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ABSTRACT

Data sharing among partners—users, companies, organizations—is
crucial for the advancement of collaborative machine learning in
many domains such as healthcare, finance, and security. Sharing
through secure computation and other means allow these part-
ners to perform privacy-preserving computations on their private
data in controlled ways. However, in reality, there exist complex
relationships amongmembers (partners). Politics, regulations, inter-
est, trust, data demands and needs prevent members from sharing
their complete data. Thus, there is a need for a mechanism to meet
these conflicting relationships on data sharing. This paper presents
Curie1, an approach to exchange data among members who have
complex relationships. A novel policy language, CPL, that allows
members to define the specifications of data exchange requirements
is introduced. With CPL, members can easily assert who and what
to exchange through their local policies and negotiate a global
sharing agreement. The agreement is implemented in a distributed
privacy-preserving model that guarantees sharing among members
will comply with the policy as negotiated. The use of Curie is vali-
dated through an example healthcare application built on recently
introduced secure multi-party computation and differential privacy
frameworks, and policy and performance trade-offs are explored.

CCS CONCEPTS

• Information systems → Data exchange; • Security and pri-

vacy → Economics of security and privacy.

KEYWORDS

Collaborative learning; policy language; secure data exchange

1 INTRODUCTION

Inter-organizational data sharing is crucial to the advancement of
many domains including security, health care, and finance. Previous
works have shown the benefit of data sharing within distributed,
1Our paper named after Marie Curie. She is physicist and chemist who conducted
pioneering research in health care and won Nobel prize twice.
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Figure 1: An illustration of data exchange requirements of countries

learning a predictive model on their shared data. Arrows show the

data requirements of countries.

collaborative, and federated learning [5, 12, 37]. Privacy-preserving
machine learning offers data sharing among multiple members
while avoiding the risks of disclosing the sensitive data (e.g., health-
care records, personally identifiable information) [14]. For example,
secure multiparty computation enables multiple members, each
with its training dataset, to collaboratively learn a shared predictive
model without revealing their datasets [31]. These approaches solve
the privacy concerns of members during model computation, yet do
not consider the complex relationships such as regulations, compet-
itive advantage, data sovereignty, and jurisdiction among members
on private data sharing. Members want to be able to articulate and
enforce their conflicting requirements on data sharing.

To illustrate such complex data sharing requirements, consider
health care organizations that collaborate for a joint prediction
model of diagnosis of patients experiencing blood clots (see Fig-
ure 1). Members wish to dictate their needs through their legal and
political limitations as follows: U.S.1 is able to share its complete
data for nation-wide members (U.S.2) [3, 23], yet it is obliged to
share the data of patients deployed in NATO countries with NATO
members (UK) [17]. However, U.S.1 wishes to acquire all patient
data from other countries. UK is able to share and acquire complete
data from NATO members, yet it desires to acquire only data of
certain race groups from U.S1 to increase its data diversity. RU
wishes to share and acquire complete data from all members, yet
members limit their data share to Russian citizens who live in their
countries. Such complex data sharing requirements also commonly
occur today in non-healthcare systems [28, 38]. For instance, Na-
tional Security Agency has varying restrictions on how human
intelligence is shared with other countries; financial companies
share data based on trust, and competition among each other.

This paper presents a policy-based data exchange approach,
called Curie, that allows secure data exchange among members
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that have such complex relationships. Members specify their re-
quirements on data exchange using a policy language (CPL). The
requirements defined with the use of CPL form the local data ex-
change policies of members. Local policies are defined separately
for data sharing and data acquisition policies. This property allows
asymmetric relations on data exchange. For example, a member
does not necessarily have to acquire the data that the other mem-
bers dictate to share. By using these two policies, members spec-
ify statements of who to share/acquire and what to share/acquire.
The statements are defined using conditional and selection expres-
sions. Selections allow members to filter data and limit the data
to be exchanged, whereas conditional expressions allow members
to define logical statements. Another advanced property of CPL
is predefined data-dependent conditionals for calculating the sta-
tistical metrics between member’s data. For instance, members
can define a conditional to compute the intersection size of data
columns without disclosing their data. This allows members to de-
fine content-dependent conditional data exchange in their policies.

Once members have defined their local policies, they negotiate
a sharing agreement. The guarantee provided by Curie is that all
data exchanged among members will respect the agreement. The
agreement is executed in a multi-party privacy-preserving predic-
tion model enhanced with optional differential privacy guarantees.
In this work, we make the following contributions:
• We introduce Curie, an approach for secure data exchange
among members that have complex relationships. Curie in-
cludes CPL policy language allowing members to define
complex specifications of data exchange requirements, nego-
tiate an agreement, and execute agreements in a multi-party
predictive model that policies respect the negotiated policy.
• We validate Curie through an example of real healthcare
application used to prescribe warfarin dosage. A privacy-
preserving joint dose model among medical institutions is
compiled with the use of various data exchange policies
while protecting the privacy of members’ healthcare records.
• We show Curie incurs low overhead and policies are effective
at improving the dose accuracy of medical institutions.

We begin in the next section by defining the analysis task and
outlining the security and attacker models.

2 PROBLEM SCOPE AND ATTACKER MODEL

Problem Scope. We introduce Curie Policy Language (CPL) to
express data exchange requirements of distributed members. Un-
like the programming languages used for writing secure multi-
party computation (MPC) [24, 33] and the frameworks designed for
privacy-preserving machine learning (ML) [7, 14, 29, 31, 32], CPL
is a policy language in a Backus Normal Form (BNF) notation to
express the conflicting relationships of members on data sharing.
Members can express data exchange requirements using the condi-
tionals, selections, and secure pairwise data-dependent statistics.
Curie then enforces the policy agreements in a shared predictive
model through an MPC protocol that ensures members comply
with the policies as negotiated.

We integrate Curie into 24 medical institutions. Without deploy-
ment of Curie, institutions compute warfarin dosage of a patient
using a model computed on their local patient records. Curie allows
institutions to construct various consortia wherein each member
defines a data exchange policy for other members via CPL. This

Consor&um	and	Local	Policies	 Policy	Nego&a&ons	Members	
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on	shared	

data	
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Figure 2: Curie data exchange process in a collaborative learning

setting. The dashed boxes show data remains confidential.

enables institutions to acquire the patient records based on regula-
tions as well as the records that they need to improve the accuracy
of their dose predictions. Curie implements a privacy-preserving
dose model through homomorphic encryption (HE) to enforce the
policy agreements of the members. We note that a centralized party
in HE cannot provide a privacy-preserving model on negotiated
data [39]. However, Curie implements a novel protocol that allows
institutions to perform local computations by aggregating the inter-
mediate results of the dose model. Additionally, Curie implements
an optional differential private (DP) mechanism that allows insti-
tutions to perform differentially-private (DP) secure dose model.
DP guarantees that no information leaks on the targeted individual
(i.e., patient) with high confidence from the released dose model.
Threat Model. We consider a semi-honest adversary model. That
is, members in a consortium runs the protocol exactly as specified,
yet they try to learn the dataset inputs of the other members as
much as possible from their views of the protocol. Additionally, we
consider non-adaptive adversary wherein members cannot modify
inputs of their dataset once the protocol on shared data is initiated.

3 ORGANIZATIONAL DATA EXCHANGE

Depicted in Figure 2, Curie includes two independent parts: policy
management and multiparty secure computation.
Policy Management.We define a consortium that is a group made
up of two ormoremembers–individuals, companies or governments
( a ). Members of a consortium aim to compute a predictive model
m over their confidential data in a secure manner. For instance, data
may be curated from medical history of patients or financial reports
of companies with the objective of building an MLmodel. Moreover,
each member wants to enforce a set of local constraints toward
other consortium members to control their requirements on how
andwith whom they share their confidential data. These constraints
define a member’s interest, trust, regulations and data demands,
and also impacts the accuracy of a modelm. Thus, there is a need
for connecting data needs of members to the privacy-preserving
models. In Curie, each member of a consortium defines a local policy
( b ). The local policy of a member dictates the requirements of data
exchange as follows:
(1) The member wishes to specify with whom to share and acquire

data (partnership requirement).
(2) The member wishes to define what data to share and acquire

(sharing and acquisition requirement).
In this, the member wishes to refine its sharing and acquisition
requirements to express the following:
(1) The member wishes to dictate a set of conditions to restrict

data sharing and select which data to be acquired (conditional
selective share and acquisition); and
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(2) The member wishes to dictate conditionals based on the other
member’s data (data-dependent conditionals).
The policy ofmembers need not be-nor are likely to be-symmetric.

Local policy is defined with requirements for sharing and acquisi-
tion that is tailored to each partner member in the consortium–thus
allowing each pairwise sharing to be unique. Here, the local poli-
cies are used to negotiate pairwise sharing within the consortium.
To illustrate how members negotiate an agreement, consider the
consortium of three members in Figure 3.

Consor&um	and	Local	Policies	 Policy	Nego&a&ons	Members	

Computa(ons		
on	shared	

data	
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M1,	M2:	share		
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M1,	M3:	share		
M1,	M3:	acquisi(on	

M2	

Figure 3: An example consortium of three members.

Each member initiates pairwise policy negotiations with other
members to reconcile contradictions between acquisition and share
policies ( c ). A member starts the negotiation by sending a request
message including the acquisition policy defined for a member.
When a member receives the acquisition policy, it reconciles the
received acquisition policy with its share policy specified for that
member. Three negotiation outcomes are possible: the acquisition
policy is entirely satisfied, partially satisfied with the intersection
of acquisition and share policies or is an empty set. A member
completes its negotiations after all of its acquisition policies for
interested parties are negotiated.
Computations on Negotiated Data. Once members negotiate
their policies ( d ), Curie provides a multiparty data exchange device
using secure multi-party computation techniques enhanced with
(optional) differential privacy guarantees. This device ensures data
and individual privacy. The guarantee provided by Curie is that all
computations among members will respect their policies.

To ensure data privacy, Curie includes cryptographic primitives
such as Homomorphic Encryption (HE) and garbled circuits from
the secure multi-party computation literature that allows members
to perform computations on negotiated data with no disclosed data
from any single member. At the end of the secure computation, all
of the parties obtain a final predictive model based on their policy
negotiations. To ensure the privacy of the individuals in the dataset,
which the final model is computed on, Curie integrates Differential
Privacy (DP). DP protects against an attacker who tries to extract a
particular individual’s data in the dataset from the final computed
model at the end of the secure computation protocol.

4 CURIE POLICY DESCRIPTION LANGUAGE

We now illustrate the format and semantics of the Curie Policy Lan-
guage (CPL). A BNF description of CPL is presented in Appendix A.
Turning to the example consortium in Figure 3 established with
three members, each member defines its requirements for other
members on a dataset having the columns of age, race, genotype,
and weight (see Table 1). The criteria defined by members are used
throughout to construct their local policies.

Consortia member: M1
M2– desires to acquire complete data of users who are older than 25
M2– shares its complete data
M3– desires to acquire Asian users such that the Jaccard similarity of its age

column and M3’s age column is greater than 0.3
M3– shares its complete data

Consortia member: M2
M1– desires to acquire complete data
M1– limits its share to EU and NATO citizen users if M1 is both NATO and

EU member and located in North America. Otherwise, it shares only
White users

M3– desires to acquire complete data if M3 is a NATO member
M3– shares its complete data

Consortia member: M3
M1– desires to acquire complete data of users having genotype ‘A/A’
M1– share complete data if intersection size of its and M1’s genotype column

is less than 10. Otherwise, it shares data of users that weigh more than
100 pounds

M2– desires to acquire complete data
M2– shares complete data if M2 is EU member and its data size is greater

than 1K
Table 1: An example of member’s data exchange requirements.

Share and Acquisition Clauses. Curie policies are collections
of clauses. The collection of clauses for partners defines the local
policy of a member. The clauses allow each member to dictate a
member specific policy for each other member. Clauses have the
following structure:

⟨clause tag⟩ : ⟨members⟩ : ⟨conditionals⟩ :: ⟨selections⟩;
Clause tags are reference names for policy entries. Share and ac-
quire are two reserved tags. Those clauses are comprised of three
parts. The first part, members, defines a list of members with whom
to share and acquire. This can be a single member or a comma-
separated list of members. An empty member entry matches all
members. The second part, conditionals, is a list of conditions con-
trolling when this clause will be executed. A condition is a Boolean
function which expresses whether the share or acquire is allowed
or not. For instance, a member may define a condition where the
data size is greater than a specific value. Only if all conditions listed
in conditionals are true, then this clause is executed. Last part, se-
lections, states what to share or acquire. It can be a list of filters on
a member’s data. For instance, a member may define a filter on a
column of a dataset to limit acquisition to a subset of the dataset.
More complex selections can be assigned using member defined
sub-clauses. A sub-clause has the following structure:

⟨tag⟩ : ⟨conditionals⟩ :: ⟨selections⟩;
where tag is the name of sub-clause; conditionals is, as explained
above, a list of conditions stating whether this clause will be exe-
cuted; selections is a list of filters or a reference to a new sub-clause.
Complex data selection can be addressed with nested sub-clauses.

CPL allows members to define multiple clauses. For instance, a
member may share a distinct subset of data for different conditions.
CPL evaluates multiple clauses in a top-down order. When condi-
tionals of a clause evaluate to false, it moves to the next clause until
a clause is matched or it reaches end of the policy file.
Conditionals and Selections.We present the use of conditionals
and selections through policies with examples. Their format and
semantics are detailed. Consider an example of two members, M1
and M2, within a consortium. They define their local policies as:

@M1 acquire : M2 : :: s1 ;
share : M2 : :: ;

@M2 acquire : M1 : :: ;
share : M1 : c1, c2 :: fine-select ;
fine-select : c3 :: s2 ;
fine-select : :: s3 ;
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where c1, c2 and c3 are conditionals, s1, s2 and s3 are selections
and fine-select is a tag defined by M2.

The acquire clause of M1 states that data is requested from M2
after it applies s1 selection (e.g., age > 25) to its data. In contrast, its
share clause allows complete share of its data if M2 requests. On the
other hand, the acquisition clause of M1 dictates requesting com-
plete data fromM2. However,M2 allows data sharing if the acquisi-
tion clause issued byM1 holds c1 ∧ c2 conditions (e.g., is both NATO
and EU member). Then, M2 delegates selection to member-defined
fine-select sub-clauses. fine-select states that if the request satisfies
the c3 condition (located in North America) then the request is met
with the data that is selected by the s2 selection (e.g., limits share
of its data to NATO and EU member country citizens). Otherwise,
it shares data that is specified by selection s3 (White users).

CPL supports selections through filters. A filter contains zero or
more operations over data inputs describing the share and acquisi-
tion criteria to be enforced. Operations are defined as keywords or
symbols such as <, >, =, in, like , and so on. Selections and filters
are defined in CPL as follows:
⟨selections⟩ ::= <filters> | <tag>

<filters> ::= <filter> [‘,’ <filters>]
<filter> ::= <var> <operation> <value> | ‘’

Selections are executed when conditionals evaluated to be true.
Conditionals can be consortium and dataset-specific. For instance,
a member may require other members to be in a particular country
or to be in an alliance such as NATO and to have their dataset size
greater than a particular value. Such conditionals do not require
any data exchange between members to be evaluated. However,
members may want to incorporate a relation between their data
and other member’s data into their policies as detailed next.
Data-dependent Conditionals.Amember’s decision on whether
to share or to acquire data can depend on other member’s data.
Simply put, one example of a data-dependent conditional among
two members could be whether the intersection size of the two sets
(e.g., a specific column of a dataset) is not too high. Considering
such knowledge, a member can make a conditional decision about
share or acquisition of that data. For instance, consider a list of
private IP addresses used for blacklisting the domains. If a member
knows that the intersection size is close to zero, then the member
may dictate an acquire clause to request complete features from
that member based on IP addresses [18].

CPL defines an evaluate keyword for data-dependent condition-
als through functions on data. Data-dependent conditionals take
the following form:
⟨conditionals⟩ ::= <var>‘=’<value> [‘,’ <conditionals>]

| ‘evaluate’ ‘(’ <data_ref> ‘,’ <alg_arg> ‘,’ <thshold_-
arg> ‘)’ [‘,’ <conditionals>] | ‘’

A member that uses the data-dependent conditionals defines a
reference data (data_ref) required for a such computation, an algo-
rithm (alg_arg) and a threshold (thshold_arg) that is compared with
the output of the computation. CPL includes four algorithms for
data-dependent conditionals (see Table 2). To be brief, intersection
size measures the size of the overlap between two sets; Jaccard index
is a statistic measure of similarity between sets; Pearson correlation
is a statistical measure of how much two sets are linearly depen-
dent; and Cosine similarity is a measure of similarity between two
vectors. Each algorithm is based on a different assumption about
the underlying reference data. However, central to all of them is to
privately (without leaking any sensitive data) measure a relation

Pairwise alg. Output Private protocol Proof

Intersection size |Di ∩ Dj | Intersection cardinality [11]
Jaccard index ( |Di ∩ D j |)/( |Di ∪ Dj |) Jaccard similarity [6]
Pearson correlation (COV (Di , Dj ))/(σDi σDj ) Garbled circuits [25]
Cosine similarity (DiDj )/( ∥Di ∥ ∥Dj ∥) Garbled circuits [25]
Table 2: CPL data-dependent conditional algorithms. Twomembers

of a consortium use the conditionals to compute the pairwise sta-

tistics. The members then use the output of the algorithm to deter-

mine whether to acquire or share data from another party. (Di and

Dj are the inputs of a dataset, and σ is std. deviation).

between two members’ data to offer an effective data exchange. We
note that these algorithms are found to be effective in capturing
input relations in datasets [18, 19].

Data-dependent conditionals are implemented through private
protocols (as defined in Table 2). These protocols are implemented
with the cryptographic tools of garbled circuits and private func-
tions. Protocols preserve the confidentiality of data. That is, each
member gets the output indicated in Table 2 without revealing their
sensitive data in plain text. After the private protocol terminates,
the output of the algorithm is compared with a threshold value
set by the requester. If the output is below the threshold value, the
conditional is evaluated to true. Turning to above exampleM3 joins
the consortium. M1 and M2 extend their local policies for M3:

@M1 acquire : M3 : evaluate(local data, ’Jaccard’, 0.3) :: race=Asian;
share : M3 : :: ;

@M2 acquire : M3 : M3 in $NATO :: ;
share : M3 : :: ;

@M3 acquire : M1 : :: Genotype = ’A/A’ ;
share : M1 : evaluate(local data,’intersection size’, 10) :: ;
share : M1 : :: weight>150 ;
acquire : M2 : :: ;
share : M2 : M2 in $EU, size(data)> 1K :: ;

The acquire clause of M1 defines a data-dependent conditional for
M3. It defines a Jaccard measure on its local data through evaluate
keyword and sets its threshold value equal to 0.3. M3 agrees to
share its local data withM1 if intersection size of its local data is
less then 10. Otherwise, it consults the next share clause defined
for M1 which states that an individual’s weight greater than 150
pounds will be shared. All other share and acquire clauses are
trivial. Members agree to share and acquire complete data based
on data size (data size > 1K), alliance membership (e.g., NATO or
EU member) and inputs (e.g., genotype).

Putting pieces together, CPL allows members independently de-
fine a data exchange policy with share and acquire clauses. The
policies are dictated through conditionals and selections. This al-
lows members to dictate policies in complex and asymmetric rela-
tionships. Defined in Section 3, CPL provides members to dictate
partnership, share, acquisition, and data-dependent conditionals.
Policy Negotiation and Conflicts.Data exchange between mem-
bers is governed by matching share and acquire clauses in each
member’s respective policies. Both share and acquire clauses state
conditions and selections on the data exchanged. Consider two ex-
ample local policies with a share clause @m2 (share :m1 : c1 :: s1)
and matching acquire clause@m1 (acquire :m2 : c2 : s2). Curie’s
negotiation algorithm respects both autonomy of the data owner
and the needs of the requester. It conservatively negotiates share

4

Session 3: Data Security and Privacy CODASPY ’19, March 25–27, 2019, Richardson, TX, USA

124



Policy ID Consortium Name Policy Definition Acquisition Policy Share Policy

P.1 Single Source Each member uses its local patient dataset to learn warfarin dose model. ✗ ✗

P.2 Nation-wide Members in the same country establish a consortium based on state and country laws. ✓ ✓

P.3 Regional Members in the same continent establish a consortium. ✓ ✓

P.4 NATO-EU NATO and EU members establish a consortium independently based on their mutual agreements. ✓ ✓

P.5 Global Members exchange their complete data to build the warfarin dose model. ✓ ✓

Table 3: Consortia constructed among members. Acquisition and share policies of members for each consortium are studied in Section 6.

and acquire clauses such that it will return the intersection of respec-
tive data sets in resulting policy assignment. The resolved policy in
this example is share :m1 : c1 ∧ c2 :: s1 ∧ s2 which states that the
data exchange fromm2 tom1 is subject to both c1 and c2 condition-
als and resulting sharing has s1 and s2 selections onm2’s data. This
authoritative negotiation makes sure no member’s data is shared
beyond its explicit intent, regardless how the other members’ poli-
cies are defined. This is because negotiation fulfilling the criteria for
each clause is based on the union of logical expressions defined in
two policies. Each member runs the negotiation algorithm for mem-
bers found in their member list. After all members terminate their
negotiations, the negotiated policy is enforced in computations.

5 DEPLOYMENT OF CURIE

To validate Curie in a real application, we integrated Curie into 24
medical institutions. Each institution wants to compute a warfarin
dose model on the distributed dataset without disclosing the pa-
tient health-care records.Without deployment of Curie, institutions
compute warfarin dosage of a patient using a model computed on
their local patient data. Curie first enables institutions to negotiate
their data exchange requirements through CPL. In this, Curie al-
lows members to construct various consortia wherein each member
defines a data exchange policy for other members. The next step is
to compute a privacy-preserving dose model such that each party
does not learn any information about the patient’s records of other
medical institutions and respects the policy negotiated. Curie im-
plements a secure dose protocol through homomorphic encryption
(HE) to enforce the policy agreements of the members. We next
present the deployment of Curie to institutions (Section 5.1) and in-
tegration of policy agreements in warfarin dose model (Section 5.2).

5.1 Deployment Setup

Warfarin- known as the brand name Coumadin is a widely pre-
scribed (over 20 million times each year in the United States) anti-
coagulant medication. It is mainly used to treat (or prevent) blood
clots (thrombosis) in veins or arteries. Taking high-dose warfarin
causes thin blood which may result in intracranial and extracranial
bleeding. Taking low doses causes thick blood which may result
in embolism and stroke. Current clinical practices suggest a fixed
initial dose of 5 or 10 mg/day. Patients regularly have a blood test
to check how long it takes for blood to clot (international normal-
ized ratio (INR)). Based on the INR, subsequent doses are adjusted
to maintain the patient’s INR at the desired level. Therefore, it is
important to predict the proper warfarin dose for the patients.
Consortium Members. 24 medical institutions from nine coun-
tries and four continents individually collected the largest patient
data for predicting personalized warfarin dose (see Appendix D
for details of members involved in the study). Members collect 68

Secure Dose Algorithm Protocol
Pi Pi+1

Initialize:
Random values:Vi=Xi

T Yi,Oi=Xi
T Xi

Generate HE key pair (Ki;Kpi)

Secure Data Transfer:
Mi:<E(Oi)Ki

,E(Vi)Ki
,Ki>

Phase 1

Phase n
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Compute:Vj=Xj
T Yj ,Oj=Xj
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i
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i
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i
,V=V-Vi+Vt

i
Global parameters: η=O�1 V

Secure Data Transfer:
Mi+1:<E(Oj)Ki

+E(Oi)Ki
,

: : :

: : :

: : :

E(Vj)Ki
+E(Vi)Ki

,Ki> to Pi
-	

Figure 4: Secure dose algorithmprotocol:Member (Pi ) starts the pro-
tocol, the procedures and message flow among members are high-

lighted in boldface. At the final phase, Pi is able to compute the dose

model coefficients from the negotiated data.

inputs from patients’ genotypic, demographic, background infor-
mation, yet a long study concluded that eight inputs are sufficient
for proper prescriptions [26].
Warfarin Dose Prediction Model. To determine the proper per-
sonalized warfarin dosage, a long line of work concluded with an
algorithm of an ordinary linear regression model [26]. The model
is a function f : X → Y that aim at predicting targets of warfarin
dose y ∈ Y given a set of patient inputs x ∈ X. We represent the
patient dataset of each member Di = {(xi ,yi )}

n
i=1, and a loss func-

tion ℓ : Y × Y → [0,∞). The loss function penalizes deviations
between true dose and predictions. Learning is then searching for
a dose model f minimizing the average loss:

L (D, f ) =
1
n

n∑
i=1

ℓ(f (xi ), yi ). (1)

The dose model reduces to minimizing the average loss L (D, f )
with respect to the parameters of the model f . The model is lin-
ear, i.e., f (x ) = α⊤x + β , and the loss function is the squared loss
ℓ( f (x ),y) = ( f (x ) −y)2. The dose model gives as well or better re-
sults than other more complex numerical methods and outperforms
fixed-dose approach2 [26]. We re-implemented the algorithm in
Python by direct translation from the authors’ implementation and
found that the accuracy of our implementation has no statistically
significant difference.
Consortia and Member Policies. We define consortia among
medical institutions that they state partnerships for data exchange.
Table 3 summarizes the consortia. The consortia are defined based
on statute and regulations between members, as well as regional,
and national partnerships are studied based on their countries [3, 17,
23, 34]. For example, NATO allied medical support doctrine allows
strategic relationships that are otherwise not obtainable by non-
NATOmembers. Eachmember in a consortium exchanges data with

2The model has been released online http://www.warfarindosing.org to help doctors
and other clinicians for predicting ideal dose of warfarin.

5

Session 3: Data Security and Privacy CODASPY ’19, March 25–27, 2019, Richardson, TX, USA

125

http://www.warfarindosing.org


other members based on its CPL policy. Various acquisition and
share policies of CPL are studied via conditionals and selections in
Section 6.We note that policy construction is a subjective enterprise.
Depending on the nature and constraints of a given environment,
any number of policies are appropriate. Such is the promise of
policy defined behavior; alternate interpretations leading to other
application requirements can be addressed through CPL.

5.2 Privacy-preserving Dose Prediction Model

The computation of local dose model of a medical institution is
straightforward: a member calculates the dose model through Equa-
tion 2 with the use of patient data collected locally. To implement a
privacy-preserving dose model among consortia members of med-
ical institutions, we define the dose prediction formula stated in
Equation 1 in a matrix form by minimizing with maximum likeli-
hood estimation:

β = (X⊺X)−1X⊺Y, (2)

where X is the input matrix, Y is the dose matrix, and β is the
coefficients of the dose model.

Curie allows members to collaboratively learn a dose model with-
out disclosing their patient records and guarantees data sharing
complies with the policy as negotiated. As shown in Equation 3,
each member translates its negotiated data into neutral input ma-
trices [41]. Particularly, patient samples to be exchanged by each
member are computed as an input matrix X0, . . . ,Xn and dose ma-
trix Y0, . . . ,Yn . The transformation defines each member’s local
statistics Oi = X⊺X andVi = X⊺Y . Local statistics is the output of
the negotiation of each member in a consortium. The aggregation of
the local statistics corresponds to a negotiated dataset which is the
exact amount that a member negotiates to obtain from other mem-
bers in a consortium. Curie constructs the dose algorithm of the
negotiated dataset as a concatenation of members’ local statistics
as follows:

X⊺X =

[
X

⊺
1 | . . . |X

⊺
n

] [
X1 | . . . |Xn

]⊺
=

n∑
i=1
X

⊺
i Xi =

n∑
i=1
Vi = V

X⊺Y =

[
X

⊺
1 | . . . |X

⊺
n

] [
Y1 | . . . |Xn

]⊺
=

n∑
i=1
X

⊺
i Yi =

n∑
i=1
Oi = O (3)

In Equation 3, a member computes model coefficients using the
sum of other members local statistics. The local statistics includes
m×m constant matrices wherem is the number inputs (independent
of number of dataset size). Using this observation, a party computes
the coefficients of the negotiated dataset:

η (neдotiated ) = (X⊺X)−1X⊺Y = O
−1
V (4)

In Equation 4, while the accuracy objective of the dose model is
guaranteed using the coefficients obtained from the sum of local
statistics, the exchange of clear statistics among parties may leak
information about members’ data. A member can infer knowledge
about the distribution of each input of other members frommatrices
of Oi andVi [14]. Furthermore, an adversary may sniff data traffic
to control andmodify exchangedmessages. To solve these problems,
we use homomorphic encryption (HE) that allows computation on
ciphertexts [2]. HE allows members to perform the computation
of joint of function without requiring additional communication
complexity other than the data exchange. We note that HE itself

cannot preserve the confidentiality of data from multiple parties in
centralized settings [40]. However, Curie implements a distributed
privacy-preserving multi-party dose model, as shown in Figure 4.

To illustrate, we consider an example session of n members
authorized for data exchange in a consortium. In this example,
a ring topology is used for secure group communication (i.e., Pi
talks to Pi+1, and similarly Pn talks to Pi ). P1 initially generates a
pair of encryption keys using the homomorphic cryptosystem and
broadcasts the public key to the members in its member list. P1 then
generates randomVi , Oi and encrypts them E (Oi )Ki and E (Vi )Ki
using its public key Ki . It starts the session by sending them to the
next member in the ring.When next member receives the encrypted
message, it adds its localVi and Oi matrices through homomorphic
addition to the output of its policy reconciliation for P1 and passes
to the next member. Remaining members take the similar steps.
Secure computation executes one round per member in which the
computation for the particular member visits other members. This
allows Curie to enforce HE on shared data of a particular member
in each round uses and does not suffer insecurities associated with
centralized HE constructions [40].

At the final stage of the protocol, P1 receives the sum statistics
of Oi andVi from Pn . P1 decrypts the sum of the statistics using
its private key and then subtracts the initial random values ofVi ,
Oi and adds its true values used for computation of the local dose
model coefficients. The final result O andV is the coefficients of the
dose model that respects P1’s policy negotiations. Other consortium
members similarly start the protocol and compute the coefficients.
We present the security analysis of the dose protocol in Appendix C,
and show its differentially-private extension in Appendix B.

6 EVALUATION

This section details the operation of the Curie through policies.
We show how flexible data exchange policies are implemented and
operated. We focus on the following questions:

(1) What are the performance trade-offs in configuring CPL?
(2) Canmembers reliably use Curie to integrate various policies?
(3) Do members improve the accuracy of dose predictions with

the use of CPL?
The answers to the first two questions are addressed in Sec-

tion 6.1, and the last question is answered in Section 6.2. As de-
tailed throughout, Curie allows 50 members to compute the privacy-
preserving model using 5K data samples with 40 inputs in less than
a minute. We also show how an algorithm with flexible data ex-
change policies can improve–often substantially–the accuracy of
the warfarin dose model accuracy.
Experimental Setup. The experiments were performed on a clus-
ter of machines with 32 GB of maximum memory and 16-core Intel
Xeon CPU at 1.90 GHz, where we use one core to get a lower bound
estimate. Each member is simulated in a server that stores its data.
Secure computation protocols of Curie are implemented using the
open-source HElib library [4]. We set the security parameter of
HElib as 128 bits. Multiplication level is optimized per member to
increase the number of allowed homomorphic operations without
decryption failure and to reduce the computation time.

We validate the accuracy of dose model in various consortia
defined in Table 3 with members defining different data exchange
policies. The dataset used in our experiments contains 5700 patient
records from 21 members. Dose model accuracy of each member
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Figure 7: CPL performance on privacy-preserving and differential private protocol - All members define an asymmetric share and acquisition

policy through selections and conditionals. The agreements of CPL policies between consortiamembers are studied with the different number

of consortiamembers, data samples, and input size. (Std. dev. of ten runs is ± 3.6 and± 0.3 sec. with andwithout homomorphic key generation.)

is validated with Mean Absolute Percentage Error (MAPE). MAPE
measures the percentage of how far predicted dosages are away
from true dosage. Lower values indicate better quality of treatment.

6.1 Performance Evaluation

We present the costs associated with various Curie mechanisms.
We illustrate the cost of the CPL in policy negotiations, in the use
of data-dependent conditionals, and in the dose algorithm.

6.1.1 CPL Benchmarks. Our first set of experiments characterize
the policy construction and negotiation costs. Various consortia and
policies are instrumented to analyze the overhead of the number of
messages and time required to compute the CPL selections and data-
dependent conditionals. All the costs not specific to the policies are
excluded in measurements (e.g., network latency). The benchmark
results are summarized in Figure 5 and 6 and discussed below.

Figure 5 shows the number of messages for policy construction
required for different consortia size. The number of members in
warfarin study is also labeled. For instance, NATO consortium has
13 members; ten members from U.S. and three from UK. The ex-
periments illustrate the upper bound results wherein each member
defines a different share and acquisition policy for other members
(i.e., asymmetric relations). In this, each member sends acquisition
policy request to consortium members. After a member gets the
acquisition request, it reconciles with its share policy and output
of negotiation message is returned. The number of messages asso-
ciated with varying number of selections and conditionals dictated

by the members does not require any additional messages. For in-
stance, the acquisition request of a member includes arguments
when conditionals are defined (e.g., reference data and a thresh-
old value for data-dependent conditionals such as pairwise Jaccard
distance), and the result is returned with the negotiation output
message. However, the use of the selections and data-dependent
conditionals brings additional processing cost as detailed next.

Figure 6 shows the costs associated with the use of CPL se-
lection and data-dependent conditionals. All the members dictate
data-dependent conditionals and selections on a single input. The
members input size for the data-dependent conditional computa-
tions is set to 200 real values. This is the average number of inputs
found in members’ dataset. Since selections and conditionals rec-
oncile contradictions between acquisition and share policies, they
do not require any additional computation overhead and yield a
processing time of milliseconds. However, the time associated with
varying data-dependent conditionals depend on the protocol of
associated secure pairwise algorithm. In our experiments, cosine
similarity and intersection size exhibited shorter computation time
than Pearson correlation and Jaccard distance. Overall, we found
that 25 members compute the metrics less than 18 seconds. Note
that the results serve as an upper bound that all members define a
set of selections and a data-dependent conditional on one input.
6.1.2 Dose Model Benchmarks. Our second series of experiments
characterize the impact of CPL on the average time of computing
privacy-preserving dose model with varying number of members
and dataset sizes. Though the warfarin study includes eight inputs,
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evaluations are repeated with the input size of 8, 16, 24, 32, and 40
through various dataset sample sizes for completeness. The input
and sample size together represents the total dataset shared for a
member as a result of the policy agreements. Our experiments show
that 80% of computation overhead is attributed to HE key genera-
tion. The cost of the differential privacy takes microseconds, as the
members can calculate the (optional) differential private algorithm
model at the end of the secure dose protocol. Computations are
instrumented to classify the overheads incurred by key generation,
encryption, decryption, and evaluation. We next present the costs
with and without key generation to study the impact of the number
of members and data size.

Figure 7 (a-b) presents the computation cost with varying number
of members. Each member’s dataset includes 5000 data samples
which acquired as a result of the policy negotiations. Figure 7 (a)
presents the cost of the total computation time excluding HE key
generation. There is a linear increase in time with the growing
number of members. This is the fundamental cost of encryption and
evaluation operations dominated bymatrix encryption and addition.
To profile the generation of key cost, in Figure 7 (b), we conducted
similar experiments. Each input size cost increases because of the
key generation overhead. The increase is quadratic as a number of
slots (plaintext elements) are set to square of input size not to lose
any data during input conversion. It is important to note that the
cost is independent of the member size because a member generates
the key only once in a computation of a consortium. We note that
the time overhead of key generation is not a limiting factor as
members may generate keys before a consortium is established.

In Figure 7 (c-d), we show the costs associated with different data
samples. The number of members in a consortium is set to 20. Sim-
ilar to the previous experiments, the key generation dominates the
computation costs. Our experiments also reported no relationship
between the cost and number of samples. That is, even though the
size of the data samples increases, the overhead is amortized over
the operations on the local statistics of the computations (which is
the square matrix of the input size in the warfarin dataset); thus

the time of computing dose algorithm converges to the number of
dataset inputs. This explains the similar trends observed in plots.

6.2 Effectiveness of Policies

We validate the performance of privacy-preserving dose model
quantitatively and qualitatively. For the warfarin study, these are
translated to the following questions: How do policies impact the
accuracy of members’ warfarin dose prediction? (Section 6.2.1), and
Does policies help to prevent the adverse impacts of dose errors on
patient health? (Section 6.2.2).
6.2.1 Implications of CPL on Model Accuracy. In our first set of
experiments, we validate how well a member prescribe warfarin
dose for its local patients and patient’s of the consortium members
without using CPL. These results are used as a baseline for compar-
ison of varying consortia and data exchange policies throughout.
Figure 8 (a) sought to identify the local algorithm errors (P.1). The
errors significantly differ between countries and for the members
of the same country (depicted as M1 and M2 in the U.S.). The low
results are due to having homogeneous data; all the inputs in these
countries have similar traits. For instance, similar age and ethnicity
found in a dataset produce over-fitted computation results for its
local patients. These findings are validated with use of local algo-
rithms for treatment of other countries’ patients. As illustrated in
Figure 8 (b), the dose errors yield significantly high for particu-
lar countries’ patients. The results indicate that improvements in
dose predictions of local patients and members’ patients lay in the
creation of data exchange policies to increase the patient diversity.

The next experiments measure the impact of CPL in nation-wide
(P.2), regional (P.3), NATO-EU (P.4) and global (P.5) consortia.
Each member creates a local acquisition policy to acquire the com-
plete data of consortia members (i.e., the acquisition policy of a
consortiummember complies with the share policy of the requested
member). We make three major observations. First, varying part-
nerships yield different dose accuracy. For instance, members of
nation-wide consortium get better dose accuracy than their lo-
cal results. This result is validated through nationwide consortia
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Member Agreement of policy negotiations

U.S.
[
(Race=“Asian”)∨(EVALUATE(age))∨(height <160) ∨(weight <65)∨(CYP2C9 IN ( 2*/*2, 2*/*3)∨(Amiodarone=“Y”)∨(Enzyme=“Y”)

]

Brasil
[
(Race=“Asian”)∨(height <165)∨(CYP2C9 IN (2*/*2, 2*/*3)∨EVALUATE (Amiodarone)∨(Enzyme=“Y”)

]

UK
[
(Race,“White”)∨(age BETWEEN 20-29 AND >80)∨(height<165)∨(60<weight <100)∨EVALUATE(CYP2C9)∨(Amiodarone=“Y”), (Enzyme=“Y”)

]

Israel
[
(Race, “White”)∨(height <160cm)∨(weight <60)∨(CYP2C9=3*/*3)∨(Amiodarone=“Y”)∨(Enzyme Inducer =“Y”)

]

Taiwan
[
(Race=All)∨(age BETWEEN 20-29)∨(height >170)∨(weight >65)∨(CYP2C9 IN (1*/*2, 2*/*2, 2*/*3, 3*/*3)∨(VK0RC1=“G/G”)∨(Amiodarone=“Y”)∨(Enzyme=“Y”)

]

S. Korea
[
(Race=All)∨ (age BETWEEN 20-29)∨(height >165)∨(weight >60)∨(CYP2C9 IN (1*/*2, 2*/*2, 2*/*3, 3*/*3)∨(VK0RC1=“G/G”)∨(Amiodarone=“Y”)∨(Enzyme=“Y”)

]

Table 4: An exploration of CPL policies in the global consortium (illustrated as a plain language): Eachmember defines asymmetric local policy

based on its data diversity. The agreement of share and acquisition policies are depicted as a policy clause in a single row. The agreement result

of each member for other members is not presented for brevity.

and a single member (M1) in United States (see Figure 8 (c)). Sec-
ond, supporting previous findings, all regional (excluding Asia)
and NATO-EU policies decrease the error for both treatment of
their patients and the other countries’ patients (see Figure 8 (d-e)).
However, Asia consortium results in unexpected dose errors for the
treatment of other regions’ patients. This is because nation-wide,
regional, and NATO-EU policies include patient population hav-
ing different characteristics; thus the data obtained through policy
negotiations better generalize to the dosages. In contrast, Asia col-
laboration lacks large enough White and Black groups. Third, the
global consortium results in higher dose errors when evaluated for
particular countries such as Brazil and Taiwan (see Figure 8 (f)). To
conclude, while CPL is effective in reducing dose error of a member,
the results highlight the need for the systematic use of CPL through
selections and conditionals to obtain better results.

In these experiments, each member dictates a different acquisi-
tion policy based on its racial groups. Members aim at having an
ideal patient population uniformity. To do so, each member defines
a local acquisition policy and negotiates it with other members.
Each member sets its share policy to conditionals of being in the
same consortium and data size greater than 200; thus, the policy of
each member is asymmetric. Table 4 shows the simplified notation
of the policy agreements in the global consortium. For instance, a
member having a small number of white patients defines selections
to solely acquire that group and a member having large enough pa-
tients for all genotypes sets data-dependent conditionals to obtain
patient inputs that are not similar in its data samples (e.g., acquires
different genotypes). Figure 9 presents a subset of results on dose
errors per patient race. The errors of the other races yield similar for
each member. The results without CPL conditionals and selections
are plotted as a dashed line for comparison. We find that members
can improve the dose accuracy with the use of policies. We note
that the use of different data-dependent conditionals defined in
evaluate does not result in statistically significant accuracy gain.
6.2.2 Implications of CPL on Patient Health. We examine the im-
pact of the dose errors found in the previous section to better
quantify the effectiveness of policies on patient health.

To identify the adverse effects of warfarin, we use a clinical
study to evaluate the clinical relevance of prediction errors [9] and
a medical guide to identify the consequences of over- and under-
prescriptions [16]. We define errors that are inside and outside of
the warfarin safety window, and the under- or over prescriptions.
We consider weekly errors for each patient because using weekly
values eliminates the errors posed by the initial (daily) dose. The
weekly dose is in the safety window if an estimated dose falls
within 20% of its corresponding clinically-deduced value [26, 27].
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Figure 9: Dose accuracy of members using CPL policies defined in

Table 4. Members construct a model per race after they reconcile

the policies. The dashed line is the average error found without the

use of conditionals and selections in policies.

Consortium U SW O Selections Conditionals

Single Source 37.7% 43.4% 18.8% ✗ ✗

Nation-wide 18.9% 52.3% 28.8% ✓ ✓

NATO 19.3% 51.5% 29.2% ✓ ✓

Regional 19% 51.3% 29.7% ✓ ✓

Global 21.2% 46.8% 32% ✓ ✓

Table 5: Impact of policies on health-related risks: Results are from

a global consortium patients using policy agreement of a member

located in the U.S. The member uses the policy defined in Table 4.

(U: Under-prescription, SW: Safety Window, O: Over-prescription)

The deviations falling outside of the safety window is an under- or
over prescriptions, and cause health-related risks.

Table 5 presents the percentage of patients falls in safety window,
over- and -under prescriptions with varying policies of a member.
We find that use of CPL increases the number of patients in the
safety window. For instance, a member has 43.4% patient with using
its local data (single source model), and the member increases the
percentage of patients in a safety window with varying consortia
and policies, for instance, it is 52.4% in the nation-wide consortium.
We conclude that CPL might be useful in preventing errors that
introduce health-related risks.

7 LIMITATIONS AND DISCUSSION

One requirement for correctly interpreting the CPL policies is a
shared schema for solving the compatibility issues among members.
For instance, members may interpret the data columns (e.g., column
names and types) differently or may not have the information
about consortium members (e.g., membership status of an alliance).
CPL implements a shared schema describing column names, their
types, and explanations of data fields as well as consortium-specific
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information. Members can negotiate the schema similar to the
policy negotiations and revise the schema based on the schema of
a negotiation initiator.

CPL provides a set of data-dependent statistical functions (e.g., co-
sine similarity) to compute pairwise statistics amongmember’s local
data. However, there might be a need for other functions that help
members decide their data exchange policies. For example, data
exchange among finance companies may require calculating the
similarity between data distributions. Future work will investigate
the integration of different data-dependent statistics into CPL.

Lastly, we did not focus much on the reasons of policy impacts
on the prediction success of the dose algorithm and its adverse
outcomes on patient health over time. While our evaluation results
showed that members could express both complex relations and
constraints on the data exchange through CPL policies, members
require establishing true partnerships to improve the prediction
model accuracy. While this explanation matches both our intu-
ition and the experimental results, a further domain-specific formal
analysis is needed. We plan to pursue this in future work.

8 RELATEDWORK

Policy has been used in several contexts as a vehicle for represent-
ing configuration of secure groups [30], network management [35],
threat mitigation [18], access control [13], and data retrieval sys-
tems [15]. These approaches define a schema for their target prob-
lem and do not consider the challenges in secure data exchange. In
contrast, Curie defines a formal policy language to dictate the data
exchange requirements of members and enforces the agreement in
collaborative ML settings.

On the other hand, secure computation on sensitive proprietary
data has recently attracted attention. Federated learning [20, 37],
anonymization [14], multi-site statistical models [10], secure multi-
party computation [28], and secure and differentially-private multi-
party computation [1] have started to shed light on this issue. Such
techniques have been used both for training and classification
phases in deep learning [36], clustering [22], and decision trees [8].
To allow programmers to develop such applications, secure compu-
tation programming frameworks and languages are designed for
general purposes [7, 14, 24, 32, 33]. However, these approaches do
not consider complex relationships among members and assume
members share their all data or nothing. We view our efforts in
this paper to be complementary to much of these works. CPL can
be integrated into these frameworks to establish partnerships and
manage data exchange policies before a computation starts.

9 CONCLUSIONS

We presented Curie which provides a novel policy language called
CPL to define the specifications of data exchange requirements
securely for use in collaborative learning settings. Members can
assert who and what to exchange separately for data sharing and
data acquisition policies. This allows members to efficiently dictate
their policies in complex and asymmetric relationships through
selections, conditionals, and pairwise data-dependent statistics. We
validated Curie in an example real-world healthcare application
through varying policies of consortia members. A secure multi-
party and (optional) differentially-private model is implemented to
illustrate the policy/performance trade-offs. Curie allowed 50 dif-
ferent members to efficiently compute a privacy-preserving model

using 5K data samples with 40 inputs in less than a minute. We
also showed how an algorithm with effective use of data exchange
policies could improve the accuracy of the dose prediction model.

Future work will investigate the use of Curie in other collabora-
tive learning settings exploring different statistics for data-dependent
conditionals and explore its performance trade-offs by integrating
it into other off-the-shelf secure computation frameworks.
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A CURIE POLICY LANGUAGE

This section presents the Backus Naur Form of Curie data exchange
policy language.
⟨curie_policy⟩ ::= ⟨statements⟩

⟨statements⟩ ::= ⟨statement⟩ ‘;’ [⟨statements⟩]

⟨statement⟩ ::= ⟨share_clause⟩
| ⟨acquire_clause⟩
| ⟨attribute⟩
| ⟨sub_clause⟩

; share clauses defined as follows:
⟨share_clause⟩ ::= ‘share’ ‘:’ [⟨members⟩] ‘:’ [⟨conditionals⟩]

‘::’ ⟨selections⟩

; acquisition clauses defined as follows:
⟨acquire_clause⟩ ::= ‘acquire’ ‘:’ [⟨members⟩] ‘:’ [⟨conditionals⟩] ‘::’ ⟨selections⟩

; attributes are defined as follows:
⟨attribute⟩ ::= ⟨identifier⟩ ‘:=’ ‘<’ ⟨value⟩ ‘>’

| ⟨identifier⟩ ‘:=’ ‘<’ ⟨value_list⟩ ‘>’
; user defined sub-clauses defined as follows:
⟨sub_clause⟩ ::= ⟨tag⟩ ‘:’ [⟨conditionals⟩] ‘::’ ⟨selections⟩

; conditionals including data-dependent functions defined as fol-
lows:
⟨conditionals⟩ ::= ⟨var⟩‘=’⟨value⟩ [‘,’ ⟨conditionals⟩]

| ‘evaluate’ ‘(’ ⟨data_ref⟩ ‘,’ ⟨alg_arg⟩ ‘,’
⟨threshold_arg⟩ ‘)’ [‘,’ ⟨conditionals⟩] | ‘’

⟨selections⟩ ::= ⟨filters⟩
| ⟨tag⟩

⟨filters⟩ ::= ⟨filter⟩ [‘,’ ⟨filters⟩]
⟨filter⟩ ::= ⟨var⟩ ⟨operation⟩ ⟨value⟩ | ‘’

⟨data_ref⟩ ::= ‘&’ ⟨identifier⟩
⟨alg_arg⟩ ::= ⟨algorithms⟩

⟨algorithms⟩ ::= ‘Intersection size’
| ‘Jaccard index’
| ‘Pearson correlation’
| ‘Cosine similarity’

⟨threshold_arg⟩ ::= ⟨floating_point_number⟩

⟨operation⟩ ::= ‘=’ | ‘<’ | ‘>’ | ‘!=’ | in |

⟨value_list⟩ ::= ‘{’ ⟨value⟩ ‘}’ [‘,’ ⟨value_list⟩]
⟨members⟩ ::= ⟨member⟩ [‘,’ ⟨members⟩]
⟨member⟩ ::= ⟨identifier⟩ | ‘’

; for completeness, trivial items defined as follows:
⟨identifier⟩ ::= ⟨word⟩
⟨var⟩ ::= ‘$’ ⟨identifier⟩
⟨value⟩ ::= ⟨string⟩

⟨tag⟩ ::= ⟨word⟩

⟨string⟩ ::= ‘"’ ⟨stringchars⟩ ‘"’

⟨stringchars⟩ ::= ⟨stringletter⟩ [ ⟨stringchars⟩]

⟨stringletter⟩ ::= 0x10 | 0x13|0x20| ... | 0x7F

⟨word⟩ ::= ⟨char⟩ [ ⟨word⟩ ]
⟨char⟩ ::= ⟨letter⟩ | ⟨digit⟩

⟨letter⟩ ::= ’A’ | ’B’ | ... | ’Z’ | ’a’ | ’b’ | ... | ’z’ | 0x80 | 0x81 | ... | 0xFF

⟨digit⟩ ::= ’0’ | ’1’ | ... | ’9’

⟨floating_point_number⟩ ::= ⟨decimal_number⟩ ’.’ [⟨decimal_number⟩]

⟨decimal_number⟩ ::= ⟨digit⟩ [ ⟨decimal_number⟩ ]

B DIFFERENTIALLY-PRIVATE DOSE

ALGORITHM

We presented how members compute a privacy-preserving dose
model on negotiated data through their policies. In this section,
we consider individual privacy that allows a member to guarantee
no information leakage on the targeted individual (i.e., patient)
involved in the computation. Specifically, while members compute
a secure dose model using the data obtained as a result of their
policy negotiations, they also ensure that an adversary cannot infer
whether any particular individual is included in computations to
build the dose algorithm. In warfarin study, this corresponds to a
differentially-private secure dose algorithm on shared data.

To implement a differentially-private secure algorithm, we use a
functional mechanism technique [42, 43]. The technique accepts
a dataset (D), an objective function (fD (η)), and a privacy budget
(ϵ) as an input and returns ϵ-differentially-private coefficients η̃
of an algorithm. The intuition behind the functional mechanism
is perturbing the objective function of the optimization problem.
Perturbation includes both sensitivity analysis and Laplacian noise
insertion as opposed to perturbing the results via differentially-
private synthetic data generation.

To inter-operate the functional mechanism with the secure dose
protocol, members convert each column from [min, max] to [-1,1]
before negotiation starts. This processing ensures that sufficient
noise is added to the objective function on negotiated data. Then,
members proceed with the protocol. At the final stage of the secure
algorithm protocol, a member gets clear statistics of O = X⊺X and
V = X⊺Y and input dimension d that is the size of O orV . These
statistics are the exact quantities that are minimized in the objective
of the functional mechanism [43]. Using these statistics, a member
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Figure 1: Non-private secure algorithm (Non-DP) vs. differentially-

private secure algorithm (DP) performance of amember inU.S.mea-

sured against various policies depicted in Figure 8.

may (optionally) compute ϵ-differential private secure algorithm
without any additional data exchange and computational overhead.
Differential Privacy Results. To protect individual privacy in
secure dose algorithm, members may compute the differentially-
private secure algorithm on their negotiated data. This section
presents the results of using the differential-private secure algo-
rithm (DP) instead of using secure dose algorithm (Non-DP). To
establish a baseline performance, we constructed non-private se-
cure algorithms of a member. We then build the differential-private
secure algorithm for different privacy budgets (ϵ = 0.25, 1, 5, 20, 50
and 100). Finally, we compare the results of two algorithms through
different policies of a member. Figure 1 shows the results of a mem-
ber in the U.S. that applies both algorithms to predict the dosage.
The algorithms are constructed for the single source, NATO, and
global consortia. In this, the member dictates acquisition policy
for complete data and other members complies with their share
policy. The average error over 100 distinct model for each budget
value is reported. The use of DP degrades the accuracy as the ϵ
value increases. For instance, the accuracy improvement obtained
through NATO policy over single source degrades with the privacy
budget less than or equal to 20. We note that other consortia and
policies with use of selections and conditionals show similar effect
on the dose accuracy.

C ANALYSIS OF THE DOSE ALGORITHM

We present security and privacy guarantees of the dose algorithm
provided to all members through the share of encrypted integrated
statistics, (Oi = X⊺X and Vi = X⊺Y matrices). Since all data
exchange among parties is encrypted through the use of HE, the se-
curity of the algorithm against any adversary outside the authorized
parties is based on the underlying HE cryptosystem.
An adversary not involving session initiator. Assume for now
that a session initiator does not collude with other parties. Loosely
speaking, since all computations are performed on the encrypted
data, none of the parties learn anything about other parties’ input.

We consider a party Pi+1 in Figure 4. The party Pi+1 has the pub-
lic key generated by the session initiator Ki , the encryption of local
statistics of previous parties Mi = (E (Oi )K ,E (Vi )K ). Its input is
(Vi+1,Oi+1) and its output isMi+1 = (E (Oi +Oi+1),E (Vi +Vi+1)).
A simulator S selects random values for its own inputs (V ′i+1,O

′
i+1)

and encrypts them using the public key published by the session
initiator. Then, the simulator S performs the homomorphic oper-
ation on the received message Mi and outputs M ′i+1 = (E (Oi +
O′i+1)K ,E (Vi +V

′
i+1)K ). Here, we assume the underlying HE is

semantically secure. Therefore, the output of the simulator M ′i+1
is computationally indistinguishable from output of the real exe-
cution of the protocolMi+1 for every input pairs. Therefore, using
the definition in [21] the protocol privately computes the function
in the presence of one semi-honest corrupted party. The extension
to multi-corrupted semi-honest adversaries is straightforward as
the only difference is the view of a subset of parties having many
encrypted messages. Since the semantic security of the underly-
ing HE is hold for any pair of these many encrypted messages, no
information leaks about the corresponding plaintexts.
Adversary involving session initiator. We consider the case
when the session initiator is corrupted. The corrupted parties in-
cluding session initiator can infer the input of an honest party if
the predecessor (previous party) and successor (next party) of an
honest party are both corrupted. We consider the possible cases
for data leakage: (1) 2-party: The session initiator is corrupted, and
another party is honest. In this case, predecessor and successor of
the honest party are both the corrupted session initiator. There-
fore, the input of honest party is learned by the corrupted party,
(2) 3-party: A corrupted session initiator is either predecessor or
successor; thus it can learn inputs of the one of the honest party
only if another party is corrupted, and (3) n-party (n > 3): To learn
an honest party’s input, at least two parties must be corrupted and
placed in previous and next of the honest party.

While the individual raw data of members does not leak, the risk
of inappropriate disclosures from local summary statistics exists in
some extreme cases [14]. Consider the exchange of plainmatrixVi =
X⊺Y among two parties; a party may use the extreme values found
inVi to identify particular patients. For instance, in dose algorithm,
taking inducers such as Rifadin and Dilantin could indicate high
dose prescriptions. If the values of Vi are high, then a party may
infer a patient that takes enzyme inducers and the presence of high
dosage warfarin intake. Similarly, exchange of Oi = X⊺X may leak
information about the number of observations and represent the
number of 0s or 1s in a column. For instance, for the former first
entry in the matrix, X⊺X , gives the total number of patients. For
the latter, (X⊺X )j, j gives the number of 1s in the column. This type
information lets a party infer knowledge, particularly when binary
inputs (e.g., use of the medicine) are used.

D CURIE DEPLOYMENT DETAILS

We use a dataset collected by the International Warfarin Pharma-
cogenetics Consortium (IWPC), to date the most comprehensive
database containing patient data collected from 24 medical institu-
tions from 9 countries [26]. The dataset does not include the name
of the medical institutions, yet there is a separate ethnicity dataset
provided for identifying the genomic impacts of the algorithm. We
use the race (reported by patients) and race categories (defined by
the Office of Management and Budget) to predict the country of
a patient3. For instance, we consider a medical institution with a
high number of Japanese race is located in Japan. We use subsets of
patient records that have no missing inputs for accurate evaluation.
We split the dataset into two cohorts: training cohort is used to
learn the algorithm, and validation cohort is used to assign dose to
the new patients based on the consortia and data exchange policies.

3The authors indicated via personal communication that they cannot provide the exact
name of the institutions due to the privacy concerns.
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