
560 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 2, APRIL 2019

Catch Me if You Can: A Closer Look at Malicious
Co-Residency on the Cloud

Ahmed Osama Fathy Atya , Member, IEEE, Zhiyun Qian , Member, IEEE,

Srikanth V. Krishnamurthy, Fellow, IEEE, Thomas La Porta , Fellow, IEEE,
Patrick McDaniel, Fellow, IEEE, ACM, and Lisa M. Marvel, Senior Member, IEEE

Abstract— VM migration is an effective countermeasure
against attempts at malicious co-residency. In this paper, our
overarching objectives are: (a) to get an in-depth understanding
of the ways and effectiveness with which an attacker can
launch attacks toward achieving co-residency and (b) to design
migration policies that are very effective in thwarting malicious
co-residency, but are thrifty in terms of the bandwidth and
downtime costs that are incurred with live migration. Toward
achieving our goals, we first undertake an experimental study
on Amazon EC2 to obtain an in-depth understanding of the
side-channels, through which an attacker can use to ascertain
co-residency with a victim. Here, in this paper, we identify
a new set of stealthy side-channel attacks which we show to
be more effective than the currently available attacks toward
verifying co-residency. We also build a simple model that can
be used for estimating co-residency times based on very few
measurements on a given cloud platform, to account for varying
attacker capabilities. Based on the study, we develop a set
of guidelines to determine under what conditions the victim
VM migrations should be triggered, given the performance costs
in terms of bandwidth and downtime, which a user is willing
to bear. Through extensive experiments on our private in-house
cloud, we show that the migrations, using our guidelines, can
limit the fraction of the time that an attacker VM co-resides
with a victim VM to about 1% of the time with the bandwidth
costs of a few MB and downtimes of a few seconds per day per
VM migrated.

Index Terms— Computer networks, cloud computing, security,
experimental study.

I. INTRODUCTION

INFRASTRUCTURE-AS-A-SERVICE (IaaS) providers
allow VMs that belong to different users, to share the same

physical infrastructure. Thus, the risk of sharing a physical
machine with a potential malicious VM is very real [1]–[3].
Once an attack VM is able to co-reside with a victim VM on
the same physical machine, it can launch arbitrary attacks
(e.g., using side channels to achieve information leakage)

Manuscript received April 16, 2017; revised December 12, 2017, March 20,
2018 and September 3, 2018; accepted December 23, 2018; approved by
IEEE/ACM TRANSACTIONS ON NETWORKING Editor Y. Zhang. Date of
publication February 21, 2019; date of current version April 16, 2019.
This work was supported in part by the U.S. Army Research Laboratory
Cyber Security Collaborative Research Alliance under Cooperative Agreement
W911NF-13-2-0045. (Corresponding author: Ahmed Osama Fathy Atya.)

A. O. F. Atya, Z. Qian, and S. V. Krishnamurthy are with the
University of California at Riverside, Riverside, CA 92521 USA (e-mail:
a.osama.ce@gmail.com).

T. La Porta and P. McDaniel are with the Pennsylvania State University,
State College, PA 16801 USA.

L. M. Marvel is with the U.S. Army Research Laboratory, Adelphi,
MD 20783 USA.

Digital Object Identifier 10.1109/TNET.2019.2891528

to compromise the security of the victim VM. Although
providers continuously make improvements to better isolate
resources across VMs, new vulnerabilities are expected to
emerge as hardware architectures and hypervisor technologies
evolve [4].

Prior to launching such attacks however, the attacker typi-
cally needs to place a malicious VM on the physical machine
that houses the victim VM (co-reside with the victim). The
process of performing co-residency today requires the attacker
to launch its VMs, use side-channels to ascertain co-residency,
and upon failures terminate and repeat the process. Once
co-residency is achieved, the longer a victim VM resides on
the same physical machine occupied by the attacker VM,
the higher is its risk of being compromised.

In this paper, we have two main objectives. First, we seek
to get an in depth understanding of the ways and the
effectiveness with which an attacker can achieve co-residency
with a victim VM in practice. Towards this, we undertake
an extensive experimental effort on Amazon’s EC2 cloud
infrastructure, to understand the side channels that an attacker
can use to ascertain co-residency with a victim VM. En
route, we discover a new set of very stealthy and highly
effective timing based side channels that can be used today
to ascertain co-residency.

Migrating a VM is a way of mitigating long periods of
co-residency with an attacker VM [5]. As our second objec-
tive, we seek to determine under what conditions a victim
VM should be migrated to minimize its co-residency time
with an attacker, given a bandwidth/downtime cost the user
of the VM is willing to bear. Towards this (based on the
above experimental studies) we formulate a set of guidelines,
which are based on (a) the time that a victim VM has resided
on a host machine and (b) monitoring the side channel that
the attacker could have used to ascertain co-residency. We
perform extensive experiments on our in house cloud (built
using CloudStack [6]) to demonstrate that our guidelines can
drastically reduce the times for which a victim VM co-resides
with an attack VM with low costs in terms of downtimes and
bandwidth.

To summarize, our contributions are as follows:

• We carry out extensive experiments on Amazon EC2,
arguably the most popular cloud provider, to develop
a comprehensive understanding of the efficacy of an
adversary in successfully co-residing its VM with a
victim’s VM.

1063-6692 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Penn State University. Downloaded on April 28,2021 at 16:11:49 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-5591-4657
https://orcid.org/0000-0003-1506-2522
https://orcid.org/0000-0003-1295-4461

ATYA et al.: CATCH ME IF YOU CAN: CLOSER LOOK AT MALICIOUS CO-RESIDENCY ON THE CLOUD 561

• We build a simple model that can provide us with rough
estimates of how long it takes for an attacker with
varying capabilities, to successfully co-reside with a
victim. The model requires very few measurements and
can provide guidelines on how often VMs should be
migrated in different scenarios.

• We discover a set of new highly effective timing
based side channels that can be used by an attacker to
determine if any of its VMs co-resides with a targeted
victim VM. Our side channel provide the highest
accuracy in ascertaining co-residency as compared to
other previously proposed side channel tests (≈86%), but
with lower false positive rates. In addition, we believe that
they are much harder to detect than the latter since they
do not create explicit congestion on a shared resource.

• We consider VM migration as a countermeasure to thwart
malicious co-residency and develop a set of guidelines on
when to invoke victim VM migration given a cost budget
in terms of the bandwidth expenses and downtimes that
the user is willing to tolerate. We perform extensive
experiments on an in house KVM-based private cloud
(users cannot invoke live migrations on commercial
clouds today) to evaluate our guidelines. The results
show they can drastically reduce the times for which a
victim VM co-resides with an attack VM. Specifically,
with very reasonable performance costs (of the order of
MB of bandwidth and seconds of downtime per day, per
VM migrated), the fraction of time that the victim VM
co-resides with an attack VM can be limited to about 1%.

Roadmap: In §II and in §III we present related work and
our threat model, respectively. We present an experimental
study on co-residency on Amazon EC2 and showcase our
new attacks in §IV. We present a model to estimate the time
taken to achieve co-residency in §V. Our mitigation guidelines
are derived in §VI. We present our evaluations in §VII.
A discussion on how the migration guidelines influence costs
while mitigating side channels targeting information leakage
is provided in §VIII. We conclude in §IX.

II. RELATED WORK

Side Channel Attacks Targeting Information Leakage: Side
channel attacks exploit physical information leakage such as
timing information, cache hits/misses, power consumption etc.
This information is typically obtained based on the usage
of shared resources (e.g., cache). There are several side
channel attacks on cloud tenants that have been previously
studied [1], [2], [7]–[11]. Side channel attacks can target
different shared resources; examples include the cache, shared
storage etc. For example, the FLUSH + RELOAD attack [12]
achieves information leakage by flushing the L3 cache and
observing the times taken for reloading specific memory
blocks previously in the cache; a short time indicates that
the memory blocks were reloaded by the victim. Based on
the attack, the time taken to successfully extract information
ranges from the order of minutes to hours. We point out
here that almost all such work on information leakage attacks
however, assume that the victim has already co-resided with

the victim process. In contrast, we focus on side-channels used
by an attacker to ascertain co-residency.

Co-Residency With a Victim Process: For almost all side-
channel attacks reported, an attack process (VM) will need to
co-reside with the victim process (VM) on the same physical
machine. The attacker will need to launch its VM and use
some kind of side channel to ascertain if has co-resided
with a victim. Side channels have also been proposed for
enabling co-residency checks (e.g., [13]). However, these prior
efforts do not provide a comprehensive understanding of how
effective these are in terms of their accuracy and the time
it takes for an attack VM to successfully co-reside with a
victim VM.

Reverse engineering the algorithm for determining the
placement of VMs empirically, as in [13] and [14], although
hard, might be useful in the short term. However, placement
algorithms are likely to dynamically change over time [14].
Because of this, one can largely consider the placement algo-
rithms to be opaque (and possibly customized to users); instead
of trying to reverse engineer the process, we develop measures
to determine co-residency, and construct a model which pro-
vides rough estimates of the average time taken for acheiving
co-residency (regardless of the nuances of placement). Fur-
ther, cloud providers have ensured that many co-residency
checks proposed much earlier (e.g., [2], [15]) are no longer
feasible.1 To the best of our knowledge, we are the first to
propose network timing based side channels for ascertaining
co-residency. Note that there are other network timing based
attacks previously studied (e.g., [16]–[19]) but they are quite
different. For example, Song et al. [16]) look at the times
between transmitted packets to infer the keystrokes of a user.
References [17] and [18] use timing towards inferring which
nodes are communicating on a Tor network. Reference [19]
uses timing channels towards website fingerprinting. While
the idea of using time as a side channel is common with
these efforts, we look at the time series in contacting two
processes on a physical machine on the cloud from external
vantage observation points, to ascertain co-residency. Thus,
our solution is quite different (and thus novel) from what has
been previously considered.

Defending Side-Channel Attacks: Cloud providers as well
as the research community is continuously looking for ways
to improve resource isolation which can help defend against
side channel attacks. Efforts such as [20] and [21] introduce
random delays while accessing a resource to thwart timing
based side channel attacks. References [22] and [23] employ
software level defense mechanisms as countermeasures against
cache based side channel attacks; for example, the idea in [22]
is to obfuscate the program at the source code level to provide
the illusion that many extraneous program paths are executed.
If an attacker conducts a prime and probe attack (where he
primes the cache and probes for determining changes to cache
sets) his observations will be skewed. Although the current
methods can defend against known side channel attacks, it is

1We have also experimentally verified that this is the case. For example,
the cloud cartography approach to locate victim processes in the cloud
proposed in [2] is no longer viable.

Authorized licensed use limited to: Penn State University. Downloaded on April 28,2021 at 16:11:49 UTC from IEEE Xplore. Restrictions apply.

562 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 2, APRIL 2019

unclear if there exist other type of attacks that are unknown to
the research community. Other vulnerabilities could appear in
the future due to advancements in computer architecture and
hypervisor technologies. Mitigating malicious co-residency
can significantly alleviate the attacker’s ability to launch such
attacks.

VM Migration to Mitigate Side-Channel Attacks:
VM migration has recently been considered to counter
cloud-based side-channel attacks targeting information
leakage in [5]. In brief, the authors of Nomad [5], model
information leakage from side channel attacks over time and
determine how often migration is needed. However, they
assume that the attacker has successfully co-resided with the
victim. Nomad also assumes that such decisions on migration
to cope with side channels, are made by the provider and
not the users of the VMs. The users may not be willing to
accept the performance penalties (downtimes) that inevitably
occur when VMs are migrated for such purposes. We make
no assumptions on what the provider will do in terms of
placement of VMs.

Unlike in Nomad, we try to minimize the occurrence and
periods of successful malicious co-residency. We account for
the time that an attacker takes in order to successfully co-reside
with a victim; this can influence the costs associated with
migrations (reduce the frequency). The users can choose when
to migrate their VMs based on their risk averseness and the
costs they are willing to bear.

In a realistic scenario, where users are likely to config-
ure their own VM migration policies (e.g., enable, disable,
choose periodicity etc.), not accounting for the fact that the
attacker takes time to first co-reside with the victim (as with
Nomad) in addition to the time taken for an information
leakage attack, for driving migrations will increase migration
frequencies and thus bandwidth/downtime costs (discussed
later). We later show that very frequent migrations could also
adversely affect security when the attacker simply stays put
on a physical machine (since the victim VM can potentially
return to the very same machine).

III. THREAT MODEL AND ROADMAP

A. Threat Model
We assume that an attacker seeks to co-reside its VM on the

same physical machine as a certain targeted victim VM and
co-reside for as long as possible. First we consider a case
where the attacker launches a set of VMs, repeatedly if needed,
and attempts to have one of these attack VMs co-reside with
a victim’s VM. We assume that it has no knowledge or
control over the policies followed by the cloud provider for
VM placement (as with Amazon’s EC2). We call such an
attacker an “reactive attacker”; this scenario is reflective of
what the attacker can do on today’s commercial clouds.

Next, we consider the cases where (like any user) an attacker
can choose to migrate its VM (or stay fixed on a single
physical machine), if user driven migrations are allowed.
We assume that the provider does not unilaterally perform
migrations (without user requests) like in [5], since this may
cause downtimes without user consent (which some users
may not want to experience). An attacker VM could simply

choose to stay put on its initial physical machine assuming
that the target VM (due to migration) will be placed on the
same (physical) machine eventually. We call such an attacker
a “static attacker”. Finally, we also consider a possibility
that an attacker may choose to migrate periodically itself.
We call such an attacker, a “periodic” attacker. In both of the
above cases, we assume that an attacker continuously checks
for co-residency (using one of the approaches discussed in
Section IV), since the victim could now at any point, migrate
to the machine on which its VM resides. Note that these
attack strategies cannot be implemented and tested today on
Amazon’s EC2 (migrations are not viable as of today); we test
them on our in house cloud in Section VII.

Once the attacker is able to verify with high accuracy that
one of his attack VMs has successfully co-resided with the
victim’s VM on the same physical machine, an attempt is
made to launch a previously proposed side-channel attack
(described in Section VIII) to successfully create a leakage
of information from the victim. However, we do not explicitly
focus on such side-channel attacks themselves in this work; we
provide a discussion on the impact of our work on such attacks
in Section VIII. For simpilicity, we assume that the number of
virtual machines owned by the victim remains unchanged, i.e.
the number of virtual machines does not vary over small time
scales (hours or days). We also assume that after a migration
occurs, the attacker does not know “where the victim process
has been migrated.” We assume that it is not interested in
triggering other attacks (e.g., causing a DoS attack by inducing
repeated migrations).

B. Roadmap

The remainder of the paper is organized as follows. First,
we seek to showcase and understand attacks that target mali-
cious co-residency via an extensive measurement study on
Amazon EC2 (Section IV). This leads to results on how
long it takes for an attacker to co-reside with a victim and
subsequently launch any information leakage attack. In addi-
tion, we believe that it naturally leads to the following two
questions: (a) Given that one cannot perform exhaustive sets of
experiments, can we develop a model to roughly characterize
these co-residency times?, and (b) Given the co-residency
times and certain patterns that manifest themselves due to
the attack, how can one guide migration decisions that are
cost-effective? We answer the first question by developing a
simple rough, yet reasonable model in Section V. The second
question is then addressed via assessing risk and developing
cost-effective migration guidelines in Section VI. Finally,
we evaluate our guidelines in Section VII. We point out here
that while the measurement study in Section IV were done
on EC2, the evaluations in Section VII are done on an in
house cloud since they cannot be implemented today on a
commercial cloud.

IV. CHARACTERIZING CO-RESIDENCY VIA EXPERIMENTS

We perform extensive experiments on Amazon’s EC2 over
a period of 5 months, to obtain an understanding of (a) the
accuracy and (b) the time taken by an attacker to success-
fully (we define what mean by success below) co-reside its

Authorized licensed use limited to: Penn State University. Downloaded on April 28,2021 at 16:11:49 UTC from IEEE Xplore. Restrictions apply.

ATYA et al.: CATCH ME IF YOU CAN: CLOSER LOOK AT MALICIOUS CO-RESIDENCY ON THE CLOUD 563

VM with a targeted victim VM (TCR), while using different
types of side-channels to verify co-residency. Specifically,
we implement and test, multiple previously proposed ways
of verifying co-residency (co-residency tests). In addition,
we design new timing based co-residency tests that are stealthy
and yet, very effective. We reiterate here that some of the
previously proposed side-channel based tests to verify co-
residency (e.g., [2], [15]) do not work anymore (as verified
by our experiments) since cloud providers have taken steps to
prevent them [10].

Categories of Co-Residency Tests: We divide co-residency
tests into two categories; controlled/internal and external.
In internal co-residency tests (ICT), we control both victim and
attacker VMs. These tests primarily demonstrate co-residency
with high fidelity (and can serve as ground truth) but cannot
necessarily be used by an external adversary. Specifically,
we create contention on a shared resource using the attacker
VM and measure the changes in access times to that resource
experienced by the victim VM (as compared to the access
times experienced with no contention). We assume that a
co-residency test is successful if an associated ICT test clas-
sifies the test as being successful.

In the external co-residency tests (ECT), we only control
the attacker VM. We exploit a service running on the victim
VM to try to create contention on a (possibly) shared resource.
The attack VM then compares the response times to the service
with and without contention. Here, we also propose the use
of new timing tests to decide whether two machines co-reside
or not. The accuracy of the ECTs (which represent the mode
of operation of an adversary in a real setting) is assessed by
comparing the result with that of a ICT. The time taken for
successful external co-residency tests is a critical metric that
we are interested in. In all of these experiments we assume an
active attacker as discussed in Section III.

General Setup: We initiate 20 micro or 20 small instances
each, for a victim and an attacker account (for ground truth
validation). All the instances run Ubuntu 14.04 LTS [24].
We conducted our experiments on three different datacenters
(us-west-2a, us-west-2b and us-west-2c). Four different side
channels that are exploitable to verify co-residency, reported
in the past three years, were implemented [3], [13], [15] and
tested. A key contribution we make is the design of new, very
effective, timing-based co-residency tests.

The victim VM hosts 3 services, each very different in
nature; thus, the co-residency tests in the three cases, for
identical set ups, take different times. The services are Taiga,
ownCloud, and MediaServer. Taiga is an open-source project
manager software that involves a mix of CPU, disk (frequent),
and memory workloads. ownCloud is an open-source file
hosting service (resembles Dropbox) that involves memory
and disk intensive workloads. MediaServer is an open-source
wiki-page server that involves a mix of CPU, disk (rare),
and memory workloads. We use different type of VMs; their
specifications are summarized in Table I (we use the Amazon
EC2 jargon [25]). Later in the section, we provide further
details on each specific experiment.

ICT Experiments: In each experiment, as mentioned, the
attacker and the victim have 20 VMs each. We end up with

TABLE I

INSTANCE TYPE COMPARISON

400 possible combinations of attack and victim VMs (20×20);
thus, 400 co-residency tests will need to be performed for
each considered shared resource. With four shared resources
this translates to 1600 tests.2 A comprehensive study using this
approach would take a prohibitive amount of time, considering
that the failure of co-residency would incur termination and
relaunching of attack VMs. To speed up the process, we create
a pre-configured VM image that can be readily instantiated.
Specifically, we create an image of all your setup and programs
and when we launch a new VM, instead of using a brand new
OS to launch our programs and configure them, we simply
use the image. Second, we recognize that the failure of
co-residency tests using certain shared resources, can with high
probability suggest that other tests (on other shared resources)
will also fail. Therefore, by ordering the tests, we drastically
reduce the number of tests (by eliminating tests that are highly
likely to fail). For example, the failure of the co-residency test
that considers the memory bus as the shared resource (bus
contention test) described in [13] (details later) will indicate
that the attack and the victim process do not share the same
CPU. Finally, for each attack VM, we perform a co-residency
test with regards to a shared resource, with all the victim
VMs in one shot. By using these reductions, we were able
to reduce the time taken per run to 20 minutes, on average.
Thus, by running experiments for 15 hours per day, we were
able to test more than 50,000 pairs of attack and victim VMs.

ECT Experiments: We go through a similar process (with
all the optimizations outlined above) except that we can only
induce workloads on victim VMs by sending external requests
(e.g., to upload a new file onto the ownCloud server). Further,
we will allow all 20 attack VMs to perform the tests simulta-
neously. If any of them detects the co-residency successfully,
we further cross-validate the result with a follow-up ICT
experiment. If the validation holds true, the process is deemed
as success and stopped.

Launching and Termination: For every failed attempt at
co-residency (the co-residency test fails with respect to a
considered shared resource), the attacker must terminate his
VMs and then re-launch them in an attempt to again suc-
cessfully co-reside with his target victim. The time taken to
launch and terminate these processes are denoted by tl and td,
respectively. These times will contribute to the overall time
that an attacker will have expend, in order to successfully
co-reside with the victim VM. Using the process described
above, we experimentally quantify these times.

A. Implementation of Prior Co-Residency Tests

We implement and test previously proposed co-residency
tests on EC2. In these tests, an attacker creates contention

2We wish to point out here that these tests are primarily used as benchmarks
and cannot be actually used by an external attacker.

Authorized licensed use limited to: Penn State University. Downloaded on April 28,2021 at 16:11:49 UTC from IEEE Xplore. Restrictions apply.

564 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 2, APRIL 2019

on various shared resources (e.g., cache, bus) and uses a side
channel to determine if his process co-resides with a victim
process. The time taken to perform a co-residency test is
denoted by tc; this time primarily depends on type of shared
resource used to determine co-residency, as well as the type of
service running on the victim VM. A successful co-residency
test indicates with high probability that the attack and the
victim VM share the same physical resources.

Bus Contention Based ICT and ECT: Bus contention tests
were designed and evaluated in [1] and [13].

ICT: In the ICT, the attacker VM allocates a chunk of
memory that is larger than the size of the last level cache
(64 MB in our experiments). Is then misaligns the memory
access pointer by adding an offset to it (two bytes). The issuing
of an unaligned, atomic access operation (such as a read,
or the XADD operations for x86 processors) [13] causes the
locking of the memory bus. The causes the victim VM to see
a significant increase (around 3X) in the memory access time
if both the VMs share the same physical machine.

ECT: In the ECT, the attacker engineers a set of external
requests (such as HTTP or FTP) which cause the victim VM to
access the memory bus; the request sizes will have to be larger
than the last level cache (LLC) size [13]. Internally, the attack
VM locks the memory bus (similar to what is done in the
ICT). By comparing the response times in this case, with
the response times without the locking of the memory bus,
the attacker is able to determine if his VM co-resides with
the victim VM (a significant increase is seen if the VMs co-
reside).

LLC Based ICT: Next, we test if two VMs share the same
CPU by creating contention on the LLC [26]. If this causes
an increase in the LLC access time for the victim VM,
we conclude that both VMs share the same CPU. The LLC
in our experiments is the L3 cache; its size is 25.6 MB with
a cache line size of 64 bytes and an associativity of 20. The
page size is 4096 bytes.

The attacker VM allocates 1 or more GB of memory and
regularly reads and writes in multiple page size increments
(to ensure a page miss for the victim VM). The victim
VM allocates an L3 cache size (of 25.6 MB) and iteratively
reads pages in order. If the two VMs share the L3 cache,
a significant increase (≈1.8 X) in the access time is observed
by the victim VM.

ICT With L1 Cache: Two VMs that share the same CPU do
not necessarily share the same core. We test if two VMs share
the came core via a contention based test on the L1 cache.
The L1 cache size is 32 KB, its associativity = 8, and the
page size is 4096 bytes. As in the previous test, the attack
VM repeatedly evicts the L1 cache by requesting data that
is not in the cache. The victim process continuously tries to
access the same data (e.g., a certain data structure) repeatedly,
and measures the access times. With contention a 1.5-3X
increase in the access time is experienced. Note here that even
if the two VMs share the same CPU (the LLC test could
yield a success), this test will fail if they do not share the
same core. If two VMs share the same core, an active side
channel attack can probe the contents of the L1 cache during
execution [27].

B. A New ICT

Storage Based ICT: The test seeks to determine if two VMs
share the same disk. Although the idea of checking if a disk
is shared is not new [13], [14], to the best of our knowledge,
we are the first to design and implement an approach to
determine co-residency based on disk storage access in a cloud
environment. We find that this test does not inherently provide
any advantage over the previously proposed ICTs discussed
above (as shown later), but we present it nevertheless, for
completeness. To create contention for disk access, the attack
VM accesses a relatively large file (>6 GB). It repeatedly
does this access while varying the block size from 512 Bytes
to 8 MB. The victim tries to perform a storage operation; in
our experiments, it copies a similar large file from storage
and we measure the average time taken. For each block size
used, we measure the average time taken by the victim for
copying the file from storage. The attacker’s goal is to cause
an increase in the average seek time (compared to when it
does not access the large file). For the Amazon EBS (Elastic
Block Store) storage, a minimum increase of 33% in the total
transfer time is observed when there is disk contention.

C. New Timing Based ECTs

Next, we propose a set of new, stealthy yet very effective
timing-based ECTs.

ECT Based on RTT Timing Behaviors: Today, cloud
providers employ load balancers and multi-path routing to
be able to dynamically handle high traffic loads and denial
of service attacks [28]. However, it is reasonable to assume
that packets which are destined to VMs that reside on the
same physical machine are exposed to similar effects at a
given time (same paths), and experience similar delays along
the route. Thus, one might expect that while the behaviors
change dynamically, the delays experienced by packets that
are destined to VMs on the same physical machine exhibit
consistent (similar) temporal variations over short time scales
(the packets to the attacker VM and the victim VM are sent
back to back). Note here that while the congestion at routers
can change over time, given that TCP gradually responds to
congestion variations, these can be expected to happen over
coarser (relatively larger) time scales. Given this observation,
we (playing the role of the attacker) utilize probes to measure
the delays to an attacker VM and victim VM to determine
whether they co-reside on the same physical machine. The
probes do not have to be explicit overt messages; as an
example, they could potentially be seemingly legitimate http
requests to a victim web server. We point out here that since it
is an attacker who does the probing, the additional load due to
the same on the network is of no concern to the attacker; from
a detection standpoint it would seem like legitimate load, and
hard to disambiguate especially if the probes are sent from
various vantage points.

In order to ensure that the results are not biased by
hypervisor scheduling delays (typically the maximum time
slice that a VM can obtain before being switched out of
context ≈10 msec) we probe at coarse time granularities
(i.e., the probing period is set to ≥100 msec). With this

Authorized licensed use limited to: Penn State University. Downloaded on April 28,2021 at 16:11:49 UTC from IEEE Xplore. Restrictions apply.

ATYA et al.: CATCH ME IF YOU CAN: CLOSER LOOK AT MALICIOUS CO-RESIDENCY ON THE CLOUD 565

set up, we receive one response from each of the two VMs
under consideration (the attack and the victim VM) per probe.
If the two VMs are on the same physical machine a delay
observed between the responses from the VMs is much less
than the probing period; unless (in rare cases) where the
physical machine load rapidly changes, these delays are of
the order of OS scheduling delays. Otherwise, much higher
variations are observed in the delays (because of different
routes and traffic on those routes). In order to perform the
comparisons, we normalize the observed values with respect to
the maximum observed response times (to eliminate temporal
variations in load across the paths taken by the probes).

We measure the round trip times (RTTs) continuously
(by instantiating connections separated by randomly chosen
periods) from an outside observer (attacker) to the two VMs in
question. We then perform a time series analysis to determine
whether the timing profiles observed with respect to the two
VMs are very similar. We call this test the “behavioral timing
test”.

To ensure that we can accurately compare the time profiles,
we instantiate the connections to the two VMs (almost)
simultaneously. To measure the RTT, we primarily rely on the
TCP handshake. We also use ICMP messages when applicable.
By collecting a long enough RTT trace, we can accurately
determine if the two VMs are on the same physical machine
or not. Further, we can deduce if the VMs are connected to the
same TOR (top of the rack) switch. The intuition is that if the
two VMs are co-located on the same physical machine, they
experience similar processing delays (which depends on the
workload of the machine). Indeed, as shown later (Table III),
the results of this test are fairly accurate as validated by
comparison with our ground truth.

Let �rtt(o, di) = [rtt(o, di, t1) . . . , rtt(o, di, tn)], denote
the two time series for the attack and victim VM. (i ∈ {1, 2},
where, the d1 is the attack VM and d2 is the victim VM); o
and n represent the observer and duration of the observation,
respectively. We use two commonly used metrics to measure
the distance between the two time series, viz., the Mean Square
Error (MSE) [29] and the Pearson Coefficient (PeC) [30].

The mean square error given by:

MSE(o, d1, d2) =
1
n

√
√
√
√

n∑

i=1

(rtt(o, d1, ti) − rtt(o, d2, ti))2

(1)

Here, we also measure the MSE relative to a time-shifted
versions of the the vector; this is to account for the fact that in
practice, the connections to the two VMs cannot be established
simultaneously (one is time shifted slightly with respect to the
other).

The PeC between the time series is given by,

PeC(o, d1, d2) =
COV (�rtt(o, d1), �rtt(o, d2))

σ(�rtt(o, d1)) × σ(�rtt(o, d2)).
(2)

COV is the covariance between the two time series.
In our experiments described in Section IV-D, the test

declares a success (the two VMs co-reside) if the MSE is
<0.15 and the PeC is ≥0.8. Note that ideally, if there is an

exact match between the time series, the MSE will be 0 and
the PeC will be 1; we choose thresholds that are close to these
ideal values.

Timing Based ECT With Multiple Observers: In this test, the
attacker uses multiple observers (from different vantage points)
and examines the RTTs between the observers and the VMs in
question (as in the previous test). The attacker only records the
minimum RTT observed between each observer and the target
VMs for a specific time span. These RTT values are quantized
to the nearest decile (i.e., a value of 46 is rounded to 50, while
a value of 41 is rounded to 40). A vector of these quantized
RTT values are constructed for both the attack and the victim
VM. For example, if there are three observers and ρj and ρ�j
are the quantized RTT values with respect to the attack and
the victim VMs at the jth observer, the vectors {ρ1, ρ2, ρ3}
and {ρ�1, ρ�2, ρ�3} are constructed. The similarity between these
vectors is now computed by means of a Hamming distance
type measure. The two VMs are considered to be on the same
physical machines, if their these distances coincide (similar to
the network triangulation [31]). If the two signatures are very
similar (but don’t exactly match) it is very likely that that the
VMs are on the same physical machine. (in our experiments
described in Section IV-D, we assume that they are similar if
the fraction of elements that match is ≥0.8). The accuracy of
the approach depends on the number of observers used and
the distribution of observers inside and outside the datacenter.
Our general observation is that the accuracy improves with
the number of observers, and the diversity in their locations.
While we could ensure the diversity of observers outside the
datacenter, we cannot control the locations of those within.
In an extreme case, the results commiserate with those of
the behavioral test (only one observer). As the diversity of
observers increase, we see that the accuracy improves (and the
variance is within 1% of the reported results). The accuracy
also improves as we increase the duration of the observations.
We call this test the “signature based timing test.”

ECT Based on RTT Timing Behaviors From Multiple Van-
tage Points: The principles of the first two timing tests
described above are used in conjunction to improve the accu-
racy of the co-residency determination. This also decreases
the time required to get accurate results. In brief, multiple
observers are again used; however, each observer applies the
first test on the behaviors of the RTTs (analyzes the similarity
between the time series) as opposed to using the minimum
RTT a signature (as in the second test). If from most (80%
or higher) vantage points, the behaviors of the time series
obtained with respect to the attack and victim VMs are deemed
similar, the attacker assumes that its process has successfully
co-resided with its victim. We call this test the “hybrid timing
test.”

D. Experimental Results

Next, we provide our experimental results on Amazon
EC2 with regards to (i) the accuracy and (ii) the time taken
for successful co-residency with the different side-channels to
verify co-residency.

Authorized licensed use limited to: Penn State University. Downloaded on April 28,2021 at 16:11:49 UTC from IEEE Xplore. Restrictions apply.

566 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 2, APRIL 2019

Fig. 1. Launch times over months.

Fig. 2. Termination times over months.

Fig. 3. Avg. launch and termination times over days.

Launching and Termination Times: Launch and termination
times are part of the overheads consumed by an attacker
while trying to achieve co-residency. They could differ from
datacenter to datacenter. Note that the attacker may have to try
different sizes of attack VMs to achieve co-residency since the
cloud providers placement policies may result in the placement
of VMs of different sizes on different physical machines (e.g.,
according to load) [32].

Fig. 1 shows the minimum, maximum and average
launch times over five months. The average launch time is
≈1.5 minutes. The termination times are longer in general
than launch times as shown in Fig 2. Fig 3. shows the
average launch and termination time over the day. The average
termination time is 2.5 minutes. Upon closer examination,
we find that VMs that are on a heavily loaded physical
machine (longer response times) take longer to terminate.
We also find that larger VMs take longer to terminate (see
Fig. 4); this is because the deallocation of resources takes
longer in such cases.

Hit Rate of ICTs: We next quantify the hit rates of the ICT
tests on Amazon’s EC2. This refers to the percentage of times
that the ICT test flags a success across all our experiments. We
conducted on average, 3 experiments per hour. As described
earlier, in each experiment we launch 20 attack VMs and
20 victim VMs. Table II shows the hit rates with the various
ICTs discussed earlier. The results show that the disk is shared
only 3% of the time. From among this 3%, we find that
approximately 86% were sharing the same physical machine

Fig. 4. Avg. launch and termination times for different VM sizes.
TABLE II

HIT RATES WITH DIFFERENT ICTS AND ECT (NA: NOT APPLICABLE)

TABLE III

SENSITIVITY AND SPECIFICITY WITH THE BEHAVIORAL TEST

TABLE IV

SENSITIVITY AND SPECIFICITY WITH THE SIGNATURE TEST

TABLE V

SENSITIVITY AND SPECIFICITY WITH THE HYBRID TEST

TABLE VI

SENSITIVITY AND SPECIFICITY WITH THE BUS BASED ECT

(the bus test was also a success). As shown, in approximately
21% of the cases the attack and victim VMs shared the same
physical machine. A significant percentage of these also shared
the same CPU (>90%); the LLC cache test was a success.
In only 9% of the cases an attack VM shared a core with a
victim VM (L1 cache test succeeded).

Accuracy of the ECTs: Next, we examine the accuracy of the
various ECTs described in the previous section. The results are
summarized in Tables III-VI. We report the results with 3 dif-
ferent services. Each service was tested for 5 consecutive days.
We approximately conducted 50 runs per day. We re-launch
the victim VMs every 10 runs, while the attacker VMs were
re-launched every run. We used the bus contention based ICT
to establish the ground truth; in other words, that test was

Authorized licensed use limited to: Penn State University. Downloaded on April 28,2021 at 16:11:49 UTC from IEEE Xplore. Restrictions apply.

ATYA et al.: CATCH ME IF YOU CAN: CLOSER LOOK AT MALICIOUS CO-RESIDENCY ON THE CLOUD 567

also conducted and the result we obtained was considered the
truth. This is because, first, the work in [13] shows that this
test has very high accuracy with regards to determining the
co-residency of two processes. Second, the bus test is the only
test for which we have both the ICT and ECT tests. Finally,
if the bus test is successful, as discussed above, it is very likely
that the LLC cache test will also be successful.

We examine the efficacy of each ECT by measuring the
number of true positives (TP), number of true negatives
(TN), number of false positives (FP) and number of false
negatives (FN). We compute the true positive rate (aka
sensitivity [33]) to be TP

TP+FN . Similarly, the true negative
rate (aka specificity [33]) is TN

FP+TN .
The results show that the bus based ECT and the hybrid tim-

ing test exhibit similar (very high) sensitivity and specificity.
They are both more accurate than behavioral and signature
based timing tests. Note however that designing the requests
for the bus contention based ECT is complex. It needs to
be tailored to the type of service running on the victim
VM. Furthermore, some services do perform heavy memory
transfers; if a victim VM hosts such a service, (e.g., ownCloud)
it is difficult for an adversary to successfully carry out a
bus based ECT. This demonstrates that for some workloads,
the bus contention ECT may not be effective; the hybrid timing
tests seem to work well with all the workloads we considered.

We notice that for the ownCloud service, the sensitivity
takes a hit with the hybrid timing test as compared to the
first two timing tests. This is because these results have to
do with observations in RTTs assoiated with transfers from
remote clients. If the remote access has greater variance in
the observed transfer times (which happens with increased
external/internal observers), this can cause the sensitivity to
dip. This only manifests itself with ownCloud because of the
large file sizes that are fetched. However, we see that the
dip is not substantial. For Taiga and MediaServer, where the
transfer sizes are much smaller, the variations do not cause
any decrease in sensitivity.

A Microscopic View: In Figs. 9 and 10, we show snapshots
of the normalized time series at a single observer (using
the hybrid timing based ECT), when we have a mismatch
and a match, respectively. As evident, with a match or hit,
the difference in the normalized response times obtained with
respect to the victim and the attack VM is much smaller than
0.1 for each sample. With a mismatch, this can be as high as
0.6. In the rare cases with false positives (the ICT yields a
mismatch), we find that the normalized RTT is slightly higher
(≈0.2 for some of the sampled points); this could be a result
of the two VMs being close to each other (same rack) but not
on the same physical machine.

Properly Configuring the ECT Tests: The work in [13]
discusses how to properly configure the parameters for an
effective bus contention ECT (we follow the same approach).
Instead we focus on determining how to appropriately
configure our new behavioral and signature based timing tests
in the next set of experiments. The results reported here are
from experiments done over 30 days; we perform 30 runs per
day.

Fig. 5. Accuracy vs the average time between RTT samples.

Fig. 6. The improvement in accuracy by increasing the number of samples.

Fig. 7. The improvement in accuracy as the number of observers increase.

Configuring the Behavioral Timing Test: We vary both the
total number of samples taken (to construct the time series)
and the average time between samples. As seen in Fig. 5,
an average period of 200 msec yields the highest accuracy
from among the values we considered. While this value could
change depending on the dynamics inside the cloud (how
often paths change etc.) we find that roughly choosing this
average time between probes is enough; slightly higher or
lower sampling rates do not cause significant degradations in
performance. Note here that since, the path from the observer
to the cloud provider remains fairly stable all the packets
experience similar delays on this part of the path; the delays
within the cloud are more dynamic. Fig. 6 shows the sensitivity
of the accuracy to the number of samples taken to form the
time series. We observe that going beyond 1000 samples yields
little improvement in the accuracy. With these values for the
average time between samples and the number of samples,
it takes around 200 seconds (3.5 minutes) to perform the
behavioral timing test. To decrease the false positives and
negatives for the test, the experiments are repeated thrice with
at least a 2 - 5 minute pause time, between the tests. Thus the
total time taken is between 15 and 26 minutes per attempt.

Configuring the Signature Based Timing Test: We vary the
number of observers considered while creating a signature.
As seen in Figs. 7–8, the accuracy does significantly improve
if we increase the number of observers above 15. Beyond

Authorized licensed use limited to: Penn State University. Downloaded on April 28,2021 at 16:11:49 UTC from IEEE Xplore. Restrictions apply.

568 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 2, APRIL 2019

Fig. 8. The impact of observation period on the accuracy.

Fig. 9. Time series snapshot of responses from attack and victim VMs upon
a miss.

Fig. 10. Time series snapshot of responses from attack and victim VMs
upon a hit.

this, the accuracy is pretty much stable and equal to 81%.
To remove fluctuations in RTTs resulting from traffic varia-
tions and intra-cloud dynamics (paths on which traffic is routed
may change dynamically [34]), we need a larger set of samples
in order to obtain accurate signatures. We find that typically
we need to collect observations over 20 minutes for each run.
However, using the hybrid test where we essentially perform
a behavioral RTT test at each observer improves the accuracy
without the need for a longer observation period; conducting
the same behavioral test as before at 16 observers, we find
that the accuracy improves to ≈86% (the time taken is less
than 20 mins).

Experimentally Computed Times for Co-Residency: In
Table VII we present the experimentally determined, average
times with the different ECTs. The times shown include the (a)
the launch time, (b) the time taken to determine co-residency
(for the tests described) and (c) the termination time. We
also show the percentile times taken for co-residency; for
example, the column that shows the 85th percentile depicts
the maximum time taken by the most effective (lowest time)
85% of the tests. We note that the average times in all cases
are about 2 hours. We find that 75% of the tests took more than
72-93 minutes depending on the ECT in use. More than 95%

TABLE VII

AVERAGE AND PERCENTILES (MINS) OF TIMES
TAKEN FOR CO-RESIDENCY

took >20 minutes. The minimum times taken to successfully
determine co-residency could be small depending on the test
(as seen above). However, the attacker has to really get lucky
and must be able to colocate with the targeted victim VM with
very few launches of his VMs. We discuss risk assessment
and various policies on VM migration (when should a VM be
migrated to minimize the risk of long co-residency with an
attacker?) in the Section VI.

V. MODELING CO-RESIDENCY TIMES

Prior to successfully co-residing with a victim process,
an attacker may have to iteratively launch attack processes,
check for co-residency (perform the co-residency tests), and
upon failure, terminate the processes and relaunch the set of
processes. Here, we assume that the attacker has a single
account on the cloud, and goes through this procedure until
he is able to successfully co-reside with the victim. The time
taken for successful co-residency depends on (i) the number
of VMs the victim has on the cloud (a web provider may
have multiple re plicas of his web server running [35]) (ii) the
number of attack processes launched in each iteration and (iii)
the cloud provider’s policy in placing a customer’s VMs. In our
experiments described earlier, we assumed that the attacker is
able to launch 20 VMs in an iteration and the victim has
20 processes running on EC2. Note that Amazon’s EC2 limits
the number of VMs one can launch with a single account to
20. The provider’s policy on VM placement here is unknown.

It is hard to consider all possible cases and perform exper-
iments to characterize the times taken for establishing co-
residency. Thus, we seek to develop a simple model that
allows us to estimate this time, based on the number of attack
and victim VMs; we show that while this model is not very
precise, it provides good enough (rough) estimates that can
be used to guide migration decisions. To keep things simple,
we assume only t2-micro instances which run on subset of
the machines in the region under consideration. As shown
later, we do so for a meaningful comparison of the results
with the model with that via experiments (constrained by the
degree of experimentation we could perform). We expect that
(as the model and experiments indicate), the results can be
extrapolated for a larger number of machines.

If u is the victim, and the probability of successfully co-
residing an attack process with any of the m replica VMs the
victim is running, in a given attempt, is pc(u), the expected
time for successful co-residency is given by:

ECR[pc(u)] = (tl + td + tc)
J∑

j=1

j(1 − pc(u))j−1pc(u) (3)

Authorized licensed use limited to: Penn State University. Downloaded on April 28,2021 at 16:11:49 UTC from IEEE Xplore. Restrictions apply.

ATYA et al.: CATCH ME IF YOU CAN: CLOSER LOOK AT MALICIOUS CO-RESIDENCY ON THE CLOUD 569

where, J is the maximum number of attempts the attacker
makes at co-residency. Since we assume a presistent attacker,
we set J = ∞. With this it is easy to see that:

ECR[pc(u)] = (tl + td + tc)
1

pc(u)
(4)

Let pc(u, m) be the probability of successful co-residency
with the mth victim VM replica in an attempt and tc is
the time taken to perform the co-residency test. We assume
that a victim’s VM replica does not share the same physical
machine with another replica; conservatively, this maximizes
the attacker’s chances since he has a better chance of hitting
a victim VM replica in each attempt. When a user creates
an instance on EC2, it is guaranteed a certain CPU resource
based on the type of instance (e.g., a certain long term CPU
allocation for a small instance is guaranteed). Furthermore,
it is well known that EC2 physical machines are not operating
at near 100% utilization; in fact, every server typically runs at
fairly low utilizations [36]. As a consequence, we argue that
the likelihood of any of the machines being equally likely to be
chosen is a realistic assumption. In fact, our experiments did
not hinge on any assumption, and the results seem to roughly
correspond to what our model predicts.

With the above assumption, the probability of co-residing
an attack process with any of the replica VMs is given by:

pc(u) =
∑

m

pc(u, m). (5)

It is hard to determine pc(u) without knowing the placement
policy of the provider. If one assumes a completely random
placement policy (meaning that a physical machine is chosen
at random for placement), this probability is pc(u, m) = 1

N ,
where, N is the number of available physical machines.

If a plurality of the attacker’s VMs are placed on the same
physical machine, then he is at an inherent disadvantage (the
number of physical machines on which he can check for
co-residency in that attempt, is reduced). Thus, we conser-
vatively (to minimize the co-residency time) assume that the
attack VMs are always placed on different machines (as with
the victim VMs). This policy is not far from what is likely to
happen in reality (e.g., see [32]). For example, a provider may
place the VMs of a customer on different physical machines
for reliability (robustness to machine failures). If we assume
that such a policy is in place, it is easy to see that one can
conservatively bound the probability pc(u, m) by:

pc(u, m) =
1
N +

1
N − 1

· · · + 1
N −A ≤ A

N −A (6)

where, A is the number of attacker VMs. Thus, if there are L
victim VM replicas, pc(u) = L×A

N−A .
Evaluating Our Model for Co-Residency Time Estimation:

Next, we compare the co-residency estimates using our model,
with that from experiments on EC2. Figs. 11 and 12 depict the
times taken to co-reside with any of the victim VMs, where the
victim has deployed 8 and 4 VMs respectively. The number
of attacker VMs are varied (for the experiments, we have two
accounts and can have up to 40 VMs in total). The value of
N can be estimated based on the number of IP addresses
made available on the provider’s launch interface and the

Fig. 11. Average time to co-reside with any of 8 victim VMs.

Fig. 12. Average time to co-reside with any of 4 victim VMs.

maximum number of VMs that can be hosted per machine; we
use N = 500 since EC2 provides around 4000 available IP
addresses and the Xen hypervisor allows 8 VMs per physical
machine. The model takes as input, the average (possibly
offline) measurements of tl, td and tc with one attack VM.
We see that with different number of attack VMs, we are able
to get relative good (but rough) estimates of the co-residency
times with the model. This shows that the model can be useful
in predicting how long attackers with differing capabilities will
take, to successfully co-reside with a victim.

VI. DETERMINING WHEN TO MIGRATE

Next, we seek to develop guidelines on when a VM should
be migrated. Towards this, we first propose a set of indicators
that capture “the risk of a VM co-residing with an adversar-
ial VM.” Note that without knowing the capabilities of an
adversary it is hard to quantify risk; thus, the risk indicators
are based on what can be directly measured either by the
customer (user) or the provider.

A. Risk Indicators

To assess risk, we consider a set of measurable indicators,
the variations in which implicitly indicate an increase in risk.
These indicators are: (i) The time that a victim VM spends on
a physical machine relative to the time taken by an adversary
to successfully achieve co-residency. As evident, the longer the
time spent on the same physical machine, the more probable
it is that an adversary has successfully co-resided on the same
machine. (ii) The level of utilization of the memory bus on
the physical host machine. This is the same side channel used
by an attacker using the bus contention ECT to ascertain
co-residency. From the perspective of the victim, a heavy
utilization of the bus can be the result of the bus contention
based ECT. It is quite possible that such heavy utilization
is because of benign congestion; we argue that even then,
migration would help in improving performance. Note that
with the timing based ECTs that we discover, the second risk

Authorized licensed use limited to: Penn State University. Downloaded on April 28,2021 at 16:11:49 UTC from IEEE Xplore. Restrictions apply.

570 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 2, APRIL 2019

indicator is not useful; in other words, migration has to be
based on the time spent by the victim VM on the physical
machine.

Time Indicator: The first very simple risk indicator is the
time for which the VM has resided on the current physical
machine and is represented by τ = t − ti where, t is the
current time, ti is the time at which the VM was first placed
on that physical machine. If one assumes that the timing based
ECTs are used, the time indicator is the only metric that can
be used to guide migration decisions.

Heavy Memory Bus Utilization Indicator: A heavy utiliza-
tion of the memory bus may indicate that the bus contention
based ECT is underway. We sample the utilization of the bus
periodically at intervals ts. If this utilization, on machine m
is greater than a threshold for a specific sample (say j), we set
a boolean variable associated with that resource S(m, j) to 1
(it is set to 0 otherwise). A composite risk indicator V (m, K)
is obtained by jointly considering say K consecutive samples.
Specifically,

V (m, K) =
k+K∑

j=k

S(m, j), (7)

for any k. If this risk indicator yields a value of K , then all
K consecutive samples indicated that the bus experienced a
high utilization; this would indicate that the VM is at risk of
being subjected to a bus contention ECT.

Threshold for Determining Heavy Bus Contention: Typi-
cally, for specific platforms, there are specifications for the
maximum values associated with this heavy utilization indica-
tor. For example, for SDRAM, the specification says that the
maximum memory access time is 70 - 150 ns depending on the
vendor [37]. One could set the threshold to be a certain fraction
of the specified maximum value (e.g., the threshold could be
0.8 of the maximum specified time). Clearly, the higher the
threshold, the less likely it is that an alert is issued (leading
to a low true positive rate with regards to detecting a threat);
on the other hand, setting too low a threshold would incur
a higher cost (because of possibly frequent VM migrations).
Thus, this threshold could be set based on the user’s risk
averseness and the costs she is willing to bear. In our work,
we conduct an extensive empirical experiments and we set the
threshold to a pre-defined value (Th = 0.8) so as to keep the
false positive rate below 1%. Similar thresholds are used with
the bus contention ECT [13]. We assume that this threshold
will be fixed and other parameters are tuned to determine when
VMs are to be migrated as discussed next.

B. Migration Guidelines

Next, we try to develop guidelines for migration based on
the risk indicators. We assume that the provider does not
unilaterally take decisions to migrate a VM (since some users
may be unwilling to experience downtimes towards reducing
risk). Instead, it monitors the bus utilization at some preset
time intervals ts (not controlled by the user) and based on user
preferences (with regards to certain parameters as discussed
later), migrates her VMs.

Fig. 13. Migration guidelines.

Our guidelines for performing migrations are characterized
using the flow chart in Fig. 13. A user’s virtual machine enters
a safe state when it is placed on a physical machine. The
value of S(m, jts) on that physical machine m, is checked
by the provider at each sampling instance of jts (sampling is
done every ts time units i.e., j = 1, 2, . . .). If this value is
1, the VM enters the monitor state. If the VM remains in the
monitoring state for K consecutive monitoring instances, this
implies that V (m, K) = K and and it should be migrated.
The machine returns to the safe state if at any point while in
the monitoring state, the the value of S(m, (j + l)ts) (where
l < K) becomes zero (i.e., the utilization of the bus gets
back below the chosen threshold). If the VM remains on the
physical machine (regardless of whether how long it spends
in the safe or the monitoring state) for τ seconds a decision
is made to migrate. We wish to point out here, that there is
an implicit assumption that Kts << τ .

For ease of discussion, as mentioned earlier, let us assume
that the threshold Th is fixed. The two parameters that define
the user’s cost and risk averseness are K and τ . If the
values chosen for these parameters are too small, the number
of false positives with respect to detecting a co-residency
threat increases; unnecessary high migration costs are expe-
rienced. On the other hand, if the values chosen are too high,
an attacker can succeed in its attempt to co-reside and do so for
long periods. In our experiments reported in Section VII we
choose empirical values that provide a good trade-off between
the cost and risk averseness (as measured offline). It is hard
to come up with optimal values for these parameters; thus,
we empirically measure this (as a provider would do) and
provide a recommendation with regards to values that provide
reasonable cost versus security trade-offs.

Costs: In the best case, the user does not migrate for a
period of τ seconds. If the size of her VM is X MB, her
bandwidth expense in this case will be 8X

τ Mbps. She will
experience a downtime every τ seconds. In the worst case,
she will continuously observe bus contention, and will migrate
every Kts seconds. Here, the bandwidth cost will be 8X

Kts
; she

will experience a downtime every Kts seconds. In practice,
if there is no attack or if there is a timing based ECT, the
former (best case) will hold true. If there is a bus-contention

Authorized licensed use limited to: Penn State University. Downloaded on April 28,2021 at 16:11:49 UTC from IEEE Xplore. Restrictions apply.

ATYA et al.: CATCH ME IF YOU CAN: CLOSER LOOK AT MALICIOUS CO-RESIDENCY ON THE CLOUD 571

based ECT, the times between the migration instances will be
somewhere in between (and not excluding) the best and the
worst case scenarios.

VII. EVALUATIONS

In this section, we experimentally evaluate the VM migra-
tion in terms of (a) reducing the times for which an attack
VM co-resides with a victim and (b) the incurred costs;
the migrations are based on the guidelines put together in
Section VI-B. Unfortunately, Amazon EC2 or other cloud
providers do not yet offer a service wherein a user can control
(or request) when VM migrations are performed; therefore,
our evaluations are on an in house private cloud.

Evaluation Scenarios: We consider the two best ECTs
that can be used by the attacker (the hybrid timing based
ECT and the bus contention ECT) to ascertain co-residency.
We consider the two risk indicators separately and jointly,
to invoke migrations.

Our Private Cloud Testbed: Our private cloud consists of
13 Servers (11 DELL and 2 HP), two Cisco 20-Port gigabit
switches and 9 DELL hosts. It can host up to 140 micro VMs
or 70 small VMs, simultaneously (equivalent to t2.micro and
t2.small on EC2, respectively). We run the KVM hypervisor
on top of Ubuntu 14.04. On the VMs, we run Centos 7 and
Ubuntu 15 images. We deploy Apache CloudStack [6] to
provision the VMs. We perform live migration by using
virt-manager (KVM+QEMU). We host Taiga, ownCloud and
Mediaserver on the VMs and use 9 hosts to initiate requests
to the deployed VMs (background traffic).

Although our testbed is much smaller than commercial
clouds, it suffices for a proof-of-concept implementation and
showcasing the effectiveness of the VM migration based on
our guidelines. On commercial clouds, it is our hope that
VM migration will be even more effective than what we show
because of scale. However, we acknowledge that our smaller
scale cloud might not capture factors that exist in a real cloud
setting (such as route changes due to intra-cloud dynamics);
a detailed study of these at scale will be considered in the
future.

Evaluation Results: Next, we present our results. Migration
costs are averages over 24 hour periods unless specified other-
wise. In the first set of results we consider the reactive attacker
model described in Section III; this is what the attacker can do
to-day on commercial clouds. Subsequently we consider the
cases where it can make choices of whether or not to migrate
(static and periodic attackers).

Evaluations With a Reactive Attacker: First, we present our
evaluations with a reactive attacker.

Migration Based on Time of Residency: First, we consider
migration based on only the time of residency (value of τ).
Here, we do not trigger alerts from the heavy bus contention
utilization indicator. We consider the case where the hybrid
timing based ECT strategy is used by an reactive attacker.3

We migrate a VM if the time spent on a physical machine is
equal to τ = β × f(TCR), where f is some monotonically

3Since the bus contention utilization indicator is not used, the results are
very similar when the attacker used the bus contention ECT.

TABLE VIII

AVERAGE COST AND ATTACK EFFICIENCY WITH PROACTIVE
MIGRATION (1 VICTIM VM AND 1 ATTACK VMS)

TABLE IX

AVERAGE COST AND ATTACK EFFICIENCY WITH PROACTIVE

MIGRATION (1 VICTIM VM, 2 ATTACK VMS)

increasing function of the time taken by the attacker to
successfully co-reside with the victim. β determines how
conservative we are in migrating a VM; a smaller of β invokes
more frequent migrations and thus, incurs higher cost. For
simplicity, we consider that the function f provides the mean
value of TCR (based on the values from from Section IV we
set f(TCR) = 105). Two values of β, which correspond to
inter-migration times τ of approximately 60 (β ≈ 0.6) and
120 mins (β ≈ 1.1), are considered. The lower the β value
indicates high user averseness to risk, while the higher the β
means a lower risk averseness (and that cost is more important
to the owner of the victim VM). The victim VMs are either
Taiga, Mediaserver and ownCloud.

We conduct the experiments over a period of 15 days
(5 days per type of VM). The cost incurred by the victim
is measured in terms of (a) the downtime that it experiences
and (b) the bandwidth consumed. The bandwidth consumed
corresponds to the memory state (in MB) transferred during
the live migration of the victim VM. To capture the security
provided, we compute the ratio of the time for which the attack
VM co-resides with the victim VM to the total duration of the
experiment; we call this the attack efficiency. We have two
victim VMs. We populate the machines with 35 additional
VMs which are randomly placed, in order to reflect a real oper-
ational setting (the cloud has a utilization of approximately
30%). We consider two and four attacker VMs (i.e., 1X and 2X
the number of victim VMs). In this experiment we assume an
reactive attacker who performs the hybrid timing based ECT
to ascertain co-residency; with this approach, he can re-launch
his VMs 1.7 times an hour, on average.

We summarize the costs (downtimes and the traf-
fic generated by migration) and the attack efficiency in
Tables VIII and IX with different numbers of attacker VMs.
As expected, the traffic volume is doubled if the migration
periodicity doubles. The average downtimes are also doubled.
However, the attacker efficiency is less than 1% if the VMs are
migrated every hour, compared to 5% if the period is increased
to 2 hours. This is because the drop in the attacker success
rate is not linear with increased migration frequency (it is
better). We see that the costs in terms of downtimes (<2 s) and
bandwidth (of the order of MB over 24 hours) are reasonable.

Migration Based on Heavy Memory Utilization: In our next
experiments, we assume that the bus contention ECT is used
by an reactive attacker. We only migrate a VM if the heavy
bus contention risk indicator is triggered. Note here that if

Authorized licensed use limited to: Penn State University. Downloaded on April 28,2021 at 16:11:49 UTC from IEEE Xplore. Restrictions apply.

572 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 2, APRIL 2019

TABLE X

AVERAGE COST AND ATTACK EFFICIENCY FOR MIGRATION BASED
ON HEAVY MEMORY UTILIZATION (VARYING VICTIM VMS)

TABLE XI

AVERAGE COST AND ATTACK EFFICIENCY FOR MIGRATION BASED

ON BOTH RESIDENCE TIME AND HEAVY MEMORY UTILIZATION

(ATTACK VMS = 2X VICTIM VMS)

the attacker uses the hybrid timing based ECT, the victim’s
VM will never be migrated in this case. We set the access time
threshold to (100ns) (about 0.8 of the maximum specified time
on our platforms). The value of K is set to 10. First, we set
τ = ∞, i.e., we only use the heavy memory access time
risk indicator as a trigger. Table X summarizes the results.
The costs of migration decrease significantly compared to the
case where migration is proactively performed based on the
time indicator (recall results in Tables VIII and IX). However,
since migration is only performed upon detecting long memory
access times, the attacker is able to co-reside with the victim
VM for slightly longer periods (in quite a few cases the heavy
utilization is not consistently above the chosen threshold);
thus, an increase in the attack efficiency is observed.

Jointly Considering the Time and Heavy Utilization Indica-
tors: Next, we perform proactive migration once every τ = 2
hours (high β); in addition we perform reactive migration
if there is an indication of heavy memory usage i.e., the
heavy bus memory bus utilization indicator issues an alert.
The reactive attacker employs the bus contention based ECT.
Note here that if the attacker were to use the hybrid timing
based ECT, the heavy utilization indicator will never kick in
and the results will be identical to that of where only the
timing based indicator is used to trigger migrations; we have
verified that this is the case. The results are in Table XI.
We see that there are slight increases in the costs in terms
of downtimes and bandwidth compared to the case with only
proactive migrations with the same β (see Table IX, row 2).
This is because, additional migrations are now invoked on top
of proactive migrations; however, the risk in terms of attack
efficiency is reduced by a factor of nearly 3. This suggests that
the effectiveness of our migration guidelines; combining the
indicators provides better protection with a modest increase in
cost (for the same β).

Sampling Overheads of Memory Access Utilization: Fig. 14
shows the overhead of monitoring memory access times with
different sampling rates. This overhead depends on factors
such as the type of application, the allocated resources, and the
workload. We perform experiments with ownCloud, varying
the interval between the memory probes, between 0.25 and
64 minutes. Each probe test lasts for 15 seconds. Approxi-
mately 7% of the CPU cycles were consumed even with the

Fig. 14. The CPU utilization costs with memory probing.

Fig. 15. The average response times with and without memory probes.

smallest probing interval. We perform a similar experiment
with Taiga. In Fig. 15, we show the average response times to
web requests while varying traffic load, with a probing interval
of 0.25 minutes. We see that the response times are relatively
unaffected. This demonstrates that clients can monitor the risk
indicators with relatively very little impact on performance in
the cases of the applications we consider.

Performance With Different Attacker Models: In the next set
of experiments, we consider the three different attacker models
that we described in Section III viz., the reactive attacker,
the periodic attacker and the static attacker. We recall that
an reactive attacker terminates and relaunches its VMs if a
co-residency test fails. A periodic attacker simply chooses a
period for migration (like a victim VM who migrates based on
the timing indicator). A static attacker simply stays put on a
single physical machine and awaits the arrival or return of the
victim VM (i.e., chooses not to be migrated). As mentioned
in Section III, a periodic (static) attacker continuously checks
for co-residency since it is unaware of when the victim VM is
placed on its physical machine. Implicit in these experiments
is the assumption that migrations are allowed on the cloud for
all users (the attacker as well as the victim); the users make
decisions on whether to migrate or not. We first consider the
scenario where the attacker uses the hybrid timing based ECT.
Later we consider the bus contention ECT.

The Attacker Uses the Hybrid Timing Based ECT: In
Figs. 16–19, we show the average time taken by an attacker
to co-reside with its victim VM for different values of τ ;
we assume that the periodic attacker migrates its VM at the
same rate as the victim. The figure captures how often an
attacker co-resides with the victim (but not how long he stays
with the victim). We see that frequent migrations cause the
victim to come back to the same physical machine occupied
by a static or periodic attack VM often. Infrequent migrations
would cause the inter-coresidency times to increase. In the
case of an reactive attacker, the frequent migrations hurt the
time taken to get a co-residency hit (as one would expect).

Authorized licensed use limited to: Penn State University. Downloaded on April 28,2021 at 16:11:49 UTC from IEEE Xplore. Restrictions apply.

ATYA et al.: CATCH ME IF YOU CAN: CLOSER LOOK AT MALICIOUS CO-RESIDENCY ON THE CLOUD 573

Fig. 16. Time taken by an attacker to co-reside with a victim VM (inter
co-residency time).

Fig. 17. Probability that the co-residency time is >t for an reactive attacker;
attacker uses hybrid timing based ECT.

Reducing the time taken to co-reside with the victim does
not necessarily translate to a longer co-residency time. Let us
represent the time for which the attack VM co-resides with
the victim be represented by Wa. In the next three plots,
we present the complementary CDF of Wa, i.e., the probability
that Wa > t, for the three attacker models, respectively.
We immediately see that frequent migrations translate to lower
overall co-residency times in all cases. The reactive attacker
is hurt the most by frequent migrations. With τ = 1/2
hour, or 1 hour, the migrations occur even before it can
successfully carry out a co-residency attempt in many cases.
Combined with the fact the fact that its average time to achieve
co-residency is high in these regimes (as seen in Fig. 16), it is
the least effective strategy for the attacker. The static attacker
gains time since it does not have to terminate and relaunch his
process; we find that if a victim VM, is placed on his machine,
the attacker stays with it for the period of the migration (which
is to the attacker’s advantage). The periodic attacker does
better than the reactive attacker; however, it does not do as
well as the static attacker since, once if the victim co-resides
with it (moves to the physical machine it is occupying), it may
be migrated itself. In summary, the above results suggest that
if users are allowed to migrate their VMs, staying put on the
same physical machine is the best strategy for an attacker.
Performing frequent migrations (to the extent permitted by
cost) is the best strategy for the victim.

The Attacker Uses the Bus Contention ECT: In
Figs. 20, 21 and 22, we show the complementary CDF
of Wa when the attacker uses the bus contention ECT. Our
migration guidelines are in place. The value of K is 10.
We see that regardless of the attacker strategy, a migration
is invoked after Kts = 5 mins with high probability since
the high memory bus utilizaiton indicator is triggered. Thus,

Fig. 18. Probability that the co-residency time > t for a static attacker;
attacker uses hybrid timing based ECT.

Fig. 19. Probability that the co-residency time > t for a periodic attacker;
attacker uses hybrid timing based ECT.

Fig. 20. Probability that the co-residency time is >t for an reactive attacker;
attacker uses bus contention ECT.

Fig. 21. Probability that the co-residency time > t for a static attacker;
attacker uses bus contention ECT.

the co-residency times are minimal. The value of τ has little
impact since migrations are triggered in response to bus
contention. The co-residency times are now much smaller
from the attacker perspective, compared to the case where
it used the bus contention based ECT. The results not only
demonstrate the efficacy of our migration guidelines with
regards to minimizing the co-residency periods again, but
also demonstrate that the bus contention ECT is much
less effective than our hybrid timing based ECT from the
perspective of the attacker.

Authorized licensed use limited to: Penn State University. Downloaded on April 28,2021 at 16:11:49 UTC from IEEE Xplore. Restrictions apply.

574 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 2, APRIL 2019

Fig. 22. Probability that the co-residency time > t for a periodic attacker;
attacker uses bus contention ECT.

Fig. 23. A rough comparison of the bandwidth costs with Nomad.

Fig. 24. Comparing bandwidth costs with Nomad.

Bandwidth Savings by Accounting for Time Taken for Co-
Residency: Nomad [5], implicitly, triggers migrations only
based on the time taken for a successful information leakage
attack. By ignoring the time taken to achieve co-residency,
Nomad invokes migrations more frequently than necessary.
In Fig. 24 we compare the bandwidth costs with Nomad
with that of our approach. We consider three side channel
attacks targeting information leakage in conjunction (after
co-residency) viz., Last Level cache (LLC) [26], Dedup [38]
and PrimeTrig [2]. On average, these attacks take 27, 45,
341 mins to be successful respectively. Nomad is assumed
to invoke a migration after a duration just less than what it
takes for such an attack to succeed. With our approach we
migrate proactively with τ equal to the the sum of the times
taken for co-residency and the information leakage attack. The
results show that, by not accounting for the time taken for co-
residency, Nomad increases the bandwidth costs by 30 - 150%
compared to our approach.

VIII. DISCUSSION: IMPLICATIONS ON SIDE CHANNEL

ATTACKS TARGETING INFORMATION LEAKAGE

In our work, the primary metric of interest was the time
for which an adversarial VM co-resides with a victim VM

TABLE XII

AVERAGE TIMES (MINS) TO CARRY OUT SIDE CHANNEL ATTACKS

(we tried to minimize this time subject to some constraints on
performance costs). Reducing the co-residency time directly
minimizes the potency of other side channel attacks that target
information leakage; for such attacks to succeed an attacker
will need to co-reside with the victim for the duration of the
attack. In this section, we provide a discussion on how our
work applies if one assumes that such attacks are carried out
after co-residency is achieved; note that we only provide rough
characterizations of the benefits relating to such attacks here,
and a more systematic study is left for the future.

There are numerous side-channel attacks studied in the liter-
ature (see Section II). In Table XII, we list three representative
prior attacks and the average times taken to carry out the
attack successfully (to achieve a desired extent of information
leakage) as reported in those papers; each side channel attack
targets a shared resource and uses a side-channel relating
to that resource. The details can be found in the respective
citations. The two things we wish to point out are the fol-
lowing. First, these attacks assume that an attack VM has
already co-resided with a victim VM prior to lauching the
attack. However, the attacker will first need to co-reside with
the victim and this can take significant time, as discussed in
Section IV. Second, the times taken for these “information
leakage” attacks could be shorter than the time taken by an
attacker to achieve co-residency on today’s cloud platforms
(comparing Table VII with Table XII). Thus, if one were to use
VM migration as a countermeasure against such side-channel
attacks which target information leakage, one could potentially
use less frequent migrations if one were to account for the
time taken to achieve co-residency in addition to launching
the information leakage attack (since achieving co-residency
is a pre-requisite for the latter attack).

Bandwidth Savings by Accounting for Time Taken for
Co-Residency: Nomad [5], implicitly, only considers the time
taken for a successful information leakage attack, to invoke
migrations. By ignoring the time taken to achieve co-residency,
Nomad invokes migrations more frequently than necessary.
To compute a rough estimate of the additional costs due to
more frequent migrations with Nomad, we consider the three
information leakage attacks listed in Table XII and assume that
they take the times reported to succeed. Nomad is assumed to
invoke a migration just prior to the attack succeeding. With our
approach, we migrate proactively with a value of τ equal to the
sum of the average time taken for co-residency (105 mins) and
the time taken for the information leakage attack as reported
in the papers listed in Table XII. In Figs. 24 and 25, with
this setup, we compare the bandwidth costs with Nomad
with that of our migration approach. The results show that,
by not accounting for the time taken for co-residency, Nomad
increases the bandwidth costs by 30 - 150% compared to

Authorized licensed use limited to: Penn State University. Downloaded on April 28,2021 at 16:11:49 UTC from IEEE Xplore. Restrictions apply.

ATYA et al.: CATCH ME IF YOU CAN: CLOSER LOOK AT MALICIOUS CO-RESIDENCY ON THE CLOUD 575

our approach. A more holistic implementation (with both
co-residency and an information leakage attack) to validate
the gains in real scenarios, is left for future work.

Decrease in Information Leakage Rates: It is evident that
VM migration can decrease information leakage rates (also
shown in [5]). It has been shown that without any migration,
after co-residing with a victim, an attacker can extract a
secret key of length 2048 bits in 27 minutes (corresponding
to a leakage rate of 1.26 bps). Our experiments show fre-
quent VM migrations would require an attacker to perform
co-residency repeatedly to get this information. Let us assume
a strong attacker who can resume his attack once he again
co-resides with the victim. With proactive migrations our
experiments show that the attacker efficiency is ≈1%. This
means that he spends about 24 × 60 × 0.01 ≈ 14 minutes
per day with the victim; thus, it now takes nearly two days
to extract a secret key of the same length (a leakage rate of
5.7 × 10−6 bps).

Note that the effectiveness of proactive migrations (as com-
puted above) are limited by our set up; we have only 13 phys-
ical machines. On commercial clouds, where the number of
machines could be much higher, the process will be even
more effective. In addition, if the attacker cannot immediately
resume his attack after he co-resides with a victim VM at a
later time, the information leakage rate will be further reduced;
in the extreme case if the attacker has to restart his attack,
the information cannot be retrieved.

Generality Across Cloud Platforms and Instance Hetero-
geneity: We perform experiments on Amazon EC2 since it is
the most popular cloud platform today [39]. Our belief is that
our results and model extend to other cloud platforms. This is
on the basis that most cloud providers operate their servers at
very low utilizations as discussed in [36]. We acknowledge
that the model does not account for heterogeneity in the types
of instances that may be placed on the platform. We leave a
detailed study of such heterogeneity to future work (given that
it will be a non-trivial extension to this study).

IX. CONCLUSIONS

In this paper, we consider an attacker who seeks to
co-reside his VM with a victim VM on the cloud. Achieving
such co-residency could allow the attacker to launch various
side-channel attacks that target information leakage. Our goals
are to (a) get a comprehensive understanding of the ways
and the effectiveness with which an attacker can achieve
co-residency and (b) develop migration guidelines for the vic-
tim VM that can help minimize its co-residency time with an
attacker VM, given constraints on performance costs. Towards
achieving (a) we consider both previous side-channel attacks
and design our own (more effective) attacks towards ascer-
taining co-residency with a victim, and evaluate the process
of co-residency extensively on Amazon’s EC2. Based on these
experiments, we formulate a set of migration guidelines and
evaluate these extensively with different attacker strategies on
our in house cloud. We show that our guidelines can limit
the attacker efficiency (fraction of the time it co-resides with
the victim) to about 1% with very modest bandwidth and

downtime costs (MB of bandwidth and seconds of downtime
per day, per VM migrated).

ACKNOWLEDGEMENTS

The authors would like to thank the associate editor
Prof. Y. Zhang and the anonymous reviewers for their insight-
ful comments that have helped us significantly improve the
paper. The views and conclusions contained in this document
are those of the authors, and should not be interpreted as
representing the official policies, either expressed or implied,
of the Army Research Laboratory or the U.S. Government.
The U.S. Government is authorized to reproduce and distribute
reprints for Government purposes, notwithstanding any copy-
right notation hereon.

REFERENCES

[1] Z. Wu, Z. Xu, and H. Wang, “Whispers in the hyper-space: High-speed
covert channel attacks in the cloud,” in Proc. USENIX Secur. Symp.,
2012, pp. 159–173.

[2] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, you, get
off of my cloud: Exploring information leakage in third-party compute
clouds,” in Proc. 16th ACM Conf. Comput. Commun. Secur. (CCS), 2009,
pp. 199–212.

[3] Y. Xu et al., “An exploration of l2 cache covert channels in virtualized
environments,” in Proc. 3rd ACM Workshop Cloud Comput. Secur.
Workshop, 2011, pp. 29–40.

[4] A. L. García, “The evolution of the cloud: The work, progress and
outlook of cloud infrastructure,” Ph.D. dissertation, Massachusetts Inst.
Technol., Cambridge, MA, USA, 2015.

[5] S.-J. Moon, V. Sekar, and M. K. Reiter, “Nomad: Mitigating arbitrary
cloud side channels via provider-assisted migration,” in Proc. 22nd ACM
SIGSAC Conf. Comput. Commun. Secur. (CCS), 2015, pp. 1595–1606.

[6] Apache CloudStack. (2016). Open Source Cloud Computing. [Online].
Available: https://goo.gl/TT2S3R

[7] A. Aviram, S. Hu, B. Ford, and R. Gummadi, “Determinating timing
channels in compute clouds,” in Proc. ACM Workshop Cloud Comput.
Secur. Workshop, 2010, pp. 103–108.

[8] R. Hund, C. Willems, and T. Holz, “Practical timing side channel
attacks against kernel space ASLR,” in Proc. IEEE Symp. Secur. Privacy,
May 2013, pp. 191–205.

[9] G. Irazoqui, M. S. Inci, T. Eisenbarth, and B. Sunar, “Lucky 13
strikes back,” in Proc. 10th ACM Symp. Inf., Comput. Commun. Secur.,
Apr. 2015, pp. 85–96.

[10] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Cross-VM side
channels and their use to extract private keys,” in Proc. ACM Conf.
Comput. Commun. Secur. (CCS), Oct. 2012, pp. 305–316.

[11] V. Varadarajan, T. Kooburat, B. Farley, T. Ristenpart, and M. M. Swift,
“Resource-freeing attacks: Improve your cloud performance (at
your neighbor’s expense),” in Proc. ACM Conf. Comput. Commun.
Secur. (CCS), Oct. 2012, pp. 281–292.

[12] Y. Yarom and K. Falkner, “FLUSH+RELOAD: A high resolution, low
noise, L3 cache side-channel attack,” in Proc. USENIX Secur. Symp.,
2014, pp. 719–732.

[13] V. Varadarajan, Y. Zhang, T. Ristenpart, and M. M. Swift, “A placement
vulnerability study in multi-tenant public clouds,” in Proc. USENIX
Secur. Symp., 2015, pp. 913–928.

[14] Z. Xu, H. Wang, and Z. Wu, “A measurement study on co-residence
threat inside the cloud,” in Proc. USENIX Secur. Symp., Aug. 2015,
pp. 929–944.

[15] Y. Zhang, A. Juels, A. Oprea, and M. K. Reiter, “HomeAlone:
Co-residency detection in the cloud via side-channel analysis,” in Proc.
IEEE Symp. Secur. Privacy, May 2011, pp. 313–328.

[16] D. X. Song, D. Wagner, and X. Tian, “Timing analysis of keystrokes
and timing attacks on SSH,” in Proc. USENIX Secur. Symp., Aug. 2001,
pp. 1–17.

[17] N. Hopper, E. Y. Vasserman, and E. Chan-Tin, “How much anonymity
does network latency leak?” ACM Trans. Inf. Syst. Secur., vol. 13, no. 2,
p. 13, 2010.

[18] S. J. Murdoch and G. Danezis, “Low-cost traffic analysis of Tor,” in
Proc. IEEE Symp. Secur. Privacy, May 2005, pp. 183–195.

Authorized licensed use limited to: Penn State University. Downloaded on April 28,2021 at 16:11:49 UTC from IEEE Xplore. Restrictions apply.

576 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 2, APRIL 2019

[19] G. D. Bissias, M. Liberatore, D. Jensen, and B. N. Levine, “Privacy
vulnerabilities in encrypted HTTP streams,” in Proc. Int. Workshop
Privacy Enhancing Technol. (PET), Cavtat, Croatia. Berlin, Germany:
Springer-Verlag, 2006, pp. 1–11. doi: 10.1007/11767831_1.

[20] H. Raj, R. Nathuji, A. Singh, and P. England, “Resource management
for isolation enhanced cloud services,” in Proc. ACM Workshop Cloud
Comput. Secur., 2009, pp. 77–84.

[21] P. Li, D. Gao, and M. K. Reiter, “Stopwatch: A cloud architecture for
timing channel mitigation,” ACM Trans. Inf. Syst. Secur., vol. 17, no. 2,
p. 8, 2014.

[22] A. Rane, C. Lin, and M. Tiwari, “Raccoon: Closing digital side-channels
through obfuscated execution,” in Proc. USENIX Secur. Symp., 2015,
pp. 431–446.

[23] S. Crane, A. Homescu, S. Brunthaler, P. Larsen, and M. Franz, “Thwart-
ing cache side-channel attacks through dynamic software diversity,” in
Proc. NDSS, 2015, pp. 8–11.

[24] T. Tahr. (2014). Ubuntu 14.04.3 LTS. [Online]. Available: http://goo.gl/
mN2Ben

[25] Amazon EC2. (2016). T2 Instance Requirements. [Online]. Available:
http://goo.gl/GWMxxI

[26] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache
side-channel attacks are practical,” in Proc. IEEE Symp. Secur. Privacy,
May 2015, pp. 605–622.

[27] C. Percival, “Cache missing for fun and profit,” in Proc. BSDCan,
Ottawa, ON, Canada, 2005.

[28] F. Kargl, J. Maier, and M. Weber, “Protecting Web servers from
distributed denial of service attacks,” in Proc. 10th Int. Conf. World
Wide Web, 2001, pp. 514–524.

[29] N. Levinson, “The Wiener RMS (root mean square) error criterion in
filter design and prediction,” J. Math. Phys., vol. 25, no. 4, pp. 261–278,
1947.

[30] P. Ahlgren, B. Jarneving, and R. Rousseau, “Requirements for a cocita-
tion similarity measure, with special reference to Pearson’s correlation
coefficient,” J. Amer. Soc. Inf. Sci. Technol., vol. 54, no. 6, pp. 550–560,
2003.

[31] B. Rao and L. Minakakis, “Evolution of mobile location-based services,”
Commun. ACM, vol. 46, no. 12, pp. 61–65, 2003.

[32] Amazon EC2. (2011). AWS Security White Paper. [Online]. Available:
http://goo.gl/GK0sz8

[33] T. Fawcett, “An introduction to ROC analysis,” Pattern Recognit. Lett.,
vol. 27, no. 8, pp. 861–874, 2006.

[34] F. Hao, T. V. Lakshman, S. Mukherjee, and H. Song, “Enhancing
dynamic cloud-based services using network virtualization,” in Proc. 1st
ACM Workshop Virtualized Infrastruct. Syst. Archit., 2009, pp. 37–44.

[35] F. Chen, K. Guo, J. Lin, and T. La Porta, “Intra-cloud lightning: Building
CDNs in the cloud,” in Proc. IEEE INFOCOM, Mar. 2012, pp. 433–441.

[36] Jeff Barr from Amazon AWS. (2017). Cloud Computing, Servier Utiliza-
tion, and the Environment. [Online]. Available: https://goo.gl/xt7Kw2

[37] B. Jacob, S. Ng, and D. Wang, Memory Systems: Cache, DRAM, Disk.
San Mateo, CA, USA: Morgan Kaufmann, 2010.

[38] D. Harnik, B. Pinkas, and A. Shulman-Peleg, “Side channels in cloud
services: Deduplication in cloud storage,” IEEE Security Privacy, vol. 8,
no. 6, pp. 40–47, Nov./Dec. 2010.

[39] Quicbooks. (2017). The Most Popular Cloud Platforms. [Online]. Avail-
able: https://goo.gl/3L6nR6

Ahmed Osama Fathy Atya received the Ph.D.
degree in computer science from the University of
California at Riverside, the B.Sc. degree in com-
puter engineering from the Faculty of Engineering,
Cairo University, and the M.Sc. degree in wireless
technology from Nile University, Cairo, Egypt. His
areas of interest are networks and security, with the
specific emphasis on cloud computing and physical
layer security.

Zhiyun Qian is currently an Associate Professor
with the Computer Science and Engineering Depart-
ment, University of California at Riverside. He has
a broad interest in system/network security, with
the general theme of vulnerability discovery and
analysis, system building, and measurement. He has
a well-rounded understanding of the computer sys-
tems in general (both design and implementation),
including architecture, operating systems, software,
network protocols, and their interactions. He is a
recipient of the NSF CAREER Award for 2017.

Srikanth V. Krishnamurthy (F’12) received the
Ph.D. degree in electrical and computer engineering
from the University of California at San Diego
in 1997. From 1998 to 2000, he was a Research Staff
Scientist at the Information Sciences Laboratory,
HRL Laboratories, LLC, Malibu, CA, USA. He is
currently a Professor of computer science with the
University of California at Riverside. His research
interests are primarily in wireless networks and secu-
rity. He is a recipient of the NSF CAREER Award
from ANI in 2003. From 2007 to 2009, he was the
Editor-in-Chief of the ACM MC2R.

Thomas La Porta (F’02) received the B.S.E.E.
and M.S.E.E. degrees from The Cooper Union,
New York, NY, USA, and the Ph.D. degree in
electrical engineering from Columbia University,
New York, NY, USA. He joined Pennsylvania State
University (Penn State) in 2002. He was the found-
ing Director of the Institute of Networking and
Security Research, Penn State. Prior to joining Penn
State, he was with Bell Laboratories for 17 years.
He was the Director of the Mobile Networking
Research Department, Bell Laboratories, Lucent

Technologies, where he led various projects in wireless and mobile network-
ing. He is currently the Director of the School of Electrical Engineering and
Computer Science, Penn State. He is also an Evan Pugh Professor and the
William E. Leonhard Chair Professor. He is a co-inventor of 39 patents.
He is a Bell Labs Fellow. He received two Thomas Alva Edison Patent
Awards. He was the founding Editor-in-Chief of the IEEE TRANSACTIONS ON

MOBILE COMPUTING. He served as the Editor-in-Chief of the IEEE Personal
Communications Magazine. He was the Director of Magazines for the IEEE
Communications Society and was on its Board of Governors for three years.

Patrick McDaniel (F’15) served as the Program
Manager and Lead Scientist for the Army Research
Laboratory’s Cyber-Security Collaborative Research
Alliance from 2013 to 2018. He is currently
the William L. Weiss Professor of information
and communications technology and the Direc-
tor of the School of Electrical Engineering and
Computer Science, Institute for Networking and
Security Research, Pennsylvania State University
(Penn State). He is also the Director of the NSF
Frontier Center for Trustworthy Machine Learning.

His research centrally focuses on a wide range of topics in computer and
network security and technical public policy. Prior to joining Penn State
in 2004, he was a Senior Research Staff Member at AT&T Labs-Research.
He is a Fellow of the ACM.

Lisa M. Marvel received the B.S.E. degree from
the University of Pittsburgh, Pittsburgh, PA, USA,
in 1992, and the M.S. and Ph.D. degrees in elec-
trical engineering from the University of Delaware,
Newark, DE, USA, in 1996 and 1999, respec-
tively. She worked as a Research Scientist at the
U.S. Army Research Laboratory, Aberdeen Proving
Ground, MD, USA. Her research interests include
steganography, digital communications, and image
and signal processing. She received the General
Electric Fellowship for graduate studies in 1993,

and the 1994 George W. Laird Fellowship at the College of Engineering,
University of Delaware.

Authorized licensed use limited to: Penn State University. Downloaded on April 28,2021 at 16:11:49 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1007/11767831_1

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

