calculated health. The second
scenario contains nodes that are set as ‘mission critical’ nodes,
these nodes receive higher priority when selecting a node to
patch. Patching will continue until all mission critical nodes
are patched before moving on to patch the rest of the network.
For each of these scenarios we use an exhaustive list of all
possible patching scenarios, resulting in a total of possible 538
outcomes (agility maneuver sequences). The goal of utilizing
CyFiA is provide the best-case scenario, in a single execution.
We will compare our results from CyFiA to determine if we
achieve the best-case scenario.

A. Network First
The first test deals with patching the entire network with

each node in the network given the same patching priority
(each node is equally important). Fig. 4 shows the scenario is
configured with one node representing the source of the
infection (red node) and one node that is acting as the patch
source (green node). Susceptible nodes are nodes that are
subject to infection because they communicate with an

infected node (pink nodes). Blue nodes are vulnerable and
nodes along the yellow path are critical nodes.

When analyzing the results from CyFiA, we need to look at
a few different things, such as, how many nodes are infected
before the infection is contained, and the number of operations
it takes to fully patch the network. Fig. 5 shows that all nodes
were patched in a total of 10 operations, which (because we
are patching 10 nodes) is the least number of operations.
However it is equally important to check the order that nodes
were patched. Looking at Fig. 5, it can be seen that nodes
CyFiA patches nodes first based on their health value, with
node 3 being patched first because it is the first infected, but
then will continue to patch the network, based on a nearest
neighbor. This allows CyFiA to ensure that the patch is
delivered to each node with the least number of hops possible.
Because of CyFiA’s ability to have complete knowledge of
the network, it can select a node to be patched immediately
upon infection, which may work for our current model, but
will eventually need to include a delay to represent the time
before the infection is detected.

As the patch propagates through the network, there is a cost
with each time the patch passes through a node calculated in
Watts. Each of these values is taken into account when
comparing the results from CyFiA. CyFiA’s cumulative cost
for patching the network in this scenario is 307.5W. This is
considerably lower than the average cumulative cost of our

Fig. 4. CyFiA Scenario Network

Fig. 5. CyFiA Health Map for Network Scenario

Fig. 6. Cost Compared to Average Cost per Operation

2016 Annual Conference on Information Science and Systems (CISS)

exhaustive list of patching scenarios, which is 363.01W. Fig.
6 illustrates that the first node to patch is nearly always the
most costly maneuver. This is because of the distance between
the initial infected node and the source of the patch. After the
initial infected node is patched, we can see how CyFiA selects
to patch each node according to nearest neighbor. This allows
CyFiA to always make the best choice minimizing
battery/energy cost. Fig. 6 shows how after the initial turn,
CyFiA always selects the node to patch based on distance
from a node that already has the patch, therefore allowing it to
perform under the average cost for the first few operations.

B. Critical Nodes First
The second scenario contains nodes that are set as ‘mission

critical’ nodes. These nodes are shown in Fig. 4 the mission
critical path highlighted in yellow. CyFiA will prioritize

patching these nodes first over other nodes in the scenario.
In the critical node scenario, the patching order that CyFiA

gives us is based on patching critical nodes first based on their
health. In Fig. 7, CyFiA chooses to patch node 4 first because
of its proximity to the infected node 3. This move will ensure
that critical node 4 is protected, but allows node 0 to become
infected. After patching node 4, CyFiA will then begin to
patch each of the critical nodes, based on health and distance
from the patch. When we compare these results to the

exhaustive list, we can see that the average network health is
slightly higher in CyFiA’s results.

When measuring the cost associated with the CyFiA results
we get similar results to the first scenario. The cumulative cost

of patching the network is 307.5W. This is due to the fact that
CyFiA is still patching nodes in accordance with nearest
patched neighbor. Despite the fact that we are patching critical
nodes first, the cost for patching the network remains largely
the same. The average cumulative cost from our exhaustive
list increases, however, to 366.58W. Fig. 8 shows the results
of CyFiA when compared to the average cost per operation.

VII. CONCLUSION AND FUTURE WORK
We have shown that a DSS can help aid agility decisions to

shorten the amount of time a network is insecure. This is
particularly advantageous in tactical military networks where
constrained resources such as battery power and bandwidth as
well as mission goals must be considered. We produced a
simulation in which a CyFiA was used to contain and
eliminate a malicious infection from a small network
considering node criticality, health, security and capability.
Our results will show that our DSS selects the best sequence
of maneuvers and reduces energy costs.

Our future efforts will consider scenarios for securing nodes
when a patch does not exists and when there are multiple
vulnerabilities present in a network (with varying propagation
rates). Additionally, information about the severity of
vulnerable/infected nodes will be incorporated.

ACKNOWLEDGMENT
The effort described in this article was partially sponsored

by the U.S. Army Research Laboratory Cyber Security
Collaborative Research Alliance under Contract Number
W911NF-13-2-0045. In addition, this research was partially
accomplished under Contract Number N65235-06-D8847. The
views and conclusions contained in this document are those of
the authors, and should not be interpreted as representing the
official policies, either expressed or implied, of the Army
Research Laboratory or the U.S. Government. The U.S.
Government is authorized to reproduce and distribute reprints
for Government purposes, notwithstanding any copyright
notation hereon.

REFERENCES
[1] Marek J. Druzdzel and Roger R. Flynn, “Decision Support Systems,”

Encyclopedia of Library and Information Science, Second Edition,
Marcel Dekker, Inc., New York, 2002.

[2] Sheila B. Banks and Carl S. Lizza, “Pilot’s Associate: A Cooperative,
Knowledge-Based System Application,” IEEE Expert 1991, October
2015.

[3] Norbou Buckler, Laura R. Marusich, Stacey Sokoloff, “The Warfighter
Associate: Decision-support software agent for the management of
intelligence, surveillance, and reconnaissance (ISR) assets” SPIE
Ground/Air Multisensor Interoperability, Integration, and Networking
for Persistent ISR V 2014, October 2015.

[4] Lisa M. Marvel, Scott Brown, Iulian Neamtiu, Richard Harang, David
Harman, Brian Henz, “A Framework to Evaluate Cyber Agility,” IEEE
MILCOM 2015, Tampa, FL, October 2015.

[5] Boyd, J., “Organic design for command and control,” In Discourses on
Winning and Losing, unpublished slide presentation, Marine Corps
University Research Archives, charts 16, 25 (1986).

[6] Larry Lafferty, “Velox Technology Overview,” unpublished.

Fig. 7. CyFiA Health Map for Critical Node Scenario

Fig. 8. CyFiA Cost Compared to Average Cost per Operation

2016 Annual Conference on Information Science and Systems (CISS)

