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Abstract— In the event of a cyber attack it is important for 
network defenders to make quick, informed decisions to secure 
assets.  However, the human decision making process is slow and 
inefficient compared to the speed at which cyber operations can 
occur. The use of a decision support system (DSS) would help aid 
agility decisions to shorten the amount of time a network is 
insecure. In tactical military networks, such a DSS would need to 
consider constrained resources such as battery life and 
bandwidth as well as mission goals. In this paper we describe a 
DSS (Cyber Fighter Associate (CyFiA)) to help select agility 
maneuvers to contain and eliminate a malicious infection in a 
mobile ad hoc network (MANET).  A variety of scenarios 
prioritizing factors such as node criticality, health, security and 
capability are employed. Our results show that CyFiA selects the 
best sequence of maneuvers for the scenarios and can reduce 
energy costs when securing a MANET.   

Keywords—Decision Support; Security; Cyber Agility  

I. INTRODUCTION  
In the event of a cyber attack it is important for network 

defenders to make quick, informed decisions to secure assets. 
A defender often must analyze massive amounts of data to 
determine the type of attack, where the network is 
compromised, as well as the course of action to restore the 
network back to the desired security level. The process of 
accurately analyzing large amounts of data and taking action 
based on data analysis takes a long time for humans. In 
addition, the process can be stressful and human biases can 
cause poor decisions [1]. In a military environment, agility 
decisions become even more important as information and 
services can be vital to an operation and impact soldiers’ lives. 
Therefore, it is necessary to find a way to expedite the 
decision making process while still making informed choices 
in the event of a cyber attack.  
 Decision Support Systems (DSS) are computer applications 
that help make important, informed decisions based on large 
amounts of data [1]. As a precedent, the Pilot’s Associate [2] 
was a decision support application that helped fighter pilots 
make decisions while flying. The Pilot’s Associate consisted 
of four subsystems. Two subsystems analyzed the outside 
environment and two subsystems planned actions based on 

information gathered from the environment. The planning 
systems reacted to threats in a way that supported a predefined 
mission plan. Additionally, there is the Warfighter Associate 
[3]. The Warfighter Associate is DSS that aids troops and 
mission command in obtaining and analyzing intelligence, 
surveillance, and reconnaissance (ISR) assets. Many other 
systems are currently under development.  Here we propose 
the use of a DSS in the cyber domain to help network 
defenders make informed cyber agility decisions to secure a 
network.  
 To show the plausibility of a DSS in the cyber domain, we 
devised an experiment in which a DSS (CyFiA) makes agility 
decisions to secure a small tactical network of ten nodes. Our 
experiment is designed to follow the framework outlined in 
[4].  
 In this agility evaluation framework, several metrics were 
established to guide the selection of agility maneuvers to 
accomplish a primary mission (security a critical path) as well 
as a secondary mission of securing the entire network.  An 
NS-3 network simulation was leveraged to simulate a mobile 
ad hoc network. The framework uses an exhaustive search to 
evaluate all possible maneuver sequences, then selects the best 
in terms of mission priorities (e.g., maintain capability over 
security). However, cyber defenders cannot wait until the 
mission is over to decide the best sequence of maneuvers in 
these dynamic networks and a more proactive decision aid is 
needed. 

CyFiA provides this decision support and takes into account 
network and node information such as resource constraints, 
health, capability, and security when making decisions. At this 
time CyFiA’s agility maneuver set uses those described in [4]. 
Our results show that CyFiA chooses maneuvers to secure and 
critical path and then the entire network in a variety of 
scenarios while keeping agility maneuver cost to a minimum. 
 The remainder of the paper is organized as follows.  We 
introduce the concepts CyFiA and the software used to 
implement it followed by the simulation procedure.  We then 
describe the potential maneuvers for two scenarios, securing a 
critical path and then security the remaining network nodes 
using different priorities.  Experimental results from the 
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simulations are then described. Finally, we conclude with a 
summary of our findings and propose future work. 

II. CYBER FIGHTER ASSOCIATE 
The CyFiA is a DSS that uses the Solomon Engine by 

Veloxiti Inc [5, 6]. Decision Support Systems are comprised 
of three components: the database management system 
(DBMS), the model-base management system (MBMS), and 
the dialog generation and management system (DGMS). The 
DBMS holds large amounts of information gathered from the 
environment. The MBMS transforms the data held in the 
DBMS into something useful for decision-making. The 
MBMS may hold multiple models to solve multiple classes of 
problems. The DGMS provides insight to the user in the form 
of a user interface. The Solomon Engine supplies a solid 
MBMS and DGMS, but leaves the DBMS design and 
implementation up to the creator. Since there are so many 
possible database designs, we will not touch on CyFiA’s 
DBMS implementation. 

A. CyFiA Model Base Management System 
The Solomon Engine is a cognitive engine that makes 

decisions based on Boyd’s observe-orient-decide-act (OODA) 
loop model. The OODA loop has been accepted as a way to 
model decision-making in military environments. It is 
comprised of four steps. 
 Observe – A user interacts with an environment, usually by 
using sensors or querying for information. 
  Orient – The data observed is organized and filtered by the 
user to attain some situational awareness and understand the 
current state of the environment 
 Decide – The user uses information derived from the 
orientation to prioritize plans and goals. 
 Act – The user selects and carries out a plan to satisfy some 
goal 
 To implement the OODA loop model, the Solomon Engine 
divides the decision making process into two graphs: the 
Observe-Orient graph (OOG) and the Decide-Act graph 
(DAG). The graphs are both coded using a domain specific 
language (DSL) that has strong ties to the Java programming 
language. The nodes of the graphs are represented by “*.kb” 
files that are compiled into Java classes. The Solomon Engine 
(herein referred to as “the engine”) and all its parts are 
implemented in the Eclipse Kepler IDE.  
 The OOG and DAG use different data structures, but it is 
important to note that the structures that make up both graphs 
contain similar functionality. The DSL that defines the syntax 
and semantics of these structures accepts many basic variable 
types including integer, float, double, string, and character. 
Values are copied between nodes in the graphs, so structures 
such as lists and queues need to be carefully handled, but 

Veloxiti provides a data type of “immutable list” that can be 
passed from node to node or graph to graph without warnings. 
On top of normal type declarations, values within nodes 
require another identifier of either “key” or “attribute”. Keys 
are vital to node creation. The engine will not create an 
instance of a node until all keys defined in the node definition 
have values. Attributes, however, are optional and do not need 
to be assigned values at creation time. 

B.  Observe-Orient Graph 
The OOG is used to filter data gathered from sensors. It 

uses data structures called beliefs to hold and pass 
information. Belief nodes are the connections from the sensors 
in the environment to the engine. Normally, beliefs have at 
least one key, but it is possible to have a belief with no keys. 

Otherwise, information can be passed from belief to belief via 
links.  
 Links are structures for sharing data between node instances 
in the same graph. All links have a parent and a child node and 
have provided methods for updating child node attributes and 
keys. Links also have a constraint method that can restrict the 
update of a child if a predefined condition is not met. 

C. Decide-Act Graph 
The DAG is a decision tree composed of data structures 

called plans and goals. Plans and goals follow two basic rules:  
 

 In order to be satisfied, all of a plan’s child goals must be 
satisfied. Any of a goal’s child plans should be sufficient 
for satisfying the goal. [6] 

 
In addition, goals can only be children to plans and plans 
children to goals.  

 
Fig. 1. CyFiA OOG 
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 Plans are especially important in the DAG. Plan nodes are 
where proposals and actions live. Proposals and actions are the 
way the engine communicates its decisions to the outside 
world. A proposal is simply a suggestion of what a user should 
do given the current state of the environment. The engine may 
give multiple proposals at once with the expectation that the 
user will act on one of them. Actions are automated decisions 
the DSS will carry out to change the environment without user 
interaction.  

 In order for the OOG and DAG to communicate, special 
links are needed called monitors. Monitors have the same 
basic functions as the link class, however it is possible to 
output alerts from a monitor to give information to a user. 
Fig. 1 shows the OOG and the monitor connections to the 
DAG in Fig. 2.  

III. CYFIA IMPLEMENTATION 
The Cyber Fighter Associate uses a simple implementation of 
the Solomon Engine knowledge base as well as a database 
containing information about the simulation network to make 
network agility decisions. The goal of these agility decisions is 
to prevent malicious software from propagating across the 
network and eliminate it. Since our experiment was specific to 
a single attack, CyFiA’s OOG is rather basic, specifically 
looking for infected (malicious) nodes or newly immune 
(patched) nodes. The OOG consists of two singleton beliefs 
and two monitors as shown in Fig. 2. The first belief is used to 
filter information in the database and begin agility decision-
making. The second belief is to change agility priorities during 
the simulation. CyFiA’s DAG would determine which node to 
perform agility on and which agility maneuver to perform. 
The determination of which node to perform an agility 

maneuver upon is calculated based on node security, energy 
cost, and capability. Each of these calculations finds nodes 
with maximum security, capability or minimum energy cost in 
the network. 
  Clearly the order in which agility calculations are carried 

out has an effect on the node that is subjected to them. 
Therefore CyFiA allows a priority to be set that determines the 
order that the calculations will be done. This priority is 
initially set when the engine is created and can be changed 
real-time to alter agility calculation order to reflect priorities. 
Additionally, CyFiA allows for an overall mission priority 
where nodes that are critical to the current mission (critical 
nodes) are considered for agility first.  
 After a node has been selected for agility, CyFiA chooses 
one of four maneuvers (same as those used in [4]): 
 Patch – patches the selected node with a patch from another 
node, making it immune to the malicious software. 
 Healing – The selected node rewrites its code to fix the 
vulnerability the malicious software will exploit. 
 Quarantine – The selected node will stop using the function 
or functions the malicious software will exploit. 
 Blocking – The selected node will sever a connection or 
connections in the network cutting off communication with 
other nodes and preventing the malicious software from 
spreading. 

Currently, we lack an appropriate way to distinguish how 
these agility maneuvers should be selected. CyFiA selects a 
maneuver based on the battery life of the selected node, but 
the decision to implement CyFiA this way was arbitrary and 
can be modified. We later will see that due to simulation 
battery values, the patching agility maneuver is always 

 
Fig. 2. Portion of CyFiA DAG, reads top-down, left to right 

 

 
Fig. 3. CyFiA OODA-loop Implementation 
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selected. Also, only one agility maneuver is selected at a time, 
which ensures that CyFiA will not continuously send the same 
agility maneuver thus allowing the simulator to update node 
information. Fig. 3 shows a high level look of CyFiA’s 
decision-making process. 

IV. SIMULATION PROCEDURE 
To test the basic concepts of a DSS in performing cyber 

agility, CyFiA was used as part of a network simulation. The 
(NS-3) network simulator propagates malicious software 
through a small tactical network of ten nodes. All nodes begin 
in identical state (health, capability, battery budget, etc.). 

A. Initialization 
The simulation is composed of three separate entities: NS-3, 

a publish-and-subscribe server (PASS), and CyFiA. The PASS 
acts as an intermediary between the simulator and CyFiA. 
While a PASS is not necessarily needed in this scenario, it is 
useful to use with a DSS as it helps group information from 
many different sources (often called producers) and update 
clients (consumers) with new information. In our experiment, 
NS-3 is the only producer and CyFiA is the only consumer. 
We decided to send data directly from CyFiA to NS-3 instead 
of back through the PASS to keep information flow one way.  

B. Assumptions 
We make some fundamental assumptions to ensure the 

simulation runs smoothly. Firstly, we assume that CyFiA 
omniscient: it has all information about every node and the 
network graph prior to receiving its first infected node. To 
satisfy this assumption, NS-3 sends this information to CyFiA 
prior to the simulation starting. Secondly, we assume that a 
patch for the vulnerability being exploited exists and that 
some node within our network has that patch. This is not a 
requirement for CyFiA to operate correctly (if a patch does not 
exist, the patching agility maneuver will not be selected).   

C. Procedure 
Our experiment runs in a turn-based style system. 

Information is created and sent to the PASS by NS-3. The 
PASS then forwards this information to CyFiA. CyFiA makes 
an agility decision and sends that decision back to the NS-3 so 
new information can be created. The NS-3 uses a queue 
structure for simulation updates, so the simulator may queue 
its own propagation events before an agility event, even 
though the agility event was sent before the propagation event 
was created. It is necessary to pause NS-3 while CyFiA makes 
its decision and then un-pause the simulator once an agility 
maneuver has been queued.  

As stated in our assumptions, the first set of information 
sent is all the attribute information for every node and the 
network graph. Once the simulation begins, i.e. the first 
infected node update is received, CyFiA will make an agility 
decision, send that decision back to NS-3. NS-3 will then 
update the simulation, including malware propagation, and 

then send new information to CyFiA. There is an 80% chance 
of malware propagation on every turn. It is also possible that 
NS-3 will attempt to infect a node that already has the patch, 
wasting a turn. The new information sent to CyFiA is only 
information about nodes that has changed since the previous 
turn. This cycle continues until all the nodes in the network 
have been patched. 

V. EXPERIMENTAL MEASURES 
We tested CyFiA by comparing results of a patching 

mission to that of an exhaustive list of possible patch orders. 
The best-case results are determined in [4] using the 
previously established notional metrics of health, capability 
and security for the agility maneuvers.   

TABLE I.   TABLE TYPE STYLES 

Values 0 25 50 75 100 
Health H(i) H(s) ---  H(v) H(p) 
Capability C(b) C(i) C(q) C(h) C(p) 
Security S(i) S(h) S(q) S(b) S(p) 

A. Notational Measures 
Notional measures of health, capability and security are 

based on a maneuver state of a node and were numerical set 
based on their interrelationship.  

Health is defined as the overall network health, this value 
ranges from 0-100 depending on the current state of the node: 
i) infected; s) susceptible, node shares a connection with an 
infected node; v) vulnerable, if the node if vulnerable to the 
infection but not infected, and p) patched, if the node is 
patched and therefore immune to the current infection.   

Capability and Security are a function of the agility 
maneuver:  p: Patch,  h: Healing q: Quarantine and 
b: Blocking and Table 1 lists the numerical values for the node 
states. 

B. Calculating Costs 
The second parameter is cost of patching, each time the 

patch is transmitted between nodes in the MANET there is a 
cost associated with transmitting and receiving the patch, and 
therefore it is important that nodes are patched in an efficient 
way.  We repeat the cost of patch calculation [4] here for the 
reader’s ease.  We define the data transfer rate in bytes/second 
for a link between node i and j as Ti,j.  The energy required to 
receive data at a node is prx and the energy required to transmit 
data is ptx, both in units of Joules.  As an example, assume that 
the network nodes are linked between Node m and Node r 
with r - m intermediate hops.  Node m holds the patch needed 
by Node r.  Given a patch of size, b bytes, the cost to patch 
can be calculated as: 

      !"($, &) = 	∑ +
,-,-./

(012 + 042) + 	05467
89:     	 							(1)	
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It is reasonable to assume that the energy required for 

applying a patch, pa, can be calculated offline and represented 
as a constant value. The cost of other maneuvers does not 
depend on network node links are assumed to be computed off 
line.  It is also reasonable to assume that energy estimates to 
heal vulnerable software, quarantine a function, and update 
routing tables to block a node can all be calculated offline 
using nodes similar to that in the network and that they can be 
represented as a constant as is the case when calculating the 
energy cost necessary to apply the patch. 

VI. EXPERIMENTAL RESULTS 
Each of these parameters is tested separately using CyFiA, 

and the results were compared to that of the exhaustive list of 

possible results.  We can then determine if CyFiA was 
successful in achieving the best possible solution. In addition, 
there were two separate scenarios that we consider.  The first 
focuses on securing the entire network, patching each node 
according to their current calculated health. The second 
scenario contains nodes that are set as ‘mission critical’ nodes, 
these nodes receive higher priority when selecting a node to 
patch.  Patching will continue until all mission critical nodes 
are patched before moving on to patch the rest of the network. 
For each of these scenarios we use an exhaustive list of all 
possible patching scenarios, resulting in a total of possible 538 
outcomes (agility maneuver sequences).  The goal of utilizing 
CyFiA is provide the best-case scenario, in a single execution.  
We will compare our results from CyFiA to determine if we 
achieve the best-case scenario.  

A. Network First 
The first test deals with patching the entire network with 

each node in the network given the same patching priority 
(each node is equally important). Fig. 4 shows the scenario is 
configured with one node representing the source of the 
infection (red node) and one node that is acting as the patch 
source (green node).  Susceptible nodes are nodes that are 
subject to infection because they communicate with an 

infected node (pink nodes). Blue nodes are vulnerable and 
nodes along the yellow path are critical nodes. 

When analyzing the results from CyFiA, we need to look at 
a few different things, such as, how many nodes are infected 
before the infection is contained, and the number of operations 
it takes to fully patch the network. Fig. 5 shows that all nodes 
were patched in a total of 10 operations, which (because we 
are patching 10 nodes) is the least number of operations. 
However it is equally important to check the order that nodes 
were patched. Looking at Fig. 5, it can be seen that nodes 
CyFiA patches nodes first based on their health value, with 
node 3 being patched first because it is the first infected, but 
then will continue to patch the network, based on a nearest 
neighbor. This allows CyFiA to ensure that the patch is 
delivered to each node with the least number of hops possible. 
Because of CyFiA’s ability to have complete knowledge of 
the network, it can select a node to be patched immediately 
upon infection, which may work for our current model, but 
will eventually need to include a delay to represent the time 
before the infection is detected.  

As the patch propagates through the network, there is a cost 
with each time the patch passes through a node calculated in 
Watts. Each of these values is taken into account when 
comparing the results from CyFiA. CyFiA’s cumulative cost 
for patching the network in this scenario is 307.5W. This is 
considerably lower than the average cumulative cost of our 

 
Fig. 4. CyFiA Scenario Network 

 

 
Fig. 5. CyFiA Health Map for Network Scenario 

 

 
Fig. 6. Cost Compared to Average Cost per Operation 

 

2016 Annual Conference on Information Science and Systems (CISS)



exhaustive list of patching scenarios, which is 363.01W.  Fig. 
6 illustrates that the first node to patch is nearly always the 
most costly maneuver. This is because of the distance between 
the initial infected node and the source of the patch. After the 
initial infected node is patched, we can see how CyFiA selects 
to patch each node according to nearest neighbor. This allows 
CyFiA to always make the best choice minimizing 
battery/energy cost. Fig. 6 shows how after the initial turn, 
CyFiA always selects the node to patch based on distance 
from a node that already has the patch, therefore allowing it to 
perform under the average cost for the first few operations.  

B. Critical Nodes First 
The second scenario contains nodes that are set as ‘mission 

critical’ nodes. These nodes are shown in Fig. 4 the mission 
critical path highlighted in yellow. CyFiA will prioritize 

patching these nodes first over other nodes in the scenario. 
In the critical node scenario, the patching order that CyFiA 

gives us is based on patching critical nodes first based on their 
health. In Fig. 7, CyFiA chooses to patch node 4 first because 
of its proximity to the infected node 3. This move will ensure 
that critical node 4 is protected, but allows node 0 to become 
infected. After patching node 4, CyFiA will then begin to 
patch each of the critical nodes, based on health and distance 
from the patch. When we compare these results to the 

exhaustive list, we can see that the average network health is 
slightly higher in CyFiA’s results.  

When measuring the cost associated with the CyFiA results 
we get similar results to the first scenario. The cumulative cost 

of patching the network is 307.5W. This is due to the fact that 
CyFiA is still patching nodes in accordance with nearest 
patched neighbor. Despite the fact that we are patching critical 
nodes first, the cost for patching the network remains largely 
the same. The average cumulative cost from our exhaustive 
list increases, however, to 366.58W. Fig. 8 shows the results 
of CyFiA when compared to the average cost per operation.  

VII. CONCLUSION AND FUTURE WORK 
We have shown that a DSS can help aid agility decisions to 

shorten the amount of time a network is insecure. This is 
particularly advantageous in tactical military networks where 
constrained resources such as battery power and bandwidth as 
well as mission goals must be considered. We produced a 
simulation in which a CyFiA was used to contain and 
eliminate a malicious infection from a small network 
considering node criticality, health, security and capability. 
Our results will show that our DSS selects the best sequence 
of maneuvers and reduces energy costs.   

Our future efforts will consider scenarios for securing nodes 
when a patch does not exists and when there are multiple 
vulnerabilities present in a network (with varying propagation 
rates). Additionally, information about the severity of 
vulnerable/infected nodes will be incorporated.  
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Fig. 7. CyFiA Health Map for Critical Node Scenario 

 

 
Fig. 8. CyFiA Cost Compared to Average Cost per Operation 
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