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A B S T R A C T

The Internet of Things (IoT) redefines the way how commodity and industrial tasks are performed every day.
The integration of sensors, lightweight computation, and the proliferation of different wireless technologies on
IoT platforms enable human beings to easily interact with their surrounding physical world thoroughly. With
the recent rise of IoT, several different IoT platforms have been introduced for researchers and developers to
ease the management and control of various IoT devices. In general, the IoT platforms act as a bridge between
core IoT functionalities and users by providing APIs. Due to their wide variety of applications, IoT platforms are
mostly unique in their architectures and designs. Thus, IoT administrators, developers, and researchers (i.e., IoT
users) are challenged with substantial configuration differences in the proper configuration, implementation,
and protection of the IoT solutions. In this survey, we conduct an in-depth analysis of popular IoT platforms
from different application domains. More specifically, we define a comprehensive evaluation framework that
considers seven different technical comparison criteria: (1) topology design, (2) programming languages, (3)
third-party support, (4) extended protocol support, (5) event handling, (6) security, and (7) privacy. Then,
we use the framework to evaluate the different IoT platforms highlighting their distinguishing attributes
on communications, security, and privacy. First, we describe the communication protocols supported by the
different IoT platforms surveyed. Then, rather than uncovering novel threats affecting IoT, we aim to analyze
how the different IoT platforms handle security and privacy vulnerabilities affecting the most common security
services of confidentiality, integrity, availability, and access control. Further, we present possible solutions that
these platforms could implement to strengthen security and privacy within the IoT solution. Finally, we discuss
the advantages and disadvantages of every IoT platform, so IoT administrators, developers, and researchers
(i.e., IoT users) can make an informed decision on the use of specific platforms to implement their IoT solutions.
To the best of our knowledge, this is the first comprehensive survey to evaluate different IoT platforms using
the criteria defined in this work.
1. Introduction

The Internet of Things (IoT) is evolving the way we live and help
perform commodity and industrial tasks. For this, IoT integrates new
functionalities to commonplace objects. For instance, smart locks can
communicate with smart fire alarms to unlock the doors in the event of
a fire. The integration of sensors and computation power into everyday
objects allows for an easy interaction with the physical world; some-
thing that never has been achieved at this scale with traditional systems
before. For example, it is now possible for objects like a clock alarm
and a coffeemaker to work together and prepare our morning coffee
right before we wake up. In general, IoT covers a wide variety of fields:
from autonomous vehicles, smart homes, to even modern agriculture
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— everything around us is being integrated into the IoT realm at an
incredibly rapid pace. Specifically, by 2025, the IoT is projected to
number over 75 billion connected devices [1].

Meanwhile, different IoT platforms provide the programmatic tools
necessary to integrate a rich set of functionalities via numerous APIs.
Due to the high diversity of devices, applications, and interests in
IoT, dozens of these IoT platforms are active today. IoT application
developers or administrators have the challenging task of choosing an
IoT platform that best fits their needs based on, for instance, the cost,
number, and type of available APIs, the programming language used,
devices supported, etc. IoT developers, administrators, and researchers
(i.e., IoT users) are traditionally concerned with ensuring that their
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389-1286/© 2021 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.comnet.2021.108040
Received 1 April 2020; Received in revised form 11 January 2021; Accepted 21 M
arch 2021

http://www.elsevier.com/locate/comnet
http://www.elsevier.com/locate/comnet
mailto:lbabu002@fiu.edu
https://doi.org/10.1016/j.comnet.2021.108040
https://doi.org/10.1016/j.comnet.2021.108040
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2021.108040&domain=pdf


Computer Networks 192 (2021) 108040L. Babun et al.

a

applications and systems work as intended. However, concerns related
to security and privacy in IoT are rapidly rising in the community
and among users [2–5]. In addition to making sure the IoT solutions
perform as needed, an IoT user should either be a security/privacy
expert or trust the tools provided by the IoT platform in order to have
a secure IoT environment, neither of which is necessarily guaranteed
easily. In this context, several security solutions for IoT have been
proposed in the past [6–11]. However, all these solutions typically
focus on specific IoT architecture and fail to provide comprehensive
solutions that protect devices and apps considering different platforms
simultaneously.

In this survey, we address two primary concerns of an IoT user1:
(1) what evaluation criteria may be used while selecting the most
suitable IoT platform for a specific need and (2) what communication,
security, and privacy mechanisms are supported by the analyzed IoT
platforms. We start by detailing popular IoT platforms from different
application domains, highlighting their key strengths and weaknesses.
Through this, we establish a generalized method for evaluating future
IoT platforms using specific criteria. This allows IoT users to find the
best fit for their IoT needs accurately. From there, we dive into IoT
communications, security, and privacy. We first detail different com-
munication protocols supported by IoT platforms, which may impact
the specific application and security of IoT solutions. Then, we discuss
current security and privacy mechanisms supported by IoT platforms.
Specifically, we discuss issues in confidentiality, integrity, availability,
and privacy, which still exist in modern IoT platforms. We aim to cover
the concerns that IoT users should be aware of, but also highlight where
the community needs further research.

The main goal of this survey is to provide IoT users with adequate
information in the state-of-the-art of IoT platforms to smartly choose
the ideal platform to adopt for their IoT solutions. We also provide
the research and the academic community with areas where further
research and development are needed, specifically in IoT security and
privacy. First, we describe the communication protocols supported by
the different IoT platforms surveyed here. Then, rather than uncover-
ing novel threats affecting IoT, we aim to analyze how the different
IoT platforms handle security and privacy vulnerabilities affecting the
most common security services of confidentiality, integrity, availability,
and access control. Further, we present possible solutions that these
platforms could implement to strengthen security and privacy within
the IoT solution. We define a comprehensive evaluation framework that
considers seven different technical comparison criteria: (1) topology de-
sign, (2) programming languages, (3) third-party support, (4) extended
protocol support, (5) event handling, (6) security, and (7) privacy. With
our evaluation framework, we help IoT users to make informed deci-
sions regarding their design choices to more effectively implement their
IoT solutions. Further, we contribute to IoT researchers and developers
to more efficiently conduct their research and development efforts by
(1) overcoming current challenges imposed by the high diversity of
IoT [12] and (2) by identifying missing or weak functionalities that may
impact the communication capabilities and the security and privacy in
current IoT solutions.

Contributions: The contributions of this manuscript are as follows:

• We study and analyze the most popular, state-of-the-art IoT plat-
forms to identify what design choices best fit an IoT user’s needs.

• We introduce an evaluation framework with general criteria to
study, compare, and evaluate different IoT platforms. The evalu-
ation framework may also be used as a baseline to examine future,
different-purpose IoT platforms.

• We provide comparative tables that easily highlight our findings.
IoT users may use these tables as a guideline to select which IoT
platform is more suitable for their specific IoT applications.

1 We utilize the term IoT user to reference IoT developers, administrators,
nd researchers.
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• We also identify key areas of research and development still
needed in the realm of IoT communications, security, and privacy.

Organization: The rest of the paper is organized as follows. Section 2
presents the background information relevant to IoT platforms. Also, it
defines terminology used throughout this manuscript. We introduce the
evaluated IoT platforms in Section 3. Section 4 defines the evaluation
criteria we use to compare the different IoT platforms. Then, in Sec-
tion 5, we conduct the evaluation of each IoT platform based on the
proposed criteria. We also compare how the criteria vary throughout
each platform as platforms adopt different techniques to meet user and
application demands. We summarize our findings and discussions in
Section 6. Finally, Section 7 presents the related work and Section 8
concludes the manuscript, and discusses future work.

2. Background

In this section, we overview a general architecture of an IoT solution
regarding the platform used. From there, we define the key features that
we use throughout the manuscript.

2.1. The Internet of Things (IoT)

The proliferation of wireless technology and the increasing effi-
ciency of small, embedded-systems [13,14] led to a technological con-
vergence that is nowadays known as the Internet of Things (IoT). An
IoT device is a generic term for any small computing device that can
communicate with other devices. Atzori et al. note in 2010 that, ‘‘the
main strength of the IoT idea is the high impact it will have on several
aspects of everyday life and behavior of potential users’’ [15]. As of this
writing, IoT devices have moved into our homes [6,8,16], allowed cars
to drive themselves [12], and have generally automated life around us.
Countless numbers of IoT devices work ‘‘hand-to-hand’’ to automate
these processes in ways never thought possible.

2.2. IoT Solutions

Fig. 1 depicts the general architecture of an IoT solution. In this
manuscript, we use the term IoT solution to describe a fully working
setup for IoT. Due to the particularities in IoT, describing IoT just
as a network of devices would not provide a complete vision as just
networking IoT devices together would not necessarily make them
operate in the way and for the purpose they were designed. An IoT
solution demands synchronization among many IoT devices (and, in
many cases, cloud servers) that require specialized applications, com-
munication protocols, and data processing capabilities that must also
be considered. Therefore, we use the term IoT solution to bundle all
of this specialization under one colloquial term. Specifically, an IoT
solution that we describe here includes four interdependent layers: (1)
IoT Devices, (2) Communication Protocols, (3) Data Processing, and
(4) IoT Applications (Fig. 1). From bottom to top, the lowest layer
of the discussed IoT solution includes the IoT devices. These devices,
depending on their application purpose, combine specific sensors and
actuators that permit perceiving the surrounding physical environment
and acting based on pre-programmed event handlers. For instance,
the motion sensor detects the presence of the user and triggers the
smart light to turn on. Going up a layer, a collection of communication
protocols permit the devices to communicate and create network links
among each other and, in several cases, with cloud-based servers. Orig-
inally, traditional communication protocols like WiFi and Bluetooth
were directly integrated into the IoT realm. However, considering that
IoT’s tasks highly differ from applications of traditional computing
systems, new communication protocols such as ZigBee and Z-Wave
have been utilized for IoT. The goal of these protocols is to guarantee
the high connectivity required among IoT devices and systems while
reducing the power consumption and increasing reliability. Finally, at
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Fig. 1. Different IoT platforms integrate four layers of functionalities within an IoT solution.
the top of an IoT solution, Data Processing and IoT Application layers
permit the analysis of the physical data collected by IoT devices and
provide interfaces so users can manage the IoT solution and interpret
the collected data. We provide additional details below:

IoT Devices. As mentioned before, IoT devices are equipped with em-
bedded sensors, actuators, processors, and transceivers that permit the
full interaction with the physical world. There are two main processes
in which IoT devices play a main role. First, sensors detect changes
to their physical surroundings and collect these changes as IoT data.
Generally, this data provides valuable information regarding specific
events of interest to the IoT solution. In fact, automation in IoT is
achieved via sharing the IoT data with other devices, central processing
units (i.e., a hub), or cloud-based servers to trigger specific events
(e.g., a temperature sensor for reporting the air conditioner (AC) that
the house needs cooling). Second, once a trigger event is detected,
IoT devices are capable of influencing the physical environment using
specific actuators (i.e., trigger-action interactions). For instance, from
the previous example, after sensing the need for cooling the house, the
smart thermostat changes the AC state from off to on.

Communication Protocols. Connectivity is a crucial element of an IoT
solution. Thus, to guarantee the reliability of the IoT communications,
many protocols can be used within the same IoT implementation
to accommodate for constraints of the environment (e.g., Bluetooth,
WiFi, Zigbee, Z-Wave, etc.). Some of these constraints are related to
the physical setup (i.e., the distance between devices may impose
the use of long-range communication protocols), the specific IoT task
performed (i.e., real-time applications require higher connectivity capa-
bilities), and the device’s computing resources (i.e., power-restrained
devices may impose the use of low-power communication protocols
like Bluetooth Low Energy (BLE)). To overcome these communica-
tion challenges, standardization organizations, IEEE or the IETF, have
worked on different IoT-specific communication protocols like the IEEE
802.15.4e, 6LoWPAN, and LoRa [12,17].

Data Processing. This layer provides the capacity for data analysis and
control in an IoT solution. Through different programming paradigms
and development, IoT solutions implement data processing capabil-
ities necessary to manage the devices and their interactions while
also enabling crucial functions such as data collection, control, and
interoperability [9]. For instance, with data processing, an IoT solution
can verify and execute the AC trigger-action interactions explained
above. Also, data processing provides the means for IoT application
3

development. To implement IoT-specific tasks, IoT developers integrate
APIs and web interfaces into their apps, which allows for customization
and fine-grained tuning of critical operations in the IoT solution. For
instance, Samsung SmartThings offers the class 𝑎𝑠𝑦𝑛𝑐ℎ𝑡𝑡𝑝_𝑣1 class via an
API to implement asynchronous HTTPS calls within an IoT solution [7,
8].

IoT Applications. They allow the user to engage with an IoT solution,
set control values, monitor the execution of critical tasks, and receive
real-time information about the different IoT solution states. IoT apps
implement features that enable the user to see real-time data of her IoT
solution and react to the data. For instance, an application for a smart-
home would allow the user to turn on her IoT devices, read current
state data such as the temperature in the house, and schedule events
such as turning on the lights when she arrives home.

Finally, within an IoT solution, the IoT platforms work as a cy-
ber ‘bridge’ to enable functionality across these four different layers
(Fig. 1). The IoT platforms that we evaluate in this manuscript provide
the software architecture that permits all of these layers to interoperate
and enable the specific tasks of the IoT solution. These platforms pro-
vide the necessary code, and implementation capabilities to (1) interact
with supported IoT devices, (2) allow IoT devices to communicate with
each other, (3) process data collected from end-devices, and finally
(4) allow humans to interact with and understand this data. However,
due to the high diversity in IoT, every platform provides specific tools
to enable the IoT solution. This well-known heterogeneity challenges
the integration of devices and software from different platforms into
a single IoT solution. In addition, every platform uses different ap-
proaches to guarantee the connectivity among devices and servers, the
implementation of security mechanisms to protect the IoT solution from
cyber attackers, and the protection of the privacy-sensitive information
from users and systems. In these scenarios, IoT users are challenged
with the convoluted task of selecting the IoT platforms that best fit their
needs. In the remaining sections of this survey, we highlight how the
design choices of different popular IoT platforms affect the functionality
of each layer and the IoT solution as a whole.

3. The IoT Platforms

In this section, we introduce some of the most popular and
widespread IoT platforms among the industry and developer, research,
and academic communities as of the writing of this survey. We present
the criteria that we use to study, compare, and evaluate the IoT



Computer Networks 192 (2021) 108040L. Babun et al.

a

platforms, highlighting specific features that consider the potential
design needs of the IoT users. As noted earlier, for the purpose of this
work, an IoT user refers to any developer, administrator, and researcher
who actively utilize IoT resources to build, monitor, or perform analysis
on IoT solutions.

3.1. Consumer IoT vs. Enterprise IoT

There exist several different criteria to effectively classify IoT plat-
forms. The most common one split IoT devices and platforms into two
main groups: Enterprise IoT and Consumer IoT. In this case, the classifi-
cation criteria take into consideration the (1) functionality and context
in which IoT devices are being utilized, (2) the desired interoperability,
(3) granularity and scalability, (4) security and privacy requirements,
and (5) the cost [18,19].

• Functionality and Context : In terms of functionality, IoT platforms
from both groups (i.e., consumer and enterprise) may be able to
assume similar applications. However, other variables such as cost
and implementation complexity can vary significantly. These vari-
ables define the context in which an IoT platform is utilized. In
general, consumer IoT (e.g., SmartThings, OpenHAB) is designed
to provide users with peace-of-mind, plug-and-play implemen-
tation capabilities. The commodity IoT devices are designed so
that the regular users should be able to undertake the entire im-
plementation/configuration process by themselves. On the other
hand, the devices from the enterprise IoT (e.g., Control4, Lutron,
Creston) requires more professional installation, and the plat-
forms or the vendors would spend more dedicated resources on
training and licensing their specialized technicians [20–22].

• Interoperability : Consumer (or commodity) IoT is typically de-
signed to facilitate the interconnection among devices from dif-
ferent manufactures and platforms. That way, the users may
implement the IoT solutions using the devices of their choice
(out of thousands of available options) or that would better-
fit their preferences, needs, or budget. This interoperability of
the commodity IoT devices allows for new functionalities and
extended automation in some cases. For instance, Amazon Alexa
can connect to devices from different manufactures and act as a
controlling entity within a heterogeneous IoT solution, facilitating
the configuration and monitoring of several devices for the users.
Differently, the enterprise IoT solutions are more homogeneous
in terms of device diversity and usually conform to a single
manufacturer/vendor. While the consumer IoT generally utilizes
open-source software and protocols to monitor and control their
systems, the enterprise IoT is known to use proprietary protocols
that require licensing.

• Granularity and Scalability : As mentioned before, the user of the
consumer IoT has the option of selecting among thousands of
different devices available in the market. However, every one of
these devices typically provides specific functionality (e.g., light
control, temperature control), and manufacturers tend to design
specialized devices for specific applications. In these scenarios,
the user must be, at least, capable of selecting the right devices
for her specific application. However, one great advantage that
the enterprise IoT platforms offer is that they are designed with
the ‘‘comprehensive-solution’’ concept in mind. That is, the en-
terprise IoTs’ manufacturers offer a wide range of devices and
controllers that bring added capability to the solution and are
capable of assuming any ‘‘smart’’ functionality. Finally, the en-
terprise solutions are meant to be used for scalable applications
that require the support of, on the one side, complex services
like audio/video transmission and, on the other side, several IoT
‘‘nodes’’2 simultaneously.

2 In this specific case, the term IoT node refers for instance, to the different
udio/video stations (e.g., display, controllers) within a solution.
4

• Security and Privacy Requirements: Although protecting IoT sys-
tems and the privacy of the users constitute a concern for all
the IoT platforms, there exist some differences in terms of re-
quirements between the consumer and enterprise IoT. For the
consumer IoT, most researchers and experts agree that the vul-
nerabilities affecting the privacy represent a higher threat to
the regular user [7–9,16]. Due to the nature of the personalized
commodity systems, attackers may take advantage of such vulner-
abilities to fingerprint [23] user behavior or steal privacy-related
information. However, the enterprise IoT is mainly utilized in
professional and industrial environments where vulnerabilities
may give hackers full access to critical infrastructure like the
smart grid [13,14]. Thus, the enterprise IoT usually require more
secure and higher standards compared to the consumer systems.

• Price: A direct consequence of the differences between consumer
and enterprise IoT is also reflected in the budget. While the regu-
lar user may spend hundreds of dollars to acquire all the necessary
devices to implement the IoT solution, the enterprise version
would require tens of thousands of dollars to be spent on expen-
sive equipment, proprietary software and protocols, licensing, and
professional installation and support.

3.2. A functionality-aware selection of IoT Platforms

In the following, we introduce the different IoT platforms consid-
ered in this work. Because criteria to rank IoT platforms can be very
diverse, we choose specific IoT platforms to evaluate based on two
selection criteria that are key to the IoT user considered here: (1) Plat-
form Independence and (2) Platform Support. Also, we aim to integrate
IoT platforms that target different application domains (e.g., commod-
ity IoT, industry, agriculture, etc.) into this survey. We include IoT
platforms from different application domains to align better with the
diversity of IoT. Also, by offering comparison criteria that can be
applied to platforms from different domains, a broader spectrum of IoT
users will benefit from this work. In Section 4, we detail the specific
comparison criteria that allow us to analyze such a diverse set of IoT
platforms. In the following, we detail the selection criteria that we used
to analyze the IoT platforms. As a result of this analysis process, we
select the top-eight platforms to be included in this survey.

• Platform Independence: The IoT platform must be able to imple-
ment a full IoT solution (regarding the specific domain) without
any additional support from other platforms. That is, platforms
that help automate IoT solutions are not included since they
require another IoT platform to function. For example, C3 IoT
platform [24] is not included as it runs on top of Amazon’s IoT
platform.

• Platform Support : The IoT platform must have the ability to
thrive a well-designed, well-maintained support infrastructure,
designed specifically for the IoT users considered here (i.e., devel-
opers, administrators, researchers). With over 450 IoT platform
providers [25], it would be impossible for all of them to survive
long-term. For this reason, we focus on evaluating platforms with
a significant community (i.e., large open-source platforms) or
company support (e.g., Microsoft, Apple, Samsung). Hence, IoT
platforms with better support normally control the highest market
share in terms of active devices and applications for their specific
domain. For instance, as of this writing Samsung SmartThings
platform dominates the market with the highest share of devices
and applications [26,27].

In Table 1, we detail the selection criteria of the top-eight plat-
forms considered here. We also include additional information such as
their distribution models (e.g., payment models, open/closed sourced)
as well as an estimation of the current number of IoT devices and
applications supported by the specific IoT platform as of this writ-
ing. An interesting finding is that home-automation platforms such as
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Table 1
Selection criteria that led to the selection and inclusion of top-eight IoT platforms into this survey. We define as ‘‘extension’’
any handcrafted IoT app (different from the official app) that can be used to control IoT devices. Figures are as of February
2020.
IoT Platform overview

Platform Payment model Open/Close sourced Devices Applications

openHAB [28] Freeware Open 1500+ 310+ extensions
SmartThings [29] Purchase devices, premium services Open 390+ 1 official; 500+ extensions
HomeKit [30] Purchase devices, developer access Closed 280+ 1 official; 300+ extensions
Windows IoT [31] Commercial agreements Open 100+ 1 official; 200+ extensions
FarmBeats [32] Not open to public Closed 100+ 1 official
AWS IoT [33] Subscription per device Open 800+ 28 official partners
ThingWorx [34] Pay for IoT data Open 1200+ 4 official
Watson IoT [35] Pay for IoT data Closed 600+ 1 official
(

t
t
u
d

F

SmartThings and HomeKit tend to have fewer compatible devices than
general-purpose/industrial IoT platforms like ThingWorx and Watson
IoT. Contrarily, the home automation platforms have many applica-
tions/extensions,3 while the industrial platforms usually consider one

ain application or outsource functionality to official partners. Our
bservation for this outcome is that the need for plug-and-play and
ersonalization at home lead to fewer devices, but more customization
apabilities. On the other hand, the industry needs generalization and
ariety, which leads to a vast diversity of devices that can be used
cross many industrial domains (e.g., health, agriculture, factories),
ut one application that can be tuned to fit the customer’s needs. In
he following, we provide some overview analysis of the selected IoT
latforms.

penHAB. OpenHAB is a Java-based smart home platform that im-
lements an open-source solution to the Eclipse SmartHome frame-
ork [28]. While Eclipse SmartHome is the core functionality of a

mart home environment, OpenHAB constitutes the full implementa-
ion that uses Apache Karaf and Eclipse Equinox for the Open Service
ateway Initiative (OSGi) runtime. In the OpenHab architecture, things

are the physical entities connected to the solution. These things provide
channels that represent passive entities that amount to what a thing
offers. items represent the virtual back-end to things. They have a
state and represent the functionality used by the application. Finally,
links establish relationships between Things and Items, the physical
connection between the two. Through these entities (i.e., things, items,
links), the OpenHAB platform facilitates developers to define rules
to build automated tasks. With this generic architecture, OpenHAB
promotes the idea of vendor-neutrality and encourages devices from
any vendor to be implemented in the OpenHAB platform. Rules in
OpenHaB are written in Domain Specific Language (DSL), which is
derived from Xbase programming language. Finally, OpenHAB rules use
three different types of triggers to react to changes in the environment.
Event-based triggers listen to commands from Items, time-based triggers
respond to special times, and system-based triggers run with certain
system states.

Samsung SmartThings. SmartThings is a proprietary home automa-
tion platform implemented by Samsung [29]. Following a producer/-
consumer paradigm, SmartThings connects a large array of sensors
and actuators to a central Hub and from there to the cloud-based
server on the Internet. As a proprietary framework, much of the code
generation and deployment are hidden via specific APIs to develop-
ers, which makes the development of SmartThings apps more user-
friendly. SmartThings applications (i.e., SmartApps) are written in a
dynamic, object-oriented Groovy language for the Hub or the cloud
and then configured using mobile applications (i.e., controller device).
The SmartThings design architecture includes two different abstrac-
tions [29]: (1) capabilities, which implement the event and actions for

3 We define as ‘‘extension’’ any handcrafted IoT app that can be used
o control IoT devices. In general, these apps offer extended personalization
apabilities to the user if compared with the official IoT app.
5

a device and (2) intelligence, that is used to develop an application
for a specific type of device, regardless of the connection protocol or
the manufacturer. Similar to OpenHAB, SmartApps are event-driven.
The permission control allows the programmer to specify program
inputs such as devices- and user-defined inputs. The developer then
uses the event handlers to subscribe to a specific device or user-defined
(e.g., location-related) events.

Apple HomeKit. HomeKit is also a proprietary home automation plat-
form that performs full integration with Apple products [30]. Pro-
gramming for this platform requires membership to the iOS Developer
Program and can either be done in Swift or Objective C, two of Apple’s
preferred coding platforms. Built from iOS, HomeKit uses a central-
ized application to communicate with HomeKit accessories (i.e., IoT
devices). HomeKit promotes the idea of simplicity to the user by hosting
most of the programming in the back-end to automate installation for
the user. Unlike previously discussed platforms, Apple HomeKit does
not require a centralized gateway or Hub to guarantee communication
between devices. In this case, users and different devices can communi-
cate using Siri and HomeKit applications. From the architectural point
of view, the main component of a HomeKit network is the accessory
i.e., device). These accessories are defined by services, which represent

what an accessory can do (similar to capabilities in SmartThings).
The devices in Apple HomeKit can be grouped by the specific type
of services they can provide, thus, the implementation of an Apple
HomeKit solution starts by activating a group of services previously
defined. Services implement characteristics that define the interactions
among services. Characteristics can be read–write (e.g., setting a new
threshold value for temperature), write-only (e.g., specific commands
for devices), and read-only (e.g., current temperature). Finally, actions
are used to send commands to specific devices (e.g., close garage door),
and triggers can be defined to execute actions at specific dates and times.

Microsoft IoT Core. IoT Core is an IoT platform developed by Mi-
crosoft that gears toward general IoT usage — the purpose being that
IoT core can be implemented to fit any developer’s needs [31]. IoT
Core stem from the Universal Windows Platform (UWP) [36], which
permits developers to make applications for any UWP compatible de-
vice (e.g., Xbox, PC, IoT devices, etc.). UWP allows for a developer to
program for her device using drivers. From there, the developer grants
he IoT device permissions to read, write, or communicate IoT data in
he network. By connecting to Microsoft’s Azure cloud platform, the
ser can implement a full IoT solution without the need for a hub-like
evice, allowing for easier implementation, scaling, and management.

armBeats. FarmBeats is an agricultural IoT platform also developed
by Microsoft [32]. Although FarmBeats inherits from IoT Core, it devel-
ops a full independent IoT solution more tailored for smart agriculture.
This platform boasts unique contributions to improve agriculture needs,
such as: ‘‘long-term deployment, weather-aware devices, and novel
inference techniques’’ [32], all designed to increase efficiency on a
farm. Due to farms having unreliable Internet connections, FarmBeats
has proprietary IoT gateways that function similarly to a hub. While
offline, these IoT gateways can host localized data analysis and control
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of IoT devices, and, when connected to the Internet, they upload
the data to the Azure clouds for storing and long-term data analysis.
FarmBeats is currently in public preview and is available in Azure Mar-
ketplace [37]. Compared to other platforms, the FarmBeats solution has
additional challenges. In addition to the connectivity issues previously
explained, FarmBeats developers also need to consider maintenance
limitations due to the use of FarmBeats devices in remote farm areas.
For instance, limitations on the access to reliable power sources and
expected difficulties on the replacement of expired batteries from the
devices impose the use of very low power communication protocols like
BLE.

Amazon Web Services (AWS) IoT. AWS IoT is another general-
purpose IoT platform designed to connect IoT devices to Amazon Web
Services [33]. The critical focus of AWS IoT is to bridge IoT devices to
Amazon Web Services so that data can be streamlined to the user. By
using this platform, users can program their devices through specific
APIs and development kits. From there, users may read and alter device
states to manage live IoT data in her IoT solution. Optionally, IoT
gateways or hubs may be installed to help bridge the connection or
add additional functionality to the IoT solution. For instance, a smart
homeowner can utilize the Alexa hub to control other devices via
Alexa skills. These skills enable Amazon Alexa functionality and support
through custom-built keywords and phrases. Taking advantage of its
flexible architecture, more vendors are allowing the integration of their
IoT devices with the Alexa hub. This way, the IoT user can benefit from
more flexible and customized IoT solutions.

ThingWorx. ThingWorx is an industrial-based IoT platform designed
to help automate businesses and implement remote monitoring of
industrial processes [34]. The platform is built on a centralized appli-
cation hosted on the cloud that developers can connect their industrial
IoT devices to. A user implementing a ThingWorx solution can add
support for their specific IoT devices through APIs and SDKs, which
are uploaded to their ThingWorx application. From there, it is just
a matter of adding devices in a plug-and-play fashion to get an IoT
solution up and running. With many built-in features and industrial
partners, ThingWorx promotes that its platform can be used in a variety
of industries to help automate a company’s work environment.

IBM Watson IoT Platform. Watson IoT is a general-purpose IoT plat-
form developed by IBM [35]. While advertising for the industry, IBM
notes that Watson IoT can be used for any IoT solution, including the
smart home. Like other platforms, a user must add support for their
device through specific SDKs. However, as the platform is integrated
with IBM’s Watson AI, IBM also promotes its machine-learning services
to adopt into IoT applications and data analytics.

4. A novel evaluation framework for IoT Platforms

As discussed before, IoT platforms are unique in their applications,
targeted domains, and functionality. Therefore, no two platforms can
be compared easily with each other. For instance, one smart-home
platform may focus on openness and the ability to rapidly add un-
supported IoT devices while an industrial IoT platform would mainly
focus on proprietary devices that function right out of the box and
that are highly configurable. These two choices alone would have
a broad impact on what resources (e.g., communication protocols,
authentication mechanisms, and topology) are fundamental to consider
while implementing IoT solutions. With this work, we aim to provide
a comprehensive resource to IoT users (i.e., administrators, developers,
and researchers) so they can make an informed decision on what IoT
platforms to choose based on their specific needs. For this, platforms
from different domains need to be considered. In this way, this research
aims to impact a broader group of users. Finally, we note that we
selected the platforms considered here based on their independence and
6

support capabilities (see Section 3).
To compare fundamentally different IoT platforms, we define com-
parison criteria that directly impact three implementation pillars: (1)
communications, (2) security, and (3) privacy. We believe that despite
the desired application, IoT users want to guarantee reliable connectiv-
ity while preserving the CIA triage of security: confidentiality, integrity,
and availability of the IoT data and services. Specifically, we consider
the following seven comparison criteria: topology, programming lan-
guages and application development, device support, protocol support,
event handling, security, and privacy. We define and briefly overview
these criteria below:

Topology. This feature concerns with how the IoT solution handles
the flow of information among the different sensors, devices, hub, and
cloud servers. Since the majority of IoT devices themselves are too
lightweight to process the amount of data they produce, there must
be a dedicated instance at the center of an IoT solution capable of
analyzing and storing the IoT data. There are three possible topologies:
(1) centered around a local hub device, (2) with IoT devices communi-
cating directly with a cloud-based server, and (3) a hybrid combination
of the previous two. Analyzing how data flows is central to how one
implements security policies for the IoT solution. For instance, security
challenges and needs are different if the sensitive information is stored
locally or is sent to a remote party over the Internet. In this criteria,
we focus on how each of these topological choices may affect the
performance and the security of the IoT solution.

Programming Languages and Application Development. The capac-
ity of building tailored IoT apps is what gives the IoT solution its
desired functionality. Like traditional operating systems, many pro-
gramming languages can be used at the backbone of IoT. Some pro-
gramming languages, such as Embedded C, are highly efficient at
running on specialized devices while others, such as Java, are capable
of working on practically any device. On the one hand, the IoT platform
may allow full use of a programming language and give more control
and resources to the developer to build specific apps tailored to her
needs. On the other hand, the platform may provide a lightweight,
stripped version of the language to ease the strain on the IoT devices’
computing resources. In this criteria, we study what choices platforms
make in their programming languages, how the platforms implement
their APIs, and how these choices impact the IoT solutions’ capacity to
implement adequate connectivity, security, and privacy.

Third-party Support. By concept, IoT integrates numerous different
types of devices that can operate in many ways. In fact, the majority
of the current research work in IoT focus on implementing security
solutions that target IoT platforms that support a high number of
devices [7–9]. In addition, to increase usability, some IoT platforms
allow the integration of third-party or handcrafted applications (i.e., ex-
tension) that offer an extended set of features either to control native or
third-party devices to the user [38]. For that reason, we also study the
support of an IoT platform to incorporate third-party apps and devices.
In IoT, devices are only proprietary, allowing for easier installation
for the user, or the platform provides tools to allow for third-party
device support, giving the user a broader customization capacity in her
IoT solution. Also, on the application support side, even though it is
complicated to integrate applications that do not completely abide by
similar programming languages and architectural approaches, freelance
developers often offer software solutions that surpass ‘‘original’’ IoT
apps. While analyzing these criteria, we study these two categories of
providing third-party support, focusing on what would be the pros and
cons or both in terms of security and privacy. For instance, providing
support to third-party devices could open undesired doors to new
security vulnerabilities as unknown compromised devices can be easily
integrated into the solution [39–41].

Extended Protocol Support. IoT platforms offer a set of predefined
APIs to implement specific protocols (e.g., permission:entity-
type:entity-id is used to implement a REST call in Samsung
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SmartThings). However, as the number of predefined APIs is restricted
for most platforms, some specific protocols may not be implemented.
As a consequence, limiting the set of available protocols necessarily
limits the range of capabilities of the IoT solution. In this category,
we survey how different IoT platforms allow for extended protocol
support, so IoT users could plan for enhanced functionality in their
solutions. In other words, we focus on how IoT platforms offer addi-
tional tools to the user (other than specific predefined APIs) to permit
for the integration of additional protocols (e.g., communications, device
discovery, public/private key exchange) that can be used to enhance an
IoT solution. The broader the set of available protocols in the platform,
the more tools the IoT user has to the support applications with higher
technological demand. Among all the types of protocols, we further
focus on those directly related to device connectivity. While devices
are capable of operating individually, there must be a way to network
them together to set up the IoT solution. In traditional computer net-
works, one could simply use communication protocols from the TCP/IP
stack and assign all the devices IP addresses to enable communication.
However, due mainly to specific challenging environments where IoT
devices operate, many IoT devices are incapable of communicating in
this way, and additional communication support must be added. A
crucial element in IoT is the high connectivity required among devices
and cloud-based servers. Indeed, high-speed connectivity is necessary
in most cases to cope with real-time applications and the level of coop-
eration expected among IoT devices. In general, as in device diversity,
IoT connectivity can be guaranteed in a proprietary fashion where the
platform only allows devices that communicate over certain protocols.
However, some platforms also provide tools that permit the integra-
tion of third-party communication protocols. As mentioned earlier,
current IoT connectivity is mostly guaranteed via traditional network
protocols and technologies like WiFi, Bluetooth Smart, and Device-to-
Device (D2D) communications. However, specific IoT applications that
require, for instance, the utilization of devices in a remote location are
imposing the design and use of novel communication protocols that
guarantee the required connectivity while imposing lower overhead in
terms of power consumption and regular device maintenance. In this
criteria, we first study what protocols are used in various IoT solutions,
so the desired performance is achieved. Also, we highlight the impact of
the approach used to select the communication protocols on security.
First, the use of known vulnerable protocols may impact the overall
security of the IoT solution. Second, the integration of third-party
protocols may also open doors to new security vulnerabilities.

Event Handling. Trigger-action relationships in IoT settings are trig-
ered by time, user input, or changes in the environment surrounding
he devices. Developers call these changes in the environment events.
he way an IoT platform handles the events may impact the perfor-
ance and efficiency of the IoT solution. Effectively, events can be
andled in a real-time approach, responding to the event as it occurs;
r the IoT solution can periodically check for events and respond
n precise intervals. In this criteria, we survey the methods used to
andle events in an IoT solution and how this impacts the performance
f the IoT solution. Also, security concerns can be raised from the
nalysis of trigger-action relationships. IoT researchers have studied
hese relationships to discover illegal states that directly impact secu-
ity [42]. Finally, the analysis of trigger-action relationships permit the
mplementation of security solutions to discover malicious actors and
ompromised devices based on behavioral analysis [6].

ecurity. With the proliferation of IoT devices and services, securing
hem and improving the way they establish communications within
ocal networks and with remote servers are among the highest priorities
f the IoT user. We include additional criteria that evaluate how the
oT platforms evaluated here guarantee security via architectural de-
ign or through dedicated APIs to implement, for instance, encryption
7

n the sensitive data that is sent out of the IoT applications. We
tudy what mechanisms are provided by the platforms for administra-
ors, developers, and researchers to secure their IoT solutions. These
echanisms support the essential security services of confidentiality,

ntegrity, availability, and access control. For instance, we discuss
uthentication methods to secure who has access to the sensitive in-
ormation handled by the IoT solution, the ability to implement roles
nd capabilities for access control, and other programmable security
unctionalities such as encryption of the sensitive information. We
etail such mechanisms below.

• Confidentiality : We evaluate how IoT platforms are vulnerable to
attacks impacting the confidentiality of users and services. Then,
we also discuss the means that IoT platforms implement to protect
or mitigate the effects of such attacks. We focus our discussion on
how the IoT platforms guarantee confidentially by, for instance,
implementing proper authentication mechanisms and encryption.
Specifically, we evaluate how an IoT platform authenticates enti-
ties (i.e., users, devices, and applications). If an entity can perform
malicious activities without needing to authenticate itself, it can
cause severe damage to the IoT solution. Here, we survey how
traditional authentication methods are adapted to IoT. Also, we
evaluate potential new authentication methods that may be more
tailored for IoT. In general, IoT devices are lightweight and lack
the computing power of the average PC. However, fast communi-
cation between IoT devices is often required to exchange sensitive
information that needs to be protected from passive and active
malicious actors — especially when the devices operate critical
infrastructure (i.e., the smart grid and healthcare equipment) and
are in charge of real-time processes. Therefore, some encryption
schemes (e.g., RSA) are not easy to implement on IoT solutions
as the IoT devices are, for instance, incapable of operating at the
required performance while still using encryption. This criterion
discusses the encryption schemes that can be utilized by the IoT
platforms to protect sensitive communication and stored data in
the IoT.

• Integrity : Accurate data is key to support IoT functionality. The
IoT paradigm follows the sensor-computation-actuator paradigm
where devices react to commands sent from remote servers fed
by and compute measurements received from sensors. Thus, the
integrity of the IoT data defines the quality and effectiveness
of the IoT services. The impact of data integrity is especially
relevant in IoT solutions aimed at controlling and monitoring
critical infrastructures (i.e., enterprise and industrial IoT) like
the smart grid or modern water plants. We cover attacks that
target the integrity of the IoT data. Then, we describe tools that
IoT platforms may offer to the user to guarantee data integrity.
Finally, we discuss potential security solutions that could be
considered by IoT users to strengthen data integrity in IoT.

• Availability : The IoT solution is expected to offer ‘‘always-on’’
services. Disruptions within consumer IoT solutions may cause
frustrations to the user. However, disruptions within the enter-
prise or industrial IoT may put critical services at serious risk. We
discuss the main threats and cyberattacks, targeting availability
in IoT. Then, we provide insights into what the different IoT
platforms and users can do to mitigate such attacks.

• Access Control: Access control for IoT systems is similar to mobile
phone permissions [43]. Each device in the IoT solution has capa-
bilities (e.g., a light-switch can turn on or off), and the platform
should have ways of allowing a device to use those capabilities.
For this work, this criterion surveys the ways platforms provide
users access to the device capabilities. Also, we evaluate if the
platforms provide mechanisms to restrict access of certain users
to specific capabilities. For instance, a homeowner may want
to restrict access of an Airbnb guest to devices like the smart
thermostat [16]. In summary, access control concerns on how the

IoT platforms handle access control to both users and devices.
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Privacy. Protecting the IoT solution from malicious actors or com-
promised devices does not keep sensitive information from being in-
advertently or deliberately disclosed to third parties. Thus, we also
include criteria to compare IoT platforms in terms of the protection
they provide to the privacy of users. In this criterion, we uncover how
privacy is affected through a combination of a platform’s choice in
previous criteria. Also, we highlight methods provided by platforms to
specifically cater to privacy. This would include any mechanisms and
functionalities utilized by the platforms to make user data private as
well as policy agreements that define out how any platform’s parent
company adheres to privacy.

5. Evaluation of IoT Platforms

This section aims to evaluate the selected IoT platforms with
communications-, security-, and privacy-impacting criteria. This eval-
uation includes analysis of topology, programming languages and
application development support, IoT event handling, third-party sup-
port, extended protocol support, security, and privacy. We chose these
criteria as they impact the security and connectivity capabilities of all
the evaluated IoT platforms, regardless of how a platform implements
specific IoT solutions, which is of a high priority to the user. We
look into overall platform design patterns in IoT and point out the
commonality between the different IoT platforms. After highlighting
these trends, we then discuss the advantages and disadvantages of a
particular IoT platform adopting specific practices. Finally, our goal is
to provide the IoT users with an evaluation framework that allow them
to make informed decisions regarding the design choices to implement
their IoT solutions.

5.1. Topology

In this criteria, we are concerned with how the IoT platform handles
the flow of information among sensors, devices, apps, and servers,
as IoT devices and sensors are often too lightweight to analyze the
amount of data they produce themselves, and therefore, they require
a dedicated device (often a hub or cloud-based server at the center
of an IoT solution) capable of analyzing and storing the IoT data.
How data flows within a solution is key to how one defines further
design rules. In this criteria, we focus on how each of these topological
choices can affect the connectivity performance in an IoT solution and
the security and privacy risks the different architectural approaches
may arise. We find three possible design topologies in our analysis
(Fig. 2): (1) centered around a local hub device, (2) with IoT devices
communicating directly with a cloud-based server, and (3) as a hybrid
implementation of the previous two approaches [44]. Below, we detail
how these topologies function and identify benefits and detriments to
their use.

Hub-based Topology. Generally, IoT solutions implementing this
opology requires of a centralized entity (i.e., the hub) that is local
o the IoT network. The hub serves as the central processing unit
nd the communication bridge between the connected IoT devices
nd the cloud-based services. OpenHAB is a great example of a fully
ub-based topology. The hub has all the capabilities to collect, store,
nd process data from the IoT devices [28]. Fig. 2(a) showcases a
eneralized hub topology: all IoT devices in the IoT network connect to
he centralized hub, which processes the incoming data and provides
ontrol to those devices. Advantages: In general, the advantages of using
hub for centralized communications are (1) localized data processing

nd storing and (2) offline data analysis. First, if desired, the user can
eep her IoT data private and secure from third-party malicious actors
ince all the data is stored on her local implementation. Second, the IoT
olution will continue to work even without an Internet connection – a
onnection is only needed for downloading updates or new features,
8

which directly impacts the connectivity requirements. Additionally,
if an Internet connection is required to support specific services, the
hub-based cloud benefits from having a single entry point rather than
multiple Internet connections from multiple devices, which increases
security. Disadvantages: The drawback of a hub-based topology is cost
and additional implementation effort. To implement this topology, the
user needs to get a proprietary hub or a device capable of working as
a hub before she can set up the IoT solution. For instance, in Apple
Homekit, the user must get an Apple TV, iPad, or similar device to
operate as a centralized hub within their IoT solution. Additionally, the
performance capabilities of the hub directly impacts the performance
of the solution. If the user does not use a high-end hub, she may
experience lower performance overall as the hub will not have enough
processing power to handle the data load. Also, hubs tend to have
a high amount of initial configuration before it is ready to be used
properly. In openHAB, the user must install and configure the hub
before she is capable of installing the rest of the devices. Despite the
advantages explained before, the use of a hub may also impact security.
Even though the data may be considered more secure due to the limited
Internet access, if a hub gets compromised, attackers may have access
to all the IoT solution data at once, which may impose the use of precise
security solutions [6].

Cloud-based Topology. It relies on Internet connectivity to manage
the IoT solution remotely using cloud-based servers (Fig. 2(b)). In
typical scenarios, the vendor that supports the IoT platform hosts a
cloud service that allows the user to connect her IoT solution directly to
it. The cloud service then handles all of the data exchange, processing,
and storing from the different devices to execute the IoT application
logic and to communicate with the IoT devices. Advantages: The main
advantage of using a cloud-based topology is reduced implementation
time and overhead. Typically, the IoT platform hosting the cloud ser-
vice has a pre-configured package to install the service quickly. Then,
all that is left to the user is to customize her installation based on
her specific needs. The cloud also provides the advantage of faster
processing speeds as high-end servers will be performing the processing
on the IoT data rather than using a single resource-limited device
(i.e., hub). The use of cloud-based configurations also facilitates the
support of third-party devices and increased app customization. On the
one hand, the use of new devices is not limited by the adoption of
specific communication protocols that impose the implementation of lo-
cal networks. Instead, only reliable Internet connection capabilities are
required for new devices to be included in the IoT solution. On the other
hand, IoT developers or researchers can implement their own cloud
services to increase app customization or to integrate novel security
and privacy mechanisms [7,8]. Disadvantages: The major disadvantage
of using a cloud service comes as increased connectivity requirements
if compared to the hub-based approach. Using a cloud-based service
requires an ‘‘always-on’’ Internet connection since the IoT solution
cannot properly function in offline mode. Also, the user’s IoT data has
added security risks of being stolen or compromised either during the
communication process or as soon as it is stored somewhere out of the
local solution, which impacts security and privacy. As all the devices
included in the IoT solution continuously exchange data with the cloud,
new security measurements are offered by the platform to protect the
information. For instance, the adoption of secure HTTP protocols like
HTTPS that encrypt the information may be required to protect the
sensitive information from, for instance, eavesdroppers. Finally, cloud-
based architectures require trust from the user that the IoT platform
can adequately protect the solution against external attackers or even
passive observers. However, recent research works have demonstrated
that malicious or handcrafted IoT applications may not correctly pro-
tect the IoT communications or even are capable of sending the data to
malicious servers [8,9].

Hybrid Topology. The most common IoT topology adopts a hybrid ar-

chitecture that combines the two previous approaches. In this case, the
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Fig. 2. Most common IoT topological design choices. Every approach differently impact the connectivity capabilities of an IoT solution. Also, they arise diverse security concerns
to the IoT user and the system.
Table 2
Topology comparison among the different IoT platforms. Notice that, for all the platforms, either hub-based,
cloud-based or both topologies are required. That is, they all have the capability of implementing hybrid
approaches. ( = Required, G#= Optional, #= Not Used)
Topology comparison

Platform hub Cloud

openHAB  G#
SmartThings   
HomeKit G#  
Windows IoT Core G#  
FarmBeats   
AWS IoT G#  
ThingWorx G#  
Watson IoT G#  
IoT solution includes a centralized hub that ‘‘manages’’ and ‘‘monitors’’
devices in the solution, but also exchanges data and communicates with
a cloud service. Also, individual devices are capable of connecting with
the remote server directly as shown in Fig. 2(c). Advantages: There
are distinct advantages in the use of hybrid approaches to implement
IoT solutions. First, the IoT solution does not lose performance in the
absence of a reliable Internet connection as hybrid solutions can be
used in both online and offline modes. Second, when possible and
required, the data processing and storing workload can be shared by
both the hub and the cloud. For instance, for services that are more
time-sensitive and require the interaction of various devices in the
network, the hub can be used as the primary managing entity rather
than servers that add extra communication latency due to the use of se-
cure communication protocols (e.g., HTTPS). Disadvantages: The main
drawback of the hybrid architectures concerns with the security and
privacy of the information. As explained before, hub-based approached
are risky as the sensitive data from the complete solution can be at
risk if one single device, the hub, gets compromised. This security
challenge is partially solved in cloud-based solutions as devices can
communicate with the cloud-based servers individually, so the risk of
compromising the whole solution when single devices are under attack
is minimized. However, privacy concerns arise from the idea of sharing
the IoT data with third-party providers in the cloud. In hybrid solutions,
IoT platforms must provide the necessary security features to protect
the sensitive information in both local devices and the cloud. In the
cases where current solutions cannot support protecting the security
and the privacy of the information, the IoT administrators or developers
must be able to design and implement third-part solutions that properly
secure the systems.

5.1.1. Comparative analysis and summary
Table 2 details the main topology approaches that the different IoT

platforms surveyed use. Notice that, for all the platforms, at least one
of the topologies hub-based or cloud-based is required, meaning that
they all have the capability of implementing hybrid solutions. Due to
a large amount of processing required to analyze streams of IoT data,
most of the IoT solutions are built based on a cloud-based approach.
9

Then, to compensate for the fact that some IoT devices are incapable
of an Internet connection, different platforms provide the option to
add a hub to the deployment, acting as a connection bridge between
the IoT devices and the cloud servers. Some platforms – like Microsoft
FarmBeats – use both a hub and remote servers (which we refer to
as a hybrid topology) for their implementation strategy (Fig. 2(c)). As
explained before, platforms like FarmBeats that focus on agricultural
applications may need to use both a hub and a cloud server since the
average farm has unreliable broadband connections [32]. Thus, real-
time data analysis is performed by the IoT hub to allow for offline
communications, as a farm will regularly have periods of no Internet
connectivity. When available, long-term data is then sent to the cloud
for further processing and storing. For instance, the FarmBeats hub
performs daily humidity and temperature analysis, and the remote
services can use this data to calculate seasonal patterns such as when
to perform crop-rotations. In summary, whichever topology choice is
used, centralized communication is the bottleneck of the IoT solution.
Either the user must invest in a well-performing hub or a reliable
Internet connection to increase the efficiency of her IoT solution. Also,
the IoT user must consider the security and privacy challenges that
every topology has, especially in hybrid cases where both local and
remote threats need to be considered.

5.2. Programming languages and application development

IoT platforms use different programming languages to help au-
tomate an IoT solution. By using programming resources, the IoT
platform can analyze IoT data and control the devices. In this criteria,
we discuss the programming languages that the different IoT platforms
use to provide support and resources to the IoT solution. Also, we ana-
lyze how the different choices may benefit or affect the IoT solutions in
terms of overall performance, flexibility to add or create new features,
and the ability to protect the sensitive information and the privacy of
users.

Programming Languages. The development of the IoT platform may
use different programming languages (e.g., Groovy, C, or Java). Such
diversity, while desirable for implementing IoT solutions for specific
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Table 3
Programming languages supported by the different IoT platforms surveyed in this work. We also summarize the platforms’
capability of implementing sandboxing and DSL. ( = Required, G#= Optional, #= Not Used).

IoT Platform programming language comparison

Platform Supported languages Sandboxing DSL support

openHAB Java G#  
SmartThings Groovy   
HomeKit Swift # #
Windows IoT C++, C#, Python # #
FarmBeats C++, C#, Python # #
AWS IoT Embedded C, JavaScript, Java, Python, Swift, C++ #  
ThingWorx C, Java, C#, Swift   
Watson IoT Python, Node.js, Java, C#, Embedded C, mBed C++ # #
t

applications, will impact aspects of the final implementation (e.g., run-
time, overhead). In general, every IoT platform provides the specific
APIs used to develop and implement the final IoT solution. Neverthe-
less, the use of different programming languages can make the solution
vulnerable to specific language-related challenges. Advantages: Diver-
sity in IoT may be beneficial for implementing IoT-specific solutions.
For instance, IoT solutions in agriculture have different characteristics
from a smart home environment (e.g., a smart home would require
close to real-time analysis of the IoT data to keep the home secure
whereas agriculture would require periodic, more long-term data anal-
ysis to analyze crop patterns). Also, specific APIs may facilitate the
addition of new features, increased customization capabilities, and the
support of third-party devices, all desired in smart home solutions.
For this, different programming languages can provide the required
diversity of tools for efficiently-tailored development of IoT solutions.
Disadvantages: Programming language diversity causes the apparent
detriment of niche specialties. An IoT application developer skilled in
Java would be well-suited to develop applications for openHAB, but
the same developer would have difficulties developing for Windows
IoT Core, which does not use Java. Additionally, any application that
an IoT developer makes for one programming platform will not neces-
sarily work for another due to compiler incompatibility, different API
structure, or different data type definitions, leading to the need for ex-
tended development time for cross-platform implementations. Finally,
programming diversity also carries additional security challenges. First,
IoT users need to consider the security vulnerabilities of the specific
programming language. For instance, for applications developed for
ThingsWorx and Watson IoT, cyber attackers can take advantage of
unsafe C functions to leak information through memory overflow type
of attacks. Also, in an application developed for SmartThings, attack-
ers can use Groovy language-specific features like dynamic method
invocation to change the behavior of the IoT apps.

Sandboxed Environments. With IoT devices, it is often not neces-
sary to include the entire functionality of a programming language
(e.g., threading, dynamic memory allocation). One reason for doing this
is to guarantee performance in resource-limited environments as only
the required functionality for an app to work properly is allowed. Also,
limiting the type of methods and classes implemented in an IoT solution
provide some added security to the development process as unsafe
functions can be blocked. To allow this, IoT platforms often sandbox
the programming language in their platform. Sandboxing limits certain
functionality of a programming language to only those deemed nec-
essary for the implementation. For instance, SmartThings implements
the Groovy programming language in a sandboxed-environment [29],
which limits a developer to easily open a file or declare a global vari-
able that can be used later to leak data related to device’s events [9].
Advantages: Implementing a programming language in a sandboxed
environment is beneficial in two ways. First, there is less overhead
related to unnecessary processes for the IoT devices, allowing them to
run more efficiently. Second, with security in mind, there are fewer
attack vectors available to malicious actors. For instance, in the Sam-
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sung SmartThings platform, a developer can utilize platform-available
functions that properly encrypt and protect the information before
sending it to remote servers. However, the same developer does not
have access to other encryption mechanisms to encrypt and leak sen-
sitive data to unauthorized recipients using a back door, hiding her
actions from currently available privacy-analysis tools. Finally, sand-
boxing permits for the implementation of third-party security solutions
in IoT, that provide additional support the security and privacy efforts
offered by current IoT platforms [45]. Disadvantages: Sandboxing a
programming language takes time to implement correctly, requiring
additional configuration by the IoT platform before their product can
be available to the market. Additionally, the limitations of a sandboxed-
environment may be a deterrent to developers of the platform as they
must necessarily learn what can and cannot work while writing code
for the platform. Finally, despite this seems as an advantage if analyzed
from a different perspective, limiting the types of software methods
and classes available to the developer also restricts the customization
capabilities an app can offer to the IoT users.

Domain Specific Languages. They are primarily specialized program-
ming languages that are designed for specific applications [46]. A
typical example that can be found in database management is SQL [47].
SQL is designed to manage and operate on large datasets. While SQL
cannot perform all the functions of a general programming language, it
can perform all the functions required to maintain normal operations of
a database. Following the same principle, an IoT platform may adopt
a DSL to allow the development of lightweight IoT applications and
scripts. The IoT DSL would only need to be capable of supporting
simple yet powerful scripts used to manage and control events and
actions in IoT devices. For example, openHAB uses Xtext, which is a
framework that allows users to create custom DSLs based on their own
needs [28]. The use of Xtext allows an IoT user to build abstractions
(i.e., concepts such as switches, buttons, a time of day) to ease the setup
of the IoT solution in the home. Advantages: Similar to sandboxing,
adding a DSL to an IoT solution simplifies the code efforts from the
user. The DSL can be written in a way that permits the abstraction
of complex programming concepts into simple operations or ‘‘things’’.
For instance, as shown in Listing [28], openHAB uses the concept of
‘‘rule’’ to convert complex trigger-action relationships among devices
within the IoT solution into simple behaviors (e.g., when 𝑚𝑜𝑡𝑖𝑜𝑛_𝑂𝑁
hen 𝑙𝑖𝑔ℎ𝑡_𝑂𝑁). Disadvantages: While sandboxing aims to reduce the

computational processing imposed on IoT devices by unnecessary pro-
cesses from apps, using DSLs to an IoT solution may add overhead.
The abstracted programming concepts need to be translated back into
appropriate machine code for an IoT device to run the code, which
increases the complexity of the operations performed at compile time.
Another major disadvantage of DSL is that, by ‘‘hiding’’ real software
operations behind simpler abstractions, it also makes the security anal-
ysis of IoT apps more difficult. For instance, dynamic security tools
used to analyze IoT apps may not be able to infer the app’s intent or
its behavior without previously analyzing and understanding the DSL

script derived from the app.



Computer Networks 192 (2021) 108040L. Babun et al.

e
o
t
a
M
t
t
(
s
J
t

o
r
m
a
i
t
a
m
f
a

P
h
t
a
d
m
a
p
h
i
I
a
a
A
a
v
a
l
o

5.2.1. Comparative analysis and summary
We find that the programming languages and their respective im-

plementation choices vary the most among our chosen criteria. Table 3
summarizes the preferred programming language for every IoT plat-
form. From left to right, we list the programming languages that
are supported by the different IoT platforms, whether the software
resources are implemented in a sandboxed environment, and if the
specific platform supports the construction of a DSL in its program-
ming environment. One can observe that for some platforms, different
programming languages are possible.

Listing 1: OpenHAB Sample Code
1 rule <RULE_NAME>
2
3 when
4 <TRIGGER>or<TRIGGER2>
5 then
6 <EVENT_HANDLE_BLOCK>
7 end

Listing 2: SmartThings Sample Code
1 def eventHandler(event){
2 def data=parseJason(event.data)
3 def trigger(data){
4 TRIGGER BLOCK }
5 log.debug "event data:${data}"
6 }

Listing 3: HomeKit Sample Code
1 init(
2 name:EventHandle,
3 events:[HMevent],
4 end:[HMevent],
5 recurrences:[DateComponents],
6 predicate:NSPredicate
7 )

Listing 4: IoT Core Sample Code

1 //Start capturing events
2 //and save them to an ETL file
3 xperf −start <Session Name>−f
4 <ETL File> −on <GUID>
5 //Stop capturing events
6 //with the specified name
7 xperf −stop <Session Name>

Listing 5: AWS IoT Sample Code
1 "Version":"2012-10-17",
2 "Statement":[{
3 "Effect":"Allow"
4 "Action":["iot:Subscribe",
5 "iot:Recieve"],
6 "Resource":[".../aws/events/"]
7 }]

Listing 6: ThingWorx Sample Code
1 var trigger =this.domElement
2 trigger.triggerHandler("Event")
3 .
4 .
5 .
6 .
7 .

Listing 7: Watson IoT Sample Code

1 "$schema":"json-schema.org",
2 "type":"object",
3 "title":"Event",
4 "description":"Event trigger",
5 "properties":{"Event":{"type":"object",
6 "description":"Device event",
7 "$logicalInterfaceRef":"Event" }}

Additionally, in Listings [28] to 7, we provide an event trigger
xample to showcase the differences in program development for each
f the evaluated IoT platforms. If only the programming language
hat the platform implements is considered, choosing a platform over
nother one mainly accounts for the IoT user’s programming skills.
ore savvy programmers in specific languages could move faster across

he development process. Also, the selection of more secure functions
o implement the APIs must be guaranteed by both the IoT platforms
via sandboxing) and the developer (via more specialized programming
kills), so the selection of more secure languages (when possible) like
ava can help the programmer to remove some of this burden from
he IoT solution implementation process. Finally, selecting platforms
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that support the use of DSL may help to reduce the complexity of the
implementation; however, that may be possible with the compromise
of security.

5.3. Event handling

An Event is a colloquial term used in IoT to describe the reactions
f IoT devices to real-time physical changes in the surrounding envi-
onments (e.g., temperature sensors responding to increased heat). The
ethod in which IoT platforms handle events is crucial for handling

pplication logic and deployment requirements. Event handling in IoT
s performed at the application level; thus, several protocols are offered
o do so; however, all these protocols seem to work using two specific
pproaches (Fig. 3): (1) a publisher/subscriber model and (2) a polling
odel. In this subsection, we give details on how both methodologies

unction, including the most-common application-level protocols used,
nd discuss how the use of either method impacts the IoT solution.

ublisher/Subscriber Approach. The most common method for event
andling in IoT platforms is the publisher/subscriber approach. In
his method, an IoT device within the solution (i.e., the publisher)
cting as a client streams its data in real-time to specific controller
evices (i.e., the subscribers), who are in charge of providing setting
easurements to the devices. In between publisher and subscribers,
broker server acts as a bridge (Fig. 3(a)). A simple example of a

ublisher/subscriber model is an air-conditioning system in a smart
ouse. Assume that in a smart home there are three types of devices
nstalled: temperature sensors, the smartphone that has the controller
oT app installed on it, and the controlling unit that manages when the
ir-conditioning is being used. Whenever a temperature sensor detects
temperature change in the room, it publishes data to the listening
C unit. The AC unit reads this change and reacts accordingly – such
s turning off the AC in that sensor’s room – based on the setting
alues received from the controller app. There are several different
pplication-level protocols used to implement publish/subscriber so-
utions. In the following, we are detailing some of the most popular
nes.

• Message Query Telemetry Transport (MQTT): In an MQTT setup, a
MQTT server – typically called an MQTT broker – runs on the
IoT solution [48]. From there, a ‘‘publisher’’ and a ‘‘subscriber’’
link themselves to this broker under a common identifier. In an
IoT solution, the IoT devices act as the publisher, and IoT hubs
or control devices are the subscribers. Whenever the publishers
have new data to record, they publish the data to the broker.
The broker then flags that it has new publisher data, and the
subscriber reads the data. From there, the subscriber can analyze
the data and react accordingly.

• Advanced Message Queuing Protocol (AMQP): This is an open stan-
dard application-level protocol that guarantees message delivery
in three modes: (1) at-most-once, in which the delivery of the
message is not guaranteed; (2) at-least-once, in which the protocol
makes the best effort to deliver the message at least one time;(3)
and exactly-once, in which the message reaches the destination
only one time [49,50]. AMQP is suitable for heterogeneous IoT
solutions where devices from different vendors co-exist. Also, it
does not require a reliable Internet connection at all times to
function as the AMQP broker can be used in modes where the
message is delivered as soon as a connection between the devices
is possible.

• Extensible Messaging and Presence Protocol (XMPP): This open pro-
tocol is based on Extensible Markup Language (XML) and is suit-
able for applications that require real-time analysis [51–53]. Even
though XMPP supports both publisher/subscriber and polling
modes, we include it in the first group as bidirectional commu-

nications is not a requirement for this protocol to properly work.
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Fig. 3. Examples of the two event handling methods used in IoT: (a) publish/subscribe mode via MQTT and (b) polling mode via REST protocol.
One major advantage of XMPP is that it implements authentica-
tion and encryption capabilities through Simple Authentication
and Security Layer (SASL) and Transport Layer Security, respec-
tively. As for drawbacks, this technology has higher overhead
compared to other similar application-layer protocols, and it is
difficult to guarantee that messages are always delivered with the
required quality of service.

• Data Distribution Service (DDS): This protocol was originally de-
signed to implement machine-to-machine (M2M) communica-
tions in real-time IoT applications [54–56]. Different than XMPP,
this protocol supports quality of service and always guarantees
the reception of the messages. However, it does not need a cen-
tralized broker (as in MQTT) to manage the message delivering
process. In fact, it used multi-cast among all the devices included
in the solution as the main delivering mechanism. In DDS, the
publisher and subscriber roles vary with the specific applications.
For instance, the motion sensor (publisher) directly broadcasts
when movement is sensed inside the room so other devices, as
the smart like or the smart camera (subscribers), can take action
proper action. DDS is useful when new devices are continuously
added to the IoT solution as it uses a plug-and-play approach.
That is, DDS automatically assigns publisher and subscriber roles
to the devices within the solution, so the type of data they use
and its flow direction are known. This allows for DDS to be both
scalable and easy to implement. Finally, DDS supports Datagram
Transport Layer Security (DTLS) and Secure Socket Layer for
secure communications.

• Simple Text Oriented Message Protocol (STOMP): This is a sim-
ple and asynchronous protocol that uses intermediate servers to
permit exchanging messages between different entities, imple-
menting a subscriber/publisher architecture [57]. This protocol
is supported in several programming languages through specific
APIs. However, such APIs normally implement a very limited set
of messaging operations, which makes STOMP very suitable for
the IoT resource-limited devices. Also, this protocol is supported
by the Transmission Control Protocol (TCP) communications,
which make it very reliable.

• ZeroMQ: This protocol can implement publisher/subscriber ar-
chitectures with or without using a dedicated broker server in
between. The second mode provides a simpler implementation
with reduced latency. ZeroMQ is supported in numerous pro-
gramming languages. Also, it is very lightweight and permits
the many-to-many high-speed asynchronous messaging between
different endpoints and using different communication modes like
in-process, inter-process, TCP, User Datagram Protocol (UDP),
and mulicast [58,59]. Finally, ZeroMQ uses CurveZMQ to guar-
antee security via encryption of the data and also authentication
capabilities.

Advantages: In the publisher/subscriber model, the IoT devices (pub-
lisher or clients) perform a limited set of operations to guarantee proper
data exchange with the subscriber or controller devices: (1) read for
sensory changes and (2) publish any changes — making this process
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very lightweight for the resource-limited IoT devices. Additionally,
using publisher/subscriber models permits the IoT solution to react
faster, thus support applications that require real-time analysis. This is
beneficial to environments such as the IoT users expect their devices to
respond as they are being used. Disadvantages: The obvious downside
of publisher/subscriber is that, in most cases, an intermediate broker
server is needed. Thus, either the IoT devices must always be connected
to the Internet to publish to the IoT platform’s dedicated broker, or the
user has to go through additional steps to set up her offline MQTT bro-
ker. Also, every different application-layer protocol that implements the
publisher/subscriber architecture handles security differently, which
creates more complexity for the user implementing the IoT solution.
For instance, while DDS uses general-purpose protocols like DTLS and
SSL to implement security, ZeroMQ implements its security protocol,
CurveZMQ [60], which uses CurveCP [61] and NaCl [62] to guarantee
encryption of the data and authentication capabilities.

Polling. The second method for event handling supported by IoT is
polling, which uses a client/server approach. Here, there exists a poller
device (a controller device acting as a client) that periodically connects
to the IoT devices (acting as servers) to request for some data. Notice
that while in the publisher/subscriber method the IoT devices act as
clients and controller devices as servers, their roles are swapped during
polling. For instance, the controller devices or pollers periodically asks
the IoT devices for their current states, and the devices respond with
the most recent readings from their sensors. While not in real-time, this
method allows for data to be read in precise intervals. We can use the
air-conditioning system again as an example. The AC unit (acting as a
poller client) periodically asks sensors (the polled servers) throughout
the house what the current temperature in their rooms is. The sensors
respond with their current temperature readings. From there, the AC
unit can again react accordingly based on individual room tempera-
tures. Representational State Transfer (REST) [63] is the lower-layer
protocol that most commonly implements and supports application-
layer protocols for polling in IoT (Fig. 3(b)). When using REST, there
is no need for a broker server acting as a middleware supporting the
communication between IoT devices and controller devices. Instead,
two devices can communicate directly (often over an HTTP connection)
in a typical client/server fashion [64]. The client (can be the hub, the
cloud-based server, another IoT device, or a controller device (smart-
phone or laptop running the controller application)) requests data from
the server (IoT device) who responds with the data currently stored in
its system. In the following, we are discussing some application-layer
protocol that implements polling-type event handling in IoT.

• Constrained Application Protocol (CoAP): This is a polling pro-
tocol specially designed and tailored for resource-limited IoT
devices [65–68]. With IoT devices in mind, the protocol allows
for exchanging messages between devices in the same network or
devices located in different networks connected via the Internet
with very low overhead. CoAP is based on the REST architecture
mentioned before and supports multicasting via UDP protocol.
Specifically, CoAP implements four different types of messages:
(1) confirmable, non-confirmable, reset, and acknowledgment.
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Finally, some efforts have been made to integrate security into
CoAP. However, these efforts still under development mainly
because security integration affects the lightweight nature of
the protocol. Currently, as in DDS, CoAP protocol relays on
lower-layer protocols like DTSL and IPSec.

• HTTP Polling : The Hyper Text Transfer (HTTP) protocol is the
underlying communication protocol of the World Wide Web
(WWW). Created in 1997, HTTP acts as a request–response pro-
tocol in the client–server computing model. Controller devices
use HTTP polling to request information from IoT devices. HTTP
polling can be either short or long. In HTTP Short Polling, an
IoT device (i.e., server) may receive and handle multiple requests
from the controller devices (i.e., clients). These requests are
processed in the order they are being received, but they are kept
open only for a short period of time, yielding a higher network
traffic, but lower utilization of the IoT devices’ resources. In HTTP
Long Polling, only one polling request is handled at any time, and
the requests are kept open until the server responds back with the
requested information [69–72].

Advantages: Since polling directly implements device-to-device com-
unications, it makes the communication setup more straightforward

or the user as no intermediate broker server is needed. Additionally, as
olling often implements HTTP REST communication principles, many

devices with web capabilities would be able to adopt this schema by
merely connecting through an HTTP port, which makes this communi-
cation mode very suitable for IoT devices. Disadvantages: On the other
hand, polling requires additional computation power from individual
resource-constrained IoT devices. With polling, the IoT devices must
continuously listen, so they do not miss periodical poll requests from
the poller. For some IoT devices, adding such an additional task can
severely impact the device performance as its computation power is
often the bare-minimum to perform its job. Also, the user must consider
the particularities of every protocol to guarantee the security of the
IoT solution. As explained earlier, some application-layer protocols
implement their own security mechanisms with dedicated solutions like
CurveMZQ; however, the two polling protocols rely on well-known
security features provided by lower-layer communication protocols
like DTSL and HTML5 which may limit the security configuration
capabilities for the user.

5.3.1. Comparative analysis and summary
In our analysis, we find that all of the platforms that we evaluated

used some version of the publisher/subscriber method to handle events.
Typically, the platforms implement an MQTT broker that IoT devices
use to publish their data. Some platforms, such as Amazon AWS, added
optional support for polling using the client/server approach [33].
Table 4 summarizes the way each platform handles the exchange of
event data between different devices within the same solution or the
cloud. Typically, the platforms always require the implementation of
publish/subscribe methods to handle events on the IoT solution. In
some instances, such as AWS and ThingWorx, the frameworks have
support for either publish/subscribe or polling, and it becomes up to
the user to choose what works best for their implementation based on
the specific application-layer platform used.

5.4. Third-party support

As with any computing paradigm, IoT platforms may allow devel-
opers to add their own functionality to the individual IoT solution.
Third-party development can come in the means of developing tailored
IoT applications, adding support for new communication protocols, or
even introducing their own unique IoT devices to the solution. With
this criterion, we study the benefits/detriments to an IoT platform
introducing support for third-party development.

IoT Applications and their Extensions. Third-party support often
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comes in the form of new ‘‘tailored’’ applications for the IoT solution,
but can also be packaged as extensions or complete overhauls of the
platform. For instance, HomeKit allows applications from the Apple
Store to control aspects of a user’s HomeKit solution. On the other
hand, since openHAB is open-source, a developer can easily create
extensions of openHAB to add or completely alter the core function-
ality of openHAB. While the level of control differs for the platform,
the concept of outside development remains the same: the platform
offers tools (e.g., SDKs, APIs) for other developers to add their own
functionality to the solution. Advantages: Allowing third parties to add
functionality to an IoT platform is useful for a user to customize her
IoT solution. Instead of going through the very time-consuming process
of designing new and necessary functionality herself, an IoT user can
install the tools someone else created to broaden the use of her own IoT
solution. A secondary benefit of third-party app support relays on the
paradigm that more people working on a problem may usually lead
to quicker innovation. IoT is still a new under-development concept,
and more people rooting for innovation may bring better and more
suitable working IoT solutions. Disadvantages: The most critical aspect
round adding third-party app support to an IoT solution concerns
ith security and privacy. Because third-party apps do not always go

hrough a detailed and comprehensive vetting process, IoT platforms
annot be held accountable for malicious or unauthorized activities
ithin the app that may compromise the sensitive data and the privacy
f users. Previous research works have demonstrated that handcrafted
pps (i.e., extensions) may contain malicious code to leak information
o unauthorized recipients [7–9]. Also, adding third-party support is
ften time-consuming and difficult on the side of developers of the IoT
latform. Additionally, developers of the platform often have to learn
hat is effectively entirely new APIs to develop new applications in the

pecific IoT platform.

upporting Third-party Devices. The current IoT market is mostly
focused on the ‘‘ease of living’’ automation. However, providing ex-
tended usability in IoT requires a high diversity of devices and sensors
that not all platforms are in capacity to assume the increased costs and
technical overhead. To overcome these challenges, some IoT platforms
allow the support of third-party devices that permit the implementation
of missing new functionality within the solution. The capability of
adding new external devices is not symmetrical in all the platforms. For
instance, proprietary platforms like SmartThings and HomeKit boast
numbers of over 390 [29] and 280 [30] supported devices, respec-
tively. With the more open platforms like openHAB and Windows IoT
Core, it is harder to determine an exact number of native supported
devices, however, the number of total devices would be similar as
third-party devices can be directly added to the total population of
supported devices [28,31]. On the other hand, IoT platforms focused
on business sectors would likely require the support of third-party
devices in their implementations as any given field may require ded-
icated device functionalities. Therefore, it is observed that industrial
IoT platforms have considerably more IoT device support as off-the-
shelf devices (e.g., cameras, drones, and medical devices) can be given
support in an IoT platform through the use of developer SDKs and
APIs. Advantages: Similar to the case of application support, the feature
of adding third-party device support brings enhanced functionality to
the IoT solution. Guaranteeing such a level of functionality makes the
IoT platform more attractive to the IoT users. Also, in most cases,
providing software solutions like dedicated APIs to support external
devices is substantially simpler than dealing with the unreasonable
extra burden on behalf of the IoT platform (e.g., through dedicated
protocols, hardware, and software configurations) to provide support
to an extended number of devices. Therefore, it is of benefit to the
platform to provide software to allow users of an IoT solution to
integrate their own devices. Disadvantages: The larger diversity of IoT
devices as a result of third-party support becomes its own setback when
it comes to usability. Providing generalized functionality for a large

variety of IoT devices becomes a sizable measure that may impact the
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Table 4
Comparison of event handling approaches used by the different IoT platforms surveyed. One can observe that
most platforms require the implementation of publisher/subscriber approach ( = Required, G#= Optional,
#= Not Used).

IoT Platform event handling comparison

Platform Publisher/Subscriber Polling

openHAB  G#
SmartThings  G#
HomeKit  #
Windows IoT Core  G#
FarmBeats  G#
AWS IoT G# G#
ThingWorx G# G#
Watson IoT  G#
added functionality. For instance, in most cases, users desire plug-and-
play usability that can only be obtained with out-of-the-box solutions
provided by the IoT platforms. However, adding third-party devices to
a specific solution may require more advanced programming skills to
integrate the dedicated APIs with the new hardware. In the end, the
implementation burden is somehow removed from the platform and
carried out to the end-user. It, therefore, becomes desirable for IoT
platforms to establish partnerships with device manufacturers who will
directly program the desired functionality to create out-of-the-box-type
of solutions. Another distinct disadvantage derived from the support
of third-party devices relates to the security of the solution. As with
external apps, integrating third-party devices brings security concerns
as comprised devices are known to impact the behavior of the IoT
solutions [14]. Also, compromised devices have been linked to threats
that poison sensitive measurements within the IoT solution or leak
information to malicious external actors [13,73].

5.4.1. Comparative analysis and summary
The comparative analysis among the different IoT platforms regard-

ing third-party support of external devices and apps is two-fold. On
the one side, adding support of both external applications and devices
brings a very desirable increased functionality to the IoT solutions. On
the other hand, security concerns are raised as a result of incorporating
new devices and apps that do not have the complete support of the
IoT platform. As detailed in Table 5, only three platforms (openHAB,
Windows IoT, and AWS IoT) are capable of integrating both external
devices and apps. For the other cases, the platform either offer support
to apps, devices or does not offer third-party support at all. Recall that
the extended capability of third-party-enabled solutions is achieved at
the cost of increased implementation complexity for the user. First, IoT
users must select the platform that offers the necessary support for the
specific application via native plug-and-play apps and devices. If third-
party integration is required, users must look for platforms that offer
enhanced security capabilities to protect against compromised devices
and apps, and simpler APIs for faster integration.

5.5. Extended protocol support

A unique feature in IoT is the full range of protocols used by IoT
devices [12] to guarantee the necessary usability. For any device, there
can be a separate protocol for any specific functionality. Different
protocols can be used to guarantee the required connectivity among IoT
devices and servers (e.g., WiFi, Bluetooth, BLE, NFC, ZigBee, LTE), to
send and receive data in unique formats to support specific applications
(e.g., REST, MQTT, TCP/UDP), and to implement network integration
(e.g., IPv4/6, 6LowPAN). Also, other protocols are used to increase
the flexibility and functionality of the IoT solution (e.g., UPnP for
device discovery, X.509 for public-key infrastructure) [74]. In most
cases, IoT reuses protocols that were designed to support devices and
apps from different ecosystems (e.g., traditional computing systems);
however, there is current work undergoing to bridge the gap in IoT
diversity through standardizing an IoT protocol suite [75]. Until it
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becomes commonplace, manufacturers of IoT devices are responsible
for adopting the protocols that best fit their individual needs, resulting
in an increased diversity of protocols used to cope with the required
functionality in an IoT solution. It is challenging for the IoT platforms
to account for all of the available protocols that can be possibly used
to implement the IoT solution. Thus, the platforms have no choice to
either (1) limit the number of supported protocols or (2) provide the
necessary support so IoT users can implement the protocols themselves within
the solution. The main limitation of leaving protocol implementation
up to the users is that they would also be required to instrument
the protocol security themselves, which can result in inadequate or
limited security, or no security being implemented at all. Finally, even
with the vast amount of protocols in use, some platforms introduce
novel communication methods to overcome barriers where traditional
communication standards are not feasible in the platform’s field. For
instance, most remote agriculture farms do not have the required cover-
age for a reliable Internet connection. Thus, a communication protocol
that implements narrow-band connections would be more suitable than
other protocols that allow for communications with higher throughput.
As an example, FarmBeats introduced a way for their IoT devices to
communicate over unused Television channel frequencies [32], allow-
ing the IoT solution based on this platform to have enough bandwidth
for reliable communication among field devices.

Communication Protocols. Since connectivity is one of the main
requirements for IoT, we present some of the most popular commu-
nication protocols used in IoT. We highlight features, essential modes
of operation, and specific applications of every protocol. Then, we
summarize some other technical characteristics in Table 6.

• Near-field Communication (NFC): This an open-source protocol
that supports short-range low-speed wireless communications be-
tween IoT devices in proximity [76]. NFC requires devices inter-
acting in two different modes: active and passive. The device in
passive mode can only be used to send data or being read from an
operation that is performed without the need for a power source
connected to the passive device. For instance, the typical way
of implementing passive NFC is through the use of physical tags
with embedded information. Examples of embedded information
could be the contact list of users, payment information, and
configuration settings. On the other hand, devices in active mode
can send and receive data. Thus, devices in active mode require
the use of a power source to read and write from/to tags in
passive devices or to directly connect and exchange data with
other compatible devices.

• Bluetooth: Different from NFC, Bluetooth is a standardized pro-
tocol used to send and receive data between two paired and
connected devices [77,78]. This protocol shares the same band
with ZigBee and WiFi to transmit data in a master/slave ap-
proach. In this model, a master Bluetooth device can be connected
to several slaves (i.e., up to eight) to form what is known as
Bluetooth piconet. The master device coordinates the communi-
cation process within the piconet and can request or send data
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Table 5
Capability of the surveyed IoT platforms to support third-party applications and devices. Some platforms offer
dedicated SDKs and APIs to permit the integration of external devices and apps to increase the functionality
of the IoT solution ( = Required, G#= Optional, #= Not Used).

IoT Platform third-party support

Platform Applications Devices

openHAB   
SmartThings  #
HomeKit  #
Windows IoT   
FarmBeats # #
AWS IoT   
ThingWorx #  
Watson IoT #  
Table 6
Overview of some of the most popular communication protocols used or proposed for IoT.

IoT Platforms communication protocols overview

Communication protocol Rate Transmit range Frequency band

NFC 424 kb/s 20 cm 13.56 MHz
Bluetooth 2.1 Mb/s 100 m 2.4 GHz
Bluetooth Low Energy (BLE) 0.27 Mb/s 100 m 2.4 GHz
WiFi (802.11ac) 1.3G b/s 50–70 m 5 GHz (2.4 GHz in prior versions)
ZigBee (802.15.4) 20–250 kb/s 10–20 m 2.4 GHz, 900 MHz, and 868 MHz
Z-Wave 40 kb/s 100 m 800 MHz–900 MHz
6LowPAN (802.15.4) 20–250 kb/s 10–20 m 2.4 GHz, 900 MHz, and 868 MHz
LoRaWAN 1 kb/s 10 km 900 MHz
4G LTE 100 Mb/s 30 km 800 MHz and 1900 MHz
5G 10 Gb/s 500 m 24 GHz–100 GHz
from/to any of the slave devices. One interesting note is that in
this configuration, the slave device can only interact with the
master and not with other slave devices. There are three main
steps in Bluetooth’s connection process:

1. Discovery: The Bluetooth devices run inquiries to discover
each other and establish a relationship by exchanging spe-
cific information like the device name, and Bluetooth card
address.

2. Pairing: After both devices have been discovered and have
exchanged information, the pairing process starts. This
process ensures the exchange of Bluetooth profiles be-
tween devices, which is stored in memory permanently.
They also share a common secret key, which allows them
to pair again in the future. Usually, pairing involves an
authentication process that requires user intervention.

3. Connection: Finally, after devices are paired, they establish
a permanent connection that permits the exchange of data.
In connection mode, devices can be actively transmitting
or receiving data, but also can be put in different sleep
modes to save power.

• Bluetooth Low Energy (BLE): Different from NFC and traditional
Bluetooth, BLE is a communication protocol specifically tailored
for IoT [79]. BLE implements almost the same communication
capabilities (communication range and band) of traditional Blue-
tooth but with substantially reduced power consumption and
cost. These differences benefit remote IoT applications that have
limitations in power availability. Despite the communication sim-
ilarities between Bluetooth and BLE, the later is not backward-
compatible with Bluetooth, so devices that implement each pro-
tocol cannot form a common network. However, since they both
share the same communication band, devices can implement BLE
or Bluetooth using a common antenna which is convenient for
IoT due to the expected space restrictions in resource-limited IoT
devices.

• WiFi: This is a protocol suite based on the family of wireless
standards IEEE 802.11. WiFi is broadly deployed and constitutes
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the de facto wireless technology for Internet communications. As
early IoT integrated traditional communication protocols, WiFi
is also widely deployed among IoT devices like smart doorbells,
smart TVs, cars, and drones. In WiFi, compatible devices require a
centralized entity (i.e., the router or hotspot) to network among
them and the Internet. WiFi connections follow an ‘‘always-on’’
approach where channels can be shared between devices, but
only one transmitter can send data on a specific channel at any
moment in time. Because it is extensively used, WiFi is more
vulnerable to cyber-attacks. Thus, authentication mechanisms are
typically implemented to authorize new devices and users in the
network [80,81].

• ZigBee: There are three different entities in the ZigBee network:
the coordinator, the router, and the end device [82–84]. First,
the ZigBee coordinator acts as a master device that controls and
monitors the data transmission process. Second, the ZigBee router
acts as a bridge that relays data to/from the Zigbee end devices.
Such an architecture allows for ZigBee to favor high interoper-
ability among several devices and to be one of the most popular
wireless communication protocols used in IoT (e.g., commodity
IoT and industrial IoT). As shown in Table 6, ZigBee is supported
by the IEEE 802.15.4 standards, and its main goal is to provide
connectivity to ‘‘nearby’’ devices with low latency and power
consumption.

• Z-Wave: Zensys proposed the proprietary Z-Wave alliance in
2005 [85,86]. This technology allows for the low-power wireless
connectivity among IoT devices, usually forming a mesh network.
As Z-Wave is intended to permit high interoperability among
different devices, specific protocols at the application layer allow
different Z-Wave software and hardware to work together. Two
of the main advantages offered by Z-Wave communications relays
on its proposed architecture which permit for enhanced coverage
and reliability. As Z-Wave devices use intermediate nodes to avoid
obstacles between communication links, the network minimizes
the ‘‘dark’’ communication spots that may appear in smart home
setups. Thus, even though the simplest setup only includes a pair
controllable-controller, additional devices can be added at any
time following a similar approach as in Bluetooth. That is, a new

device must be ‘‘added’’ first into the network (i.e., paired) before
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it can communicate via Z-Wave. Also, as in Bluetooth, the pairing
or addition process must be done only once.

• 6LowPAN : This protocol implements IPv6 technology on Low-
Power Wireless Personal Area Networks (LowPAN) and has been
proposed specifically to be used in IoT by the Internet Engineering
Task Force (IETF) [87,88]. The motivation behind 6LowPAN is
to provide IP IoT-necessary connectivity to devices with min-
imal computing and power capabilities. As ZigBee, this proto-
col is implemented over 802.15.4 standards and provides low
transmission throughput in short-range communications.

• LoRa and LoRaWAN : These protocols enable long-range commu-
nications with very-low power consumption. On the one hand,
LoRa enables the long-range communication link. On the other
hand, LoRaWAN is mainly responsible for managing the com-
munication frequencies, data rate, and power for all the IoT
devices [89,90]. Specifically, LoRaWAN is designed to define the
upper layers of networked IoT devices. As a cloud-based Medium
Access Control (MAC) layer protocol, LoRaWAN is mainly utilized
to support and manage the communication between IoT gate-
ways and end devices. LoRa-based communications are generally
asynchronous, so end devices transmit their data to multiple IoT
gateways whenever the data is available. Then, the gateways
forward the data to a centralized network server.

• Long-term Evolution (LTE) and 5G: several IoT researchers and
manufactures envision LTE and/or 5G as the future for IoT com-
munications. In fact, the integration of new IoT-enabled LTE/5G
communication chipsets into modern IoT devices and the deploy-
ment of new LTE/5G platforms for IoT [91,92] (i.e., LTE IoT) are
driving the expansion of modern cellular networks over the IoT
ecosystem. In general, LTE/5G implementation in IoT allows for
more flexible, efficient, high throughput, long-range, and low-cost
solutions, which are very attractive for manufacturers and IoT
platforms. More details are presented in Table 6.

Advantages: The extended support to additional protocols gives the
IoT user complementary tools to set up a more efficient and interop-
erative IoT solution. As with a higher number of IoT devices, it would
be of benefit to the IoT user to set up their IoT environment with the
required features so she can fulfill more complex applications. Given
that any IoT device could use any number of protocols, it would make
sense for an IoT platform to introduce means for which new protocols
can be supported within the platform. Disadvantages: Providing support
for protocol development is perhaps the most difficult and dangerous
of third-party support options. To be widely used, a protocol must go
through rigorous standardization processes, which include bug testing
and security evaluations. From there, it can be adopted by IoT platforms
directly where all protocol specifications are met. Allowing a user to im-
plement her own protocol from scratch on her IoT solution could cause
communication bugs or security faults that would impact her entire IoT
solution. Also, implementing protocols is not a straightforward task and
would require a deep technical background from the user.

5.5.1. Comparative analysis and summary
In Table 7, we show how the different IoT platforms offer extended

protocol support to the users for a better experience while implement-
ing their IoT solutions. For each platform, a full circle entails that a user
can utilize available APIs or SDKs offered by the specific platforms to
provide extended protocol support within the IoT solution. One would
expect sandboxed and open-source platforms to be more reluctant to of-
fer extended protocol support as sandboxed platforms always limit the
set of available APIs, and open-source tends to pass the development
burden to the final user. However, even though openHAB is an open-
source platform, it offers a dedicated set of APIs for extended protocol
support to the users, something that is not available in other (even)
proprietary platforms like Apple HomeKit. Another interesting finding
is that, contrarily to the design logic previously exposed, sandboxed
platforms like ThingWorx are also able to facilitate the development
16

process in implementing customized protocols for the user.
5.6. Security of the IoT Solutions

Security vulnerabilities may be present and cyber-attacks may occur
at any layer of an IoT solution [93–95]. IoT devices may have em-
bedded hardware trojans, communications can be disrupted/blocked
to implement a denial of service attack, or data can be altered/s-
tolen/corrupted, to name a few examples. In this section, rather than
providing advantages and disadvantages of an IoT platform regarding
security, we evaluate security issues and vulnerabilities that may affect
the IoT solution. When applicable, we address if the specific threat or
vulnerability has a known (or knowable) fix or solution that could be
potentially implemented by some of the IoT platforms analyzed. We
evaluate which IoT platforms are doing better in implementing current
security mechanisms to protect the integrity of the IoT solution, and
highlight the steps that individual platforms take ‘‘above and beyond’’
to guarantee and improve IoT security. We mainly study security
vulnerabilities and cyber-attacks affecting different layers of the IoT
solution that impact the principles of the essential security services of
confidentiality, integrity, availability, and access control. Finally, we
highlight current research works that can be applied to improve IoT
platform security.

Confidentiality. Sensitive IoT data (e.g., health/financial informa-
tion, device states, user behavior-related data) [7] and devices need
to be protected from malicious actors. However, the nature of IoT
(i.e., low computational resources, diversity of services, cloud-based
implementation) leads to vulnerabilities affecting confidentiality. For
instance, at the lowest layer of the IoT solutions, devices and sensors
are vulnerable to side-channel, malicious code injection, and eaves-
dropping types of attacks. Specifically, in the case of a side-channel
attack, a malicious actor may gain unauthorized access to the IoT
system and infer sensitive information only by studying the changes in
power consumption and electromagnetic emanation from the devices’
hardware. Also, IoT devices are vulnerable to malicious code injection
into their firmware, which can be used to change the devices’ behavior
to the attacker’s advantage and facilitate elevated unauthorized access.
Finally, IoT devices and sensors may leak sensitive information while
performing unsecure authentication and key exchange mechanisms
that are vulnerable to brute-force attacks [96–98]. Furthermore, the
network layer is also vulnerable to attacks that affect the confidentiality
of the IoT solution. For instance, phishing campaigns targeting IoT
users may open the door to Advanced Persistent Threats (ATP) affecting
the IoT networks that facilitate other attacks like sensitive information
leakage and behavioral fingerprinting of users and devices [99,100].
The data processing layer is also vulnerable to attacks affecting the
confidentiality of the IoT solution. Specifically, cloud services can be
targeted by Man-in-the-Middle (MiM) and Database Injection Attacks.
In the first attack, an unauthorized entity may be able to exploit
network protocol vulnerabilities (e.g., MQTT) to intercept cloud com-
munication steal IoT credentials [101]. Also, an attacker can bypass
authentication mechanisms used in vulnerable database schemes to
inject special queries and steal authentication data from users, devices,
and apps. Finally, the IoT applications layer is also vulnerable to
attacks affecting confidentiality. More precisely, malicious actors may
use sniffer applications and devices to steal confidential information
being sent during authentication services over the IoT network [102].

Manufacturers of IoT devices, especially those being utilized within
critical infrastructure, are encouraged to follow best security practices
to protect from side-channel attacks. Some of these practices include
providing proper shielding against heat and electromagnetic emissions.
Also, IoT platforms take two specific steps to protect from cyber attacks
affecting the confidentiality: (1) the use of encryption and (2) proper
authentication mechanisms. However, we note that these efforts are
largely challenged by the lightweight design of IoT devices and the
mass proliferation of IoT devices in networks.
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Table 7
Capability of the different surveyed IoT platforms of providing extended protocol support. Platforms that
facilitate the implementation of a higher number of protocols may provide extended usability to the user
( = Required, G#= Optional, #= Not Used).

IoT Platform extended protocol support

Platform Extended protocol support

openHAB  
SmartThings #
HomeKit #
Windows IoT  
FarmBeats #
AWS IoT #
ThingWorx  
Watson IoT #
• Encryption Mechanisms: The lightweight nature of IoT devices
leads to unbearable performance costs when implementing en-
cryption on top of the IoT communications [103] as compared to
modern computers. This leads to a natural dichotomy between the
IoT device’s performance and the necessary confidentiality of its
data. To maintain the IoT devices’ expected performance, weaker
encryption standards may be utilized in the communication be-
tween devices [104]. As IoT communication links are protected
with weaker encryption standards, attackers have increased op-
portunities to reveal the communication content via the discovery
of the encryption keys. For example, it has been noted that
through bug exploitation, attacks on Z-wave-based devices from
the SmartThings platform can downgrade the Z-wave protocol
to reveal the encryption key [105], allowing for attackers to
reveal any data being exchanged to/from those devices. IoT plat-
forms are currently enforcing stronger encryption mechanisms in
critical areas of the IoT solution (e.g., hubs, data storage units,
administrative control units, etc.). Such improvements in security
would only propagate to the end devices as they gain computation
power. In the comparative analysis (Section 5.6.3), we highlight
the currently enforced encryption standards in each IoT platform.

• Authentication Mechanisms: There are many dozens of authenti-
cation methods that can be used to validate entities accessing
the IoT solution [14,106–108]. Many current IoT platforms adopt
token-based authentication as a means to verify authorized IoT
devices. While far from perfect due to scalability issues and
additional overhead, tokens are a step in the right direction as
multiple forms of authentication constitute a necessity in mod-
ern networks, IoT included. Vast amounts of work have been
done to develop novel authentication mechanisms for IoT. How-
ever, further work must be done to develop policy, metrics,
and adaptability of these methods. In our comparative analy-
sis (Section 5.6.3), we discuss different forms of authentication
mechanisms adopted by the surveyed IoT platforms so the user of
the IoT solution can select the one that works the best for every
specific application.

ntegrity. IoT devices and the data they handle must be tamper-proof
s not to produce falsified information. We find that there are specific
ssues with ensuring integrity in IoT that can be highlighted in this
anuscript. These issues are directly related to the scale (in terms of the
umber of devices and data amounts) and the complexity of the modern
oT solutions. Also, these issues mark the current and future research
nd development works regarding IoT integrity. In the following, we
verview these integrity issues in IoT.

• IoT Devices Layer : The lack of trusted manufactures and the
mass proliferation of IoT devices naturally leads to the issue of
hardware being developed by untrustworthy authorities. Given
that small chips can be easily embedded into manufactured de-
vices [109], the possibility of rogue hardware in an IoT solution
increases drastically. Rogue hardware embedded into an IoT so-
lution would effectively have the capacity to corrupt IoT data as it
17
sees fit and insert false measurement into the network (i.e., false
data injection attacks). Research into detection, isolation, and
recovery from malicious hardware [13,14,73,110–115] would be
of massive benefit to IoT. Node capturing attacks also affect the
integrity of IoT devices. In these attacks, the malicious actors may
try to remove legitimate devices from the network and replace
them with fake/unauthorized devices that may look legitimate
but, are fully controlled by the attacker [96]. Future work in
hardware security for IoT devices would prove useful for this
reason. One direction that research could go is finding a way to
help automate the process of detecting compromised devices ei-
ther in the supply chain and in the field. Another related research
to hardware security in IoT would be developing anti-tampering
methods for hardware manufacturing. Knowing that a device was
not tampered during manufacturing or assembly time would go a
long way toward ensuring the hardware security of individual IoT
devices. Finally, effective protection against IoT rogue hardware
would not be possible without full cooperation among vendors
and researchers. IoT platforms that encourage and facilitate such
cooperation would be a step ahead in terms of hardware security
in IoT.

• Communication Protocols Layer : As mentioned, the publisher/sub-
scriber is the most widely adopted method for event handling in
IoT, with the MQTT protocol its most successful implementation.
Pasknel notes that unsecured MQTT brokers are prone to man-in-
the-middle attacks, allowing attackers to falsify IoT data flowing
through the network [116]. To counter this, MQTT implements
TLS support to verify parties in an IoT transaction [48]. However,
as of this writing, TLS is not enabled (or enforced) by default, re-
quiring users to add TLS support in their IoT solutions manually.
If the user is not aware of this requirement or is not technically
savvy, the IoT solution will be vulnerable to man-in-the-middle
type of attacks.

• Data Processing Layer : Cloud malware injection attacks mainly
cause attacks affecting the integrity of the data and the IoT
solution in general within this layer. In this case, the attacker may
inject malicious code or even an unauthorized virtual machine
into the cloud service, pretending to be a legitimate service. With
this, the attacker may be able to access sensitive data and further
change it or destroy it. There are several steps IoT platforms can
follow to prevent cloud malware injection attacks affecting their
remote services. The most popular countermeasure is the use of
secure regions or Hypervisors that regularly check the integrity
of the entire cloud system.

• IoT Application Layer : Different programming languages bring
their security vulnerabilities to the IoT solution. For example,
Samsung SmartThings allows the use of Groovy-specific features
in the IoT development like dynamic method invocation and
state (global) variables. Recent research works have shown how
these Groovy-specific challenges can impact the security and
privacy of IoT apps, making the analysis of IoT applications dif-

ficult [9]. Carelessly developed apps may introduce well-known
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security vulnerabilities from all the different programming lan-
guages into the IoT solution. For instance, some programming
languages like C are intrinsically vulnerable to software security
flaws that create opportunities for attackers to leak information
or insert compromised code that changes the behavior of the IoT
apps [117]. Several previous research works have demonstrated
how the inclusion of an unsafe function in C can be utilized by
malicious entities to perform attacks such as buffer overflow and
other memory-based attacks. On the other hand, programming
languages like Java, while relatively more secure than C, have
other different vulnerabilities or are commonly involved in well-
known malpractices (e.g., the overuse of public classes, method,
and variables; the use of constructors to initialize variables).
These Java-based programming malpractices may lead to security
problems like code or command injection [118,119]. An IoT
platform allowing third-party software makes it easier for an
attacker to infiltrate an IoT solution with malicious software. All
it would take is a user to install a malicious application on her
IoT solution for an attacker to successfully infiltrate the solution.
Some platforms, such as HomeKit, mitigate this issue by vetting
third-party applications before they are allowed on their app
store. However, this vetting process is not always guaranteed. For
an IoT platform to improve software and application security, the
most straightforward approach would be to limit the third-party
support of IoT applications. Nonetheless, as we discussed earlier
in this survey, such an approach would also mostly limit the
functionality or applicability of the IoT solution. Research works
have been done to improve application and software security
in IoT. Instead of redesigning programming languages from the
ground up, developers and researchers are proposing tools to
statically [9,120] or dynamically [7,121,122] analyze IoT appli-
cations before they are utilized in an IoT solution. IoT platforms
facilitating the development and integration of similar analysis
tools would be one step ahead in the race of guaranteeing the
expected software security to the IoT solution and of gaining more
users.

.6.1. Availability
Users of an IoT solution desire the benefit of ‘‘always-on’’ services.

pecifically, in critical infrastructures such as Healthcare IoT or Indus-
rial IoT, the data from the IoT solution must be available 24/7 to the
sers [123]. Availability in IoT must be considered and implemented in
ll hardware, software, and network, and data levels. IoT programming
latforms that implement ‘‘always-on’’ services (e.g., AWS IoT, Home-
it, and Watson IoT) get the immediate benefit of high-availability
ccess to the IoT data. Users of these IoT programming platforms can
pload their data to the provided cloud service and trust that their data
ill be readily accessible compared to hub-based systems where users
ust ensure this availability themselves. On the other hand, a signif-

cant issue with all IoT solutions relates to the availability of the IoT
evices. Current industrial machines are expected to work for decades
n their current environment. This concept would, therefore, apply
o IoT-enabled version of the traditional industrial settings. Since IoT
evices are often lightweight by design, it quickly becomes challenging
o ensure that all IoT devices will be available when needed. Several
hreats can disrupt the availability of the different components of the
oT solution. For instance, at the hardware level, attackers can induce
leep deprivation attacks to speed-drain the battery of low-powered IoT
evices [93]. At large, these types of attacks would make the IoT device
ompletely unavailable, a critical outcome, especially for the remotely-
ocated devices. Denial of Services attacks (DoS) and Routing attacks
re the most widespread threats to the availability of the IoT services at
he network level. In these cases, attackers flood the target servers with
nwanted network requests and or redirect the path of the data flowing
hrough the network, respectively [94]. Similarly, flooding attacks can
18

e implemented to disrupt the availability of IoT data processing layers.
Finally, disrupting devices, networks, and cloud servers directly impact
the availability of IoT applications. For instance, if a remote service
is unavailable, an IoT application would not be able to share/receive
specific data and commands necessary for executing its functionality.

To mitigate the risk of service unavailability, IoT platforms are
following architectural paradigms that favor configurations with re-
dundant configurations of IoT devices being used in critical roles
to add fail-over and fault tolerance capabilities — something many
companies may not implement fully or correctly. Also, tampered or
compromised devices constitute a correlated issue to a device’s failure
as frequent attacks look into causing a denial of services via device
failure or malfunction [7,13,14]. As mentioned before, IoT researchers
are proposing methods to detect when devices are tampered or failing
before faults occur (e.g., tamper-resistant algorithms and classification),
and implementing them in working IoT solutions is heavily desired.

Access Control. Access control in IoT solutions follows the same
principles as access control in any other system — it provides a way
to limit or control the capabilities of the entities accessing the solution.
Specifically, we want to have the ability to monitor and control how
users, devices, and applications use and perform tasks within the IoT
solution. We discuss methods and best-practices for granting access to
an IoT solution.

For the IoT platforms that we are considering in this survey, access
control is implemented similarly. While the exact term used to define
control is different in every platform, entities inside the IoT solution
have defined specific capabilities that define the way they function and
the type of task they can perform (e.g., a lightbulb having ON/OFF,
dimming, and color controls). Then, the first goal of access control is to
grant the right entity access to their specific capabilities. A significant
security flaw in IoT’s access control is the simplicity of adding new enti-
ties to the solution and granting access to those entities to the different
users. SmartThings is particularly vulnerable to this problem, where it
has been observed that it is possible for rogue users (e.g., an Airbnb
guest) to add new entities (i.e., devices) to the IoT solution (i.e., smart
home environment where they are rented) [16,118]. Necessarily, an
external user can be granted permission to use the SmartThings appli-
cation, which also carries the right to adding new devices and users to
the solution as she sees fit. Further, the new ‘‘added’’ users would have
the same access rights as the homeowner, including the means to define
new policies on the use of the devices that would potentially conflict
with the ones defined by the owner [16]. This access control problem,
known as over-privileged users and devices is widespread across all of
IoT, and IoT users must consider it before designing their solutions.
Another major issue with access control in IoT is the complete lack of
granularity in IoT solutions. When IoT platforms properly implement
role-based access control with fine-grained permissions, the individual
IoT solution becomes more secure. However, we find that in the current
state of IoT, most IoT platforms have coarse-grained access control
definitions (i.e., a user has full access to all devices in a smart-home
environment), leading to security problems such as over-privileged and
role-escalation.

Thus, the most robust way of implementing access control in IoT
that we have observed occurs when platforms define specific capabili-
ties for every entity in the IoT solution. Amazon AWS IoT is an example
of an IoT platform that follows this approach [33]. When a new entity
is created in an AWS IoT implementation, the IoT administrator grants
the entity capabilities on a case-by-case basis. For instance, a new user
in an AWS IoT solution may only be granted to view the IoT data related
to specific devices. This allows for a more fine-grained methodology to
grant access to the IoT solution as it allows administrators to develop
specific access control policies for the entire IoT solution.
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Fig. 4. The diagram demonstrates a high-level implementation of MUD specification
for IoT. Based on its functionality, the smart bulb is allowed to communicate with
the smartphone that has the bulb’s controlling app installed. However, the network
manager stop the bulb from communicating with other devices.

5.6.2. Manufacturer Usage Description (MUD) specification
In an effort to provide access control and guarantee proper con-

nectivity within heterogeneous IoT solutions, the Internet Engineering
Task Force (IETF) has proposed the Manufacturer Usage Description
(MUD) specification [124]. The primary purpose of MUD is to ‘‘inform’’
the Network Manager Entity (NeME) about specific needs in terms
of access and network functionality the IoT devices would require to
function according to the specific application they support within the
IoT solution [125].

Fig. 4 depicts a high-level implementation of the MUD specification
within an IoT solution. In this case, a smart bulb (i.e., edge IoT device)
shares its MUD profile to the NeME. In return, the NeME sends back
the network access policy that governs the bulb’s behavior within the
solution, based on its specific application. For instance, the bulb is
allowed to communicate with a smartphone with the bulb’s controlling
app installed. However, the same network administration entity pre-
vents the bulb from communicating with other devices (i.e., Tv, laptop
connected via SMTP port) that performs functionality outside of the
bulb’s behavior. In general, every type of IoT device would be required
to have a MUD signature. Once the device is connected to the network,
the MUD signature is sent to the NeME via a network request of
type Link Layer Discover Protocol (LLDP), Dynamic Host Configuration
Protocol (DHCP), or 802.1X (depending on the types of protocols the
device supports). Then, the NeME extracts the MUD specification and
forwards it to the MUD controller, which is in charge of extracting the
context-specific policy information of the IoT device. Such a policy is
then enforced within the network in the form of port-specific Access
Control Lists (ACLs) [126–128].

Beyond access control, IoT platforms may take advantage of the
MUD specification benefits to protect their IoT solutions from cyber at-
tackers. First, by implementing MUD, the platforms directly reduce the
impact of cyberattacks. Specifically, compromised IoT devices would
have access to only specific network ports, which reduce the ways
an external attacker can exploit a known vulnerability. Second, net-
work administrators may use the information provided by the MUD
to implement specific Intrusion Detection Systems (IDS) based on,
for instance, analyzing the behavior of the devices while they try
to violate the policies specified by MUD. Finally, IoT platforms may
also benefit from MUD as these policies further facilitate the inte-
gration of IoT devices from different manufacturers to heterogeneous
solutions. Recent research works have also demonstrated how MUD
19
can be utilized to create a network abstraction layer among the IoT
devices from different manufactures and platforms. Such an abstraction
would allow for enhanced interoperability of the IoT solution while
improving security [129–131]. In this context, Cisco is pioneering
the manufacturing of MUD-capable network controller to protect IoT
solutions at network-level [128,132,133]. IoT platforms may follow
Cisco guidelines into incorporating MUD support and capabilities; how-
ever, some technical challenges need to be overcome. For instance,
the Dynamic Host Protocol Configuration (DHCP) client in IoT devices
needs to be updated, so it supports MUD. Also, configuring a Cisco MUD
controller may be difficult for the user and require the acquisition of
rather expensive equipment [134]. There exist some open-source MUD
managers like osMUD [135] that could be more easily incorporated
by the IoT platforms, however, these developments still in very early
stages.

5.6.3. Comparative analysis and summary
As a baseline, IoT platforms should incorporate standard secu-

rity practices that are easy to incorporate into the IoT solution by
the users (e.g., fine-grained access control, multiple authentication
methods, strong encryption). Such practices would prevent common
attacks from occurring in the IoT solutions. In Table 8, we compare
these standard practices against the surveyed IoT platforms. For access
control, we define fine-grained access control as the ability to define
and control any capability (e.g., read, write, execute on IoT data) in
any entity (device or user). We note that most IoT platforms do not
currently have this approach fully implemented. For authentication
methods, we note any methodology introduced by the IoT platform
that goes beyond standard encrypted communication (e.g., openHAB
introduces an individualized SSL certificate authority unique to the IoT
solution). Finally, for cryptography, we detail the recommended level
of cryptography for each platform. One can observe that all platforms
implement SSL/TLSv1.2 to secure communications; however, every
platform implements different levels of cipher suites, which may impact
the specific application of the IoT solution.

5.7. Privacy

IoT devices collect massive amounts of user information for data
analysis purposes [8,12]. The data collected is used to improve the
performance of the platform and make devices operate more efficiently
while offering users tailored services depending on their behavior
(e.g., users may receive advertisement about nearby restaurants right
around the time they normally have dinner at home every day). How-
ever, some data may be too personal, making people hesitant from
sharing it. In this section, we survey at the type of user data that
IoT platforms collect, how the data is shared (e.g., with third-party
services), and how this process may impact a user’s privacy.

Privacy Issues within the IoT Solution. The IoT solutions handle and
have access to a diverse set of sensitive information that, if leaked,
may compromise the privacy of the users. Privacy issues may occur
at any layer of the IoT solution (Fig. 1). For instance, compromised
devices may use back-doors or malicious pieces of kernel code to send
sensitive data to external unauthorized parties [13,14]. Also, savvy
attackers may passively observe IoT communications (even when they
are encrypted) to infer users activities and fingerprint their behav-
ior [23]. Further, privacy concerns can also be found in the data
processing layer, as service providers may share information related to
the IoT solutions with third-parties without informing the user [12].
Finally, the application layer can also represent privacy concerns to
the IoT user. Several research works have demonstrated that market
or malicious IoT apps may compromised the IoT user’s privacy in
several ways. For instance, IoT applications can share sensitive data
with external servers without informing the user, or malicious apps can
use code to leak sensitive data to attackers [8,9,136]. As discussed in
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Table 8
We compare IoT platforms regarding the mechanisms they offer to implement security via protecting the confidentiality, integrity, and access control ( =
Required, G#= Optional, #= Not Used).

IoT Platform security methods comparison

Platform Fine-grained access control Authentication methods Recommended cipher suite

openHAB  Unique SSL certificate authority 256-bit ECC, ECDHE, ECDSA, AES256, GCM, SHA-384

SmartThings # REST access tokens ECDHE, RSA, 3DES, EDE, CBC, SHA256

HomeKit # End-to-end encryption RSA2048, AES256, ECC256, SHA256

Windows IoT Core # SecureBoot, Trusted Platform Modules ECDHE, RSA, AES256, CBC, SHA384

FarmBeats # SecureBoot, Trusted Platform Modules ECDHE, RSA, AES256, CBC, SHA384

AWS IoT  Individual certificates, REST access tokens SHA-256, ECDHE, ECDSA, AES128, GCM

ThingWorx # Directory service authentication RSA, AES256, CBC, SHA256

Watson IoT  Individual certificates, REST access tokens ECDHE, RSA, AES128, GCM, SHA-256
Section 5.1, some IoT platforms implement cloud-based topologies to
permit off-site data storage and processing. In these cases, user privacy
becomes a particular issue. Besides the company hosting the cloud
service potentially selling the user data for advertising purposes [12],
there is also the added threat of the cloud service being breached,
leaking user data to malicious parties. Generally, if an IoT platform
stores IoT data on its cloud service, the user is expected to trust
the IoT platform to ensure her data is kept private. However, most
platforms do not inform the user regarding the type of information that
is being collected from the IoT solution and who this information is
being shared to. Thus, the IoT user does not have the choice to make
informed decisions regarding the use of IoT devices, applications, and
platforms [8]. To gain user trust, some IoT platforms are using new
technologies that leave data stored on the cloud still under control
of the user. Watson IoT implements Blockchain IoT [137] that allows
a user to save her IoT data in a traditional blockchain-style ledger.
After creating the ledger, the user chooses what sensitive data is to
be stored in the blockchain. From there, the user can allow trusted
parties to contribute to the blockchain. Then, IoT data from all parties
are pooled into blocks, which are verified and stored permanently into
the blockchain ledger. This blockchain-based concept allows the data
to be stored on IBM cloud services while still keeping the privacy of
the data in control of the user. Additionally, this concept provides a
level of integrity to the IoT data — all parties in the blockchain must
validate the data before it is stored into the blockchain.

Over-privileged Devices. Some devices may collect data and send it
ack to the hardware manufacturer. Under the platforms that allow
oft-grained access control, these devices would have unfettered access
o store user data by default [138] - requiring the user to acknowledge
hat type of data each device is capable of sending to third-parties

o she can take action on it. With the platforms that follow a least-
rivilege approach to access control, the devices would have to be
anually allowed to send and store user data — ensuring the user is

ware of what type of data she allows to be handled by each device. The
ownside of this ‘‘more secure’’ approach is that, in most cases, users
re not directly informed about the type of data that the IoT solution
equires to implement its functionality, which may impact the general
erformance of the solution [8,9].

oT Device Reconnaissance. The first stage of any cyber attack is
o perform reconnaissance [139] to discover any weaknesses in an IoT
olution. The numerous IoT devices introduced into an IoT solution
aturally leads to more attack vectors in the network. An attacker may
hen choose to discover IoT devices in a network [140] to abuse any
nique vulnerabilities. From there, the attacker may escalate their priv-
leges in the network to continue their attack. Approaches like timely
atching and vulnerability scanning may prevent attack escalation from
ccurring on individual devices. Additionally, closing unneeded ports
n IoT devices in the network limits the total number of attack vectors.
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owever, we find that little has been done as of this writing to limit
the effects of device discovery as it limits the natural and expected
proliferation of IoT devices in networks.

IoT Activity Inference. Similar to device discovery, it is possible for
an attacker to view the activities that individual IoT devices are per-
forming (even when communications are encrypted) [23], which can
be used to fingerprint user behavior. For instance, in a smart-home en-
vironment, it is possible for an adversarial onlooker to determine what
the owner of the house may be done by inferring device activities in the
wireless network. Beyond the obvious privacy breach, the attacker can
use the gained information to determine when the owner may be out
of the house to cause further harm (e.g., breaking, robbing, installing
malicious devices) to the smart home. To mitigate this potential privacy
breach, IoT platforms could introduce noise and meaningless events
into the solution so that it may confuse the data collection process done
by the attacker. As evidenced by Acar et al. [23], introducing fabricated
IoT traffic in the network drastically reduces the accuracy and precision
to classify IoT activities properly.

Information Leakage. In addition to device/activity discovery, IoT is
particularly prone to information leakage where a user’s private data
is revealed. This especially becomes an issue in settings like hospitals
and financial institutions where sensitive data must be protected under
law. There is no current best practice to ensure data privacy in an IoT
setting, but there are multiple avenues of research in this topic, in-
cluding IoT application analysis [8,9]. Homomorphic encryption [141],
the addition of noise [142], and data aggregation [143] are some
examples of established ways to preserve privacy on a traditional
network [144,145]. One area of research would be to continue applying
some of these privacy-preserving methods in a way that works for IoT
solutions. Since IoT data should remain as unperturbed as possible
for data analysis purposes, applying these privacy-preserving methods
could pose interesting challenges. First, IoT platforms are expected to
be against to report how the user data is collected and used publicly.
Second, specific architectural characteristics in IoT (platforms prioritize
high connectivity among devices over secure implementation) and the
high diversity in IoT make traditional privacy mechanisms not suitable
for IoT. IBM’s blockchain approach is another interesting avenue of
research for IoT privacy. While this method has been applied already,
it is still a relatively new approach. Designing better, more efficient
privacy solutions with blockchain would prove itself useful to IoT.

5.7.1. Comparative analysis and summary
We found that except for specific attempts (e.g., blockchain-based

approach in IBM Watson IoT), most IoT platforms still lack effective
measurements to protect user privacy. The actual nature of IoT, where
so much information is available to favor the implementation of new
and more effective applications, difficult the implementation of privacy
mechanisms. In fact, such mechanisms would necessarily limit the
performance and functionality of the IoT solutions. Another interesting

finding is that probably because of its high market share, the majority
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of the solutions that researchers are implementing to protect the secu-
rity and privacy of the IoT solutions are being proposed for the Samsung
SmartThings platform. We believe that IoT users must consider these
findings while selecting the IoT platform for their solutions as they
impact the amount of effort necessary to guarantee proper privacy
preservation.

6. Lessons learned and final discussion

In this survey, we first provided criteria that permit the comparative
analysis of IoT platforms from different application domains. This anal-
ysis would provide the IoT users a good starting point for a secure and
effective implementation of their IoT solutions. Comparing IoT plat-
forms from different application domains is not a straightforward task.
As noted earlier, our main goal is to provide comparison criteria that
apply to any platform regarding the specific domain. We summarize
our findings and lessons learned with the following discussion.

Specific Application. We believe that the specific application for
hich the IoT solution is being implemented must be the first selection

riteria for the user. As we have mentioned before, IoT solutions may
ave specific requirements depending on the application. For instance,
oT solutions used to monitor and control variables in agricultural farms
ay have specialized power consumption and connectivity character-

stics suitable for remote environments. As a practical generalization of
his survey, IoT users can utilize the comparison criteria here provided
o first correlate platforms within the same application domain.

ore Secure and Privacy-aware IoT. In general, IoT platforms permit
the implementation of IoT solutions with adequate usability. That is,
users may expect that platforms offer the necessary functionality for
their specific applications. However, such a level of functionality often
limits the amount of protection the same platforms can offer to the
sensitive data and the privacy of users. We have shown how malicious
actors can attack an IoT solution at the different levels of the IoT
solution (starting from the use of unauthorized hardware components
during the device manufacturing process to the injection of malicious
code at the app level). Thus, selecting platforms that provide usability
with an adequate level of security is key. Users must first focus on IoT
platforms that offer ready-to-use security mechanisms suitable for the
specific IoT solution. Then, they can learn additional methods to protect
the final solution by taking advantage of other selection criteria, like
third-party and extended protocol support.

Third-party and Extended Protocol Support. Third-party and ex-
tended protocol support allow for enhanced usability of the IoT so-
lution. However, as discussed in this work, it also gives the IoT user
additional tools to implement security- and privacy-enhancing mecha-
nisms. Thus, we believe that the IoT user must look for these criteria
before selecting the platform for her solution. For instance, users can
use third-party hardware support to use devices that are trusted by the
user, and that also offers similar functionality as the ones offered by the
platform. We found that adding new devices or software functionality
to an IoT solution is not simple, especially for those users that do
not have a deep technical background. On the one hand, having IoT
platforms that support third-party support of IoT devices, applications,
and protocols permit the non-technical users to enhance security and
privacy within the IoT solution by implementing more secure and
practical functionality using plug-and-play APIs in a fraction of time.
On the other hand, more technical users may use these capabilities
to improve further the security tools offered by the platform. For
instance, extended protocol support permits the application of more
secure encryption mechanisms or stronger two-factor authentication.

Openness for enhanced security. Finally, IoT users must look for plat-
forms that are ‘‘more friendly’’ to the application of additional external
security mechanisms. Researchers have offered security methods for IoT
that impact all layers of the IoT solution. However, these mechanisms
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tend to be offered and evaluated only for specific platforms. For in-
stance, SaINT [9], IoTDots [7], and IoTWach [8] protect the security
and privacy of a SmartThing solution. Recent works like iRuler [42]
tend to provide security to implementations from multiple platforms.
However, these solutions are limited to evaluate the impact of insecure
IoT rules and only protect the upper layers of the IoT solutions.

7. Related work

IoT is an emerging technology that is applied in many diverse
solutions. There is still work being done to classify and evaluate IoT
platforms effectively. In this section, we systematically compare the
related works with this survey following the methodology listed below:

• We selected previously published works that either (1) proposed
generalized design and implementation models that apply to sev-
eral IoT platforms or (2) directly compare different IoT platforms
following a specific well-structured criteria.

• We used the features proposed in Section 4 to establish a general-
ized comparison criteria that we can use to compare the studied
related work with our survey.

Table 9 shows that while most of the related work focus on how
different IoT platforms handle security and privacy, other limited num-
ber of evaluation criteria (at most three items) were also covered in
these works. However, our work is the most comprehensive survey to
date that study and propose a practical framework for IoT users that
covers seven different evaluation criteria including topology, program-
ming languages, third-party support, extended protocol support, event
handling, security, and privacy.

Mazhelis et al. evaluate IoT platforms with criteria focused on
architecture, device integration, and platform implementation [146].
Through this, the authors provide an analysis of IoT platforms from
the perspective of a potential IoT application developer. Riahi et al.
provide a similar framework to evaluate IoT platforms, this time fo-
cused specifically on security [44]. Our paper takes concepts from the
framework of Riahi and merges with the evaluation from Mazhelis
to show how architecture choices from an IoT platform affect its
security. Other works survey the IoT landscape. For instance, the
work developed in [147,148] identifies general trends throughout the
industry, discussing the protocols, devices, and platform architecture
types that are being used in IoT platforms. Also, the authors in [149]
survey specific platforms, focusing mostly on the architecture types
and communication protocols used in the specific platforms. Finally,
the work in [150] surveys the security and privacy of the Internet
of Things. Specifically, it details the security and privacy challenges
and limitations of different IoT architecture layers and technologies,
focusing on the well-known security principles of data confidentiality,
integrity, and availability. Although iit is a compelling analysis, the
work does not offer a comprehensive comparison on how different IoT
platforms handle security or are specifically vulnerable to these threats
but focuses on providing a high-level overview of potential security
vulnerabilities in IoT. Our survey, however, considers specific features
that directly impact the design and implementation of IoT solutions.
We perform the analysis on some of the most popular and widely
used IoT platforms to highlight similarities and differences. Our survey
strategy expands to a broader depth of the IoT platforms, allowing
further discussion of the trends highlighted in the more general survey
papers.

There has also been a large amount of research into the security
of IoT platforms. As IoT platforms grow in size and number, security
is paramount. However, it has fallen behind the growth of the industry
considerably, prompting a large amount of research into the area. Some
research works perform a survey of current security challenges facing
IoT platforms. These papers provide a good analysis of security risks
from the device level to the software level within IoT platforms [3,151,
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Table 9
We compare related published works with this survey ( = Studied for Multiple IoT Platforms, G#= Studied for a Single IoT Platform , #= Not Studied).

Related work comparison analysis

Related work Topology Prog. Lang. Third-party Support Extended protocol support Event handling Security Privacy

Mazhelis et al. [146] #  # #  # #

Riahi et al. [44] # # # # #   

Sethi et al. [147] # # #   # #

Vashi et al. [148] # # # # #  #

Mazhelis et al. [149]  # #   # #

Mendez et al. [150]  # #     

Celik et al. [3]  # # #    

Xu et al. [151] # # # # #  #

Zhang et al. [152]  # # # #   

Ammar et al. [153]   #  #   

This Work        
154,155]. Discussing more in-depth, [152] provides a comprehensive
study of a large number of specific security issues and exploits within
IoT environments. This paper classifies and then analyzes a large num-
ber of reported security threats within IoT. The works in [45,151,156],
discuss specific security exploit within IoT solutions. For instance,
authors in [156] focus on the Samsung SmartThings platform to discuss
multiple exploits of over-privileged that an adversary can use to obtain
valuable information about the system. This again shows why it is
important to understand the design and architecture of IoT platforms
as adversaries can exploit the weaknesses in each of the solutions
if IoT users are not careful. Finally, the work in [153] surveys the
security of a sample group of IoT frameworks. Its analysis mainly
focuses on detailing the specific proposed architecture for every plat-
form, the tools offered for developing third-party smart apps, discussion
on the compatible hardware, and their security features. Specifically,
for the security analysis part, the work only considers the security
services of authentication, access control, and ways to protect the
communications within the IoT solution. Our research improves this
work by incorporating communication- and privacy-related features, in
addition to extended security, into the analysis. Also, we focus on the
practical needs of the IoT users (i.e., IoT administrators, developers,
and researchers) to guide our study.

Differences from Existing Works. Our work is different from the
works above as we focus on real-world design choices in actively main-
tained, widely-used IoT platforms. We introduce and follow specific
comparison criteria, considering the potential practical needs of active
IoT users, developers, researchers, to evaluate and determine what
currently established design choices would work well in the IoT world
and what needs further development (particularly in communications,
security, and privacy). Our analysis strategy helps to establish a base-
line upon which the IoT research community can build to improve the
security and privacy of real-world IoT platforms. Most importantly,
our findings gives IoT users the design and implementation criteria
to make informed decisions on the selection of specific IoT platforms
to implement their solutions. We define a comprehensive evaluation
framework that considers seven different technical comparison criteria:
(1) topology design, (2) programming languages, (3) third-party sup-
port, (4) extended protocol support, (5) event handling, (6) security,
and (7) privacy. From this perspective, the existing surveys and other
related works do not provide such valuable insights to improve the
implementation capabilities of IoT users, but solely focus on what is
existing.

8. Conclusion

With the increasing popularity of IoT devices, several different
companies are developing new platforms to manage and control the
interaction between IoT and users. IoT apps are mainly used to capture
22
and process the sensor data and to automate and execute tasks. In
general, these IoT platforms provide the means for IoT devices to
communicate with each other and to provide real-time analysis for
users. Due to the wide variety of applications in IoT, these platforms
vary in their target audience and uses; however, they all must still
adhere to specific programming and architectural paradigms to be
viable. In this work, we presented an in-depth analysis of the most
popular IoT platforms from different application domains, including
OpenHAB, Samsung SmartThings, Apple HomeKit, Windows IoT Core,
Microsoft FarmBeats, Amazon AWS IoT, ThingWorx, and Watson IoT
Platform. We mainly focused on evaluation criteria that highlight topics
in their topology, programming languages, event handling, third-party
support, security, and privacy. As per our knowledge, by the time of
writing this manuscript, there was not any previous work that covered
these features for the most popular IoT platforms. Overall, we find that
there is still plenty of work needed to be done in IoT development. As a
baseline, fine-grained access control and authentication for all entities
(user, devices) with individual permissions and identities at every layer
of an IoT solution should be implemented in today’s IoT platform. We
note that further research in IoT security and privacy is still highly
desired in topics such as tamper-resistant hardware, IoT application
analysis, IoT device/activity discovery, preventing information leakage,
and general vulnerability discovery.
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