
Application Transiency: Towards a Fair
Trade of Personal Information

for Application Services

Raquel Alvarez(B), Jake Levenson, Ryan Sheatsley, and Patrick McDaniel

Pennsylvania State University, State College, PA 16802, USA
{rva5120,jml6407,rms5643}@psu.edu, mcdaniel@cse.psu.edu,

http://siis.cse.psu.edu/

Abstract. Smartphone users are offered a plethora of applications pro-
viding services, such as games and entertainment. In 2018, 94% of appli-
cations on Google Play were advertised as “free”. However, many of
these applications obtain undefined amounts of personal information
from unaware users. In this paper, we introduce transiency : a privacy-
enhancing feature that prevents applications from running unless explic-
itly opened by the user. Transient applications can only collect sensitive
user information while they are being used, and remain disabled oth-
erwise. We show that a transient app would not be able to detect a
sensitive user activity, such as a daily commute to work, unless it was
used during the activity. We define characteristics of transient applica-
tions and find that, of the top 100 free apps on Google Play, 88 could be
made transient. By allowing the user to decide when to allow an app to
collect their data, we move towards a fair trade of personal information
for application services.

Keywords: Mobile privacy · Android

1 Introduction

In 2018, over 2.6 million apps were available on the Google Play market, of which
94% were advertised as “free” [42]. Users can request a ride from apps like Uber
or Lyft, share pictures on Facebook, or send money to a friend through Venmo.
While these applications are advertised as free, they present a hidden cost: pri-
vacy. The effects of smartphones on user privacy have been widely studied since
their commercialization in 2007 [5,7,8,12,28–30,32–37]. Recently, the private
preferences and habits of millions of Facebook users were misused for political
purposes [39]. Many studies also show that users do care about their privacy
[14,15,20]. A study by Oates et al. found that users have mental models of what
privacy means to them [23]. However, platforms can fail to provide them with
intuitive options to control application behaviors [14,16,22]. Many users think of

Supported by NSF.

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Published by Springer Nature Switzerland AG 2019. All Rights Reserved

S. Chen et al. (Eds.): SecureComm 2019, LNICST 305, pp. 47–66, 2019.

https://doi.org/10.1007/978-3-030-37231-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-37231-6_3&domain=pdf
https://doi.org/10.1007/978-3-030-37231-6_3


48 R. Alvarez et al.

Fig. 1. Application transiency gives users control over when an application has access
to sensitive information. A more fair trade is achieved since the user gets to decide
whether their personal information is worth the privacy cost for the application service.
We propose a new model in which the intuition of applications no longer running after
being closed is realized.

closing physical barriers, such as doors and curtains, as an analogy to enabling
privacy. By allowing all applications to constantly run in the background even
after they are closed, smartphone application models don’t adhere to common
user privacy expectations.

Android controls user privacy through permissions that protect sensitive
device resources. While permissions prevent applications from accessing arbi-
trary resources, studies have shown that permission models do not match user
expectations on when and why sensitive data is being accessed [4,25]. Here, the
authors showed that the context in which a resource is accessed matters, and
that users prefer to deny access to resources that do not contribute to the func-
tionality of the app. This led to recent work on helping users make educated
decisions when granting permissions [10,11,13,24]. Recently, with Android 9.0,
apps are no longer allowed background access to the camera and microphone.
However, other sensitive resources (e.g., text messages) are still available to
applications at any time, given that they were granted the permission once.
Some studies have addressed this by sandboxing applications [8,9]. For exam-
ple, Narain et al. fed crafted fake location data to protect the real location of
users. In this paper, we show that smartphones can be designed to provide a fair
trade of personal information in exchange for application services. We introduce
transiency : a privacy-enhancing feature that prevents applications from running
unless explicitly opened by the user. Transiency ensures that applications can
only collect sensitive information when expected, as shown in Fig. 1. Therefore,
users can now decide if application services are worth revealing their personal
information for. We make the following contributions:

– We define transiency and efficiently integrate it into Android. This enforces
a fair trade of personal information for application services.

– We define criteria for transient applications, and find that 88 of the top 100
free apps on Google Play (total of 105 ranked apps) should be treated as
transient.



Application Transiency: Towards a Fair Trade of Personal Information 49

– We provide a case study to show the impact of treating applications as tran-
sient in terms of data collection. We find that we can prevent apps from
detecting activity patterns by treating them as transient.

2 Background

In this section, we define technical details of Android relevant to the implemen-
tation of transiency.

2.1 Android OS Overview

The Android operating system is built on top of the Linux kernel, which is
used to interact with the hardware functionality of smartphone devices, such as
cameras and microphones. The main executable programs on Android devices
are applications, which are developed in Java and built using the Application
Framework. For more information about the architecture details of applications,
refer to [1,44,46–48]. Below we describe in more detail some of the relevant
architecture components to enforce application transiency.

Application Execution Flow. Applications exist in the system as Android
Packages (APKs). APKs contain the necessary information to be executed by
the Android Runtime (ART) [46]. In order for an application to be executed
correctly, Android expects APKs to be available and readable by the system.

Background Processes. Android applications are designed to off-load large
tasks that may potentially block the user interface (UI) to be run in the back-
ground. Logging the current location of the user to a server is an example of a
task that would be executed in the background. In 2018, Votipka et al. performed
an extensive user study in which they gained insights about what users think
of background processes [14]. The results showed that users tend to understand
the need for background processes while they interact with the UI. However,
users were less comfortable with background processes not tied to foreground
activities.

Permissions. Android uses permissions to protect applications from accessing
device resources. Permissions are divided into two categories: normal and dan-
gerous. Normal permissions are granted by default, but dangerous permissions
must be granted by the user. Dangerous permissions protect access to sensitive
resources, such as camera, microphone, text messages, call logs, calendar, etc.

Opening and Closing Applications. In order to open an application, Android
defines a specific type of application that displays the available options to the
user: launcher. The launcher app can be opened by pressing the “Home” button
on the mobile device. Once open, a user can close an application by removing
it from the “Recents Screen”, as suggested by Google Support [51] (see Fig. 2).
However, it is worth noting that closing an application does not prevent the appli-
cation from running in the background and exercising the previously authorized
access to sensitive resources.



50 R. Alvarez et al.

Fig. 2. Users can open apps by pressing the “Home” button and invoking the launcher
app. To close applications, the user can swipe it off the screen. While closing an applica-
tion is the terminology used by Google, the behavior is not equivalent to the application
no longer running. Android allows applications to separate their user interfaces into
tasks, which the user can terminate. However, while tasks can be terminated by the
user, the application is still allowed to run on the background.

2.2 Sensitive Resource Access Control

Android protects access to valuable sensitive resources using access control poli-
cies [2,3]. The goal of these policies is to prevent applications from compro-
mising user privacy. These policies ensure that applications only access sensitive
resources allowed by the user. On the context of access control, applications (sub-
jects) may or may not be authorized to access (action) sensitive system resources
(objects). Android handles authentication and authorization as follows:

Authentication. At installation time, applications are given User IDs (UIDs)
and are treated as users of the system. UIDs give applications an identity, which
is used by Android to identify the application’s set of authorized access.

Authorization. Android provides an interface for applications to prompt the
user for access to sensitive resources. As mentioned previously, dangerous per-
missions must be granted by the user for an application to be able to access
a resource such as GPS data. Android keeps track of the authorized access to
sensitive resources for each application. Once the user grants permission, the
application is free to exercise this right both when running in the foreground
and background. However, as of Android 9.0, applications cannot access the
microphone and camera resources while running in the background [54].

While permissions serve as a policy that allows users to explicitly grant access
to sensitive resources, research has shown that this model places an unrealistic
expectation on users [4,25]. Applications don’t always provide clear privacy poli-
cies justifying the requested access [28], which presents an information asymme-
try problem. By granting access to a sensitive resource, the user is not necessarily



Application Transiency: Towards a Fair Trade of Personal Information 51

giving their consent since they were not fully disclosed the information neces-
sary to make that decision. This inequality inspired the solution presented in
this work.

3 Application Transiency Design Goals

In order to implement transiency, we define security, privacy, and usability
requirements.

– Security Goals. We trust that the OS faithfully implements and enforces
application transiency. We consider any other party that may tamper with
the transient state of an application to be a threat.

– Privacy Goals. We enforce that applications are not capable of running
unless they were explicitly opened by the user. This guarantees that applica-
tions cannot access personal information unless they are being used.

– Usability Goals. Enforcing transiency should be intuitive and seamless to
the user. This guarantees user privacy when expected, without affecting user
experience.

4 Application Transiency Implementation

We expand the sensitive resource access control policy of permissions to provide
an intuitive interface where users can control their privacy. We propose a new
authorization protocol, in which users grant/revoke applications the right to
execute by opening/closing them. We address the goals described in the previous
section in our implementation of application transiency. Figure 3 provides an
implementation overview.

4.1 Enforcing Transiency

To enforce transiency, the user must be the only one who can execute an applica-
tion. Otherwise, a closed application may attempt to execute code that accesses
sensitive user data. We solve this problem by leveraging access control used by
the OS to protect files on Android. Specifically, we revoke read access to APKs
if they are not explicitly open (shown in Fig. 3, step 13). Once revoked, if the
ART unit attempts to read the APK for any other reason aside from user intent,
it will fail. Conversely, when a user opens an application, our implementation
will restore the read permission before the ART attempts to read the APK file,
as shown in Fig. 3, steps 1–6.

Transiency is implemented at the OS level, as a system library only accessible
to applications/processes with a system UID (which is 0). Transiency can be
realized in the form of a “private-mode” system launcher. The system launcher,
when running on private-mode, uses the “swipping off the Recents screen” event
as the cue to stop the application from running. A user could select “private-
mode” from the Settings app (which is where most users expect to find interfaces



52 R. Alvarez et al.

Fig. 3. An overview of the implementation of application transiency. Steps in blue, 1–9,
correspond to the event of a user turning privacy off by opening the application. Steps
in burgundy, 10–13, correspond to the event of a user turning privacy on by closing the
application. I corresponds to the intent sent by the launcher to start an application,
W corresponds to the Worker object specified by the application to perform a task
in the background, and BP corresponds to a background process being scheduled by
the Work Manager API for the requesting application [53]. In this diagram, we depict
an application that, when opened by a user, requests a background process to perform
some task and then loads the activity to interact with the user. Once the user is finished
interacting with the application, they can close it by swiping it off the screen. Opening
the application causes the Transiency Manager to restore the READ permission of
the APK file to the system. Closing the application causes the Transiency Manager to
revoke the READ permission to prevent execution. (Color figure online)

to change/enable/disable features, as pointed out by Lei et al.). In addition,
malicious 3rd party applications cannot leverage the library functionality to
perform attacks such as DoS (since each app is given a UID depending on the
key used to sign the application, so only apps signed with manufacturer/system
keys are given the UID 0).

This solution is efficient because revoking and restoring the read permission
from the APK file causes a negligible overhead. In addition, enforcing transiency
does not require a re-design of the system architecture to support it.



Application Transiency: Towards a Fair Trade of Personal Information 53

4.2 Making Transiency Intuitive

To meet the usability requirements defined in the previous section, we designed
our implementation of transiency to meet user expectations of privacy. As
pointed out by Oates et al. in 2018, for most users, regardless of demograph-
ics and technical experience, barriers are seen as the most common conceptual
metaphor of privacy. Many related privacy with closing doors, locks, or curtains.
This study served as an inspiration on our design to find a mapping from the
mental models of what privacy means to users, to features in Android that can
make this a reality.

Closing Doors. One of the common occurrences for most users was turning on
privacy by closing a door or a curtain. Inspired by this, we equate closing an
application to enabling privacy. Closing an application on Android refers to the
action of selecting the “Recents” UI and swiping the application off of the screen
[51,52]. However, closing an application does not mean it is no longer running.
Applications have the option to schedule background processes that will cause
them to run again, unknown to the user. Therefore, the current application
model does not meet the potential user expectations of privacy. For this reason,
we chose the event of closing an application as the defining moment of turning on
privacy. By closing the application, the user is guaranteed that the application
will not run. This prevents applications from reading sensitive information when
the user is not aware.

Opening Doors. Analogous to closing doors, we use opening doors to dis-
able privacy. Android devices have a launcher application that is invoked when
the “Home” button is pressed. This launcher application displays all installed
and launchable applications on the system. A user can then touch one of the
application icons to open it. Once an application is open, it can access sensitive
information.

By enforcing transiency through opening and closing applications, we give
the user an intuitive interface to better manage their privacy. This guides users
towards a fair trade of sensitive information for application services.

4.3 Applying Transiency to Popular Applications

In this section, we analyze the behavior of popular applications when they are
treated as transient and non-transient on the current Android architecture. We
generalize these behaviors and define three main application functionalities that
would require non-transiency.

Instagram is an application that displays user-generated content and allows
users to communicate through comments and private messages. When treated as
transient, Instagram no longer sends real-time notifications to the user. However,
transiency does not prevent Instagram from displaying user-generated content.
We therefore recommend that Instagram be treated as transient.



54 R. Alvarez et al.

Subway Surfers is a game in which users can connect with other friends to form
a network. When treated as transient, Subway Surfers no longer sends real-time
notifications, but the user can still play the game as expected. Since transiency
does not prevent the user from playing the game, we recommend that Subway
Surfers be treated as transient.

Spotify offers users a music streaming platform. Treating Spotify as transient
does not affect core functionality of the app. Therefore, we can recommend
treating Spotify as transient.

Uber is a ride-sharing service app connecting riders with drivers. Treating Uber
as transient does not affect the functionality of the app, since users can keep the
application open for the duration of the ride. Therefore, we recommend treating
Uber as transient.

While the user actively engages with the applications above, there exist other
types of applications that passively interact with the user. We describe examples
of those below:

Facebook Messenger is an app that enables users to communicate via phone
calls, video calls and messages. When treated as transient, Facebook Messenger
only notifies users in real-time when the app is open. However, keeping Face-
book Messenger open at all times is not ideal for performance. Therefore, we
recommend treating this application as non-transient.

Gmail provides an interface to read and send emails to other users. Gmail
also loses the ability to notify the user in real-time when treated as transient.
Therefore, we recommend treating Gmail as non-transient. Likewise, instant
messaging applications have the same non-transiency requirements.

Step Counter gives a count of the approximate number of steps taken by the
user. The app cannot use the sensors on the phone to constantly measure the
amount of steps taken by the user in real-time unless the application is open.
Therefore, we recommend treating the app as non-transient.

Clean Master offers users tools to clean files, a notification with a button to
remove all other notifications, and other features such as taking a picture with
the front-camera when the login passcode to unlock the screen is entered wrong.
When treated as transient, this application cannot perform some of its core
functionality, like taking pictures of the user that entered the wrong passcode,
if the app is closed. We therefore recommend treating Clean Master as non-
transient.

After analyzing these applications, we can generalize their behaviors to
broadly describe non-transiency classification guidelines.

Recommended Classification Guidelines. Based on our analysis of the
behavior of popular applications when they are treated as transient, we define
three main functionalities to generalize when applications should not be treated
as transient:



Application Transiency: Towards a Fair Trade of Personal Information 55

A. The application provides real-time communication such as calling,
messaging or receiving time-sensitive information. This functionality
enables real-time communication and exchange of information, such as Gmail.
A user expects text messages to arrive at a reasonable time after the sender sent
them, which requires the application to have real-time access to the network to
retrieve messages intended for the user.

B. The application requires real-time access to sensors to collect infor-
mation and report it to the user. This includes applications with function-
ality that depends on real-time information collected by device sensors, such as
the Step Counter app. An application that reports the number of steps taken by
the user depends on real-time information measured by device sensors. The user
expects to see an accurate number of steps when they open the app, therefore
the application cannot be transient.

C. The application depends on real-time system state or other applica-
tions to provide its functionality. Some applications may need to be aware
of system events to function. For example, the Clean Master app.

While it is possible to analyze applications manually to determine their clas-
sification, it can be a time consuming task given that Google Play had a total
of 2.6 million available applications in December 2018 [42]. We therefore explore
methods to automate the process in the next section.

Automating Classification. To simplify the task of classifying apps, we
explored using Google Play categories to recommend what applications should
be transient and non-transient. To do this, we looked for categories on Google
Play that would match the description of each of our A-C categories based on
functionality. Below are our categories mapped to Google Play categories:

A - Communication: Applications in the Communication category depend on
real-time delivery of content to the user. Some of these applications include What-
sApp and Facebook Messenger. Therefore, we mapped Communication to A.

B - Health & Fitness: Some applications in the Health & Fitness category
depend on reading sensors that measure physical activities of a user, which makes
this a non-transient category. An examples of these apps is Step Counter.

C - Tools: Applications in this category depend on real-time sensor and system
information to report to the user. Analyzing current popular applications in the
Tools category, we found that most applications were related to changing system
settings, such as WiFi.

We selected three categories where each covered one of the three cases in
which transiency would affect the primary functionality of an application. We
evaluate the accuracy of this automated classification method by comparing it
to the manual classification of the top 100 free apps on Google Play, which is
described in Sect. 5.2.



56 R. Alvarez et al.

4.4 Android Implementation: Transiency Launcher

To test our design, we develop a system launcher that implements application
transiency.1 We design the launcher to test the performance and usability of
treating applications as transient on the current Android architecture. Figure 4
shows an overview of the architecture of this launcher.

UI. Our transiency launcher has a simple main activity that displays the list
of installed and launchable applications on the system. Each entry on the list
corresponds to an application, and the user can select an entry from the list to
open the application selected. The launcher is invoked when the user presses the
“Home” button.

Backend. Our launcher has a database that keeps track of the installed appli-
cations and their transient/non-transient classification. For testing purposes, we
manually saved a list of names of applications treated as non-transient, which
was decided following the criteria described in Sect. 4.3. When the user wants to
open an application treated as transient, the launcher executes chmod through
a shell to change the permissions of the application’s APK to be readable by
the system. The launcher then sends an intent to start the main activity of
the selected application. If the user chooses to open a non-transient application,

Fig. 4. Overview of the architecture of the transiency launcher. This launcher uses
chmod to revoke/restore read permissions of the APK file to control when applications
can collect user information. The Transiency Manager API can be used by our launcher
to enable/disable the applications.

1 Source code: https://github.com/rva5120/TransientLauncher.

https://github.com/rva5120/TransientLauncher


Application Transiency: Towards a Fair Trade of Personal Information 57

the launcher sends the intent directly, as the APK permissions are not modi-
fied for non-transient applications. When the user long presses an entry to close
an application, the launcher will execute chmod through a shell to change the
permissions of the application’s APK to no longer be readable by the system.

5 Evaluation

In this section, we will evaluate the classification and characterization of appli-
cations currently available on the market.

5.1 Characterization of Market Applications

We now evaluate the concept of application transiency by applying it to the top
100 free apps on Google Play. We analyzed these applications manually, and
classified them according to the criteria defined in Sect. 4.3.

Classification Statistics. After manual classification, the top 100 free apps on
Google Play (total of 105 apps) consisted of 88 transient and 17 non-transient,
see Fig. 5.

Fig. 5. Manual classification of transient/non-transient applications of the top 100 free
apps on Google Play (total of 105 ranked apps), as of February 11th of 2019.

Characterization of Transient Applications. We find that over 50% of tran-
sient applications belong to the Games Google Play category, as shown in Fig. 6
(left). Our criteria led to all games being classified as transient. All games request
the INTERNET permission, over 17% request the ACCESS FINE LOCATION
permission, and over 12% request the RECORD AUDIO permission, see Fig. 7
(left). As we will see in Sect. 6, applications that request the INTERNET per-
mission can also approximate the location of the device, therefore, most games
can approximate location as well. By treating gaming applications as transient,
we prevent them from recording audio in the background (if the device is run-
ning Android 8.0 and below) and collecting location data constantly when the
user is not expecting it.



58 R. Alvarez et al.

Transient applications in other categories also requested CAMERA and READ
or WRITE EXTERNAL STORAGE permissions, which allows applications to
take pictures in the background (for devices running Android 8.0 and below) and
accessing pictures and other files. It is also worth noting that applications like Net-
flix and Facebook request the Activity Recognition permission. When these apps
are not treated as transient, they can collect information about the user’s physi-
cal activity. In addition, Facebook also requests the ACCESS FINE LOCATION
permission, which would allow the app to map certain routines such as commonly
walked paths or commonly driven roads. However, if we treat apps like Facebook
as transient, we can prevent the association of physical activity data with its corre-
sponding user profile. Linking this kind of sensitive data together can pose physical
dangers to users, as shown by [27].

Characterization of Non-transient Applications. During our analysis, we
found that only 17 apps needed to be treated as non-transient. Out of the total
17, 5 belong to the Communication category (as shown in Fig. 6 (right)). This was
not surprising, since applications in the Communication category are expected
to need real-time access to network resources to allow users to communicate in
real-time.

Non-transient applications also requested the INTERNET permission, and
over 88% of them request READ and WRITE EXTERNAL STORAGE (see
Fig. 7 (right)). We find that most applications also request ACCESS FINE
LOCATION and CAMERA. While these are expected based on the functional-
ity provided by the applications, we also find that both Antivirus Free 2019 and

Fig. 6. Manual classification of applications grouped by Google Play category. Left:
number of transient applications in each category, with Games being the category with
the most transient apps with 47 (53.4% of all transient apps). Right: number of non-
transient applications in each category, with Communications being the category with
most non-transient apps with 5 (29.4% of all non-transient apps).



Application Transiency: Towards a Fair Trade of Personal Information 59

Super Cleaner requested access to the Activity Recognition API. This seems
unusual, as a user may not expect for an antivirus application to need their
physical activity to perform its functionality.

5.2 Classification Through Google Play Categories

Classifying apps using Google Play categories yields an accuracy of 88.57%,
where 93 out of 105 apps were classified correctly compared to our manual clas-
sification. Our automatic classification method is less accurate when classifying
applications that were manually labeled as non-transient. As expected, some
applications place themselves under other categories. For example, TextNow,
which enables communication among users, is categorized as Social. This may
be caused by the fact that very popular applications like Facebook are in the
Social category, so TextNow may be seen by more users and be more likely to get
downloaded if it is in the Social category. However, since we label Social to be a
transient category, communication apps that choose to be in the Social category
will get misclassified and lose their non-transient privileges. Other communi-
cation apps, like Tinder, are also misclassified. Tinder is placed in the Dating
category, which is expected since it enables communication between users with
the purpose of dating.

Other examples of misclassified non-transient apps include IN Launcher, Bit-
moji, Super Speed Cleaner and Antivirus Free 2019. Based on functionality, we
would consider these apps to be Tools, which would grant them the privilege of

Fig. 7. Number of applications that request dangerous permissions, the INTERNET
permission, and the Activity Recognition API permission of the top 100 free apps on
Google Play. On the left, we see that all transient applications request the INTERNET
permission, and over 25% of them request GPS location information. On the right, we
see that all non-transient applications are likely to request INTERNET and location
permissions as well.



60 R. Alvarez et al.

being non-transient. However, they categorize themselves as Entertainment (for
IN Launcher and Bitmoji) and Productivity (for Speed Cleaner and Antivirus
Free 2019).

5.3 Implementation Performance

There is no visual delay when opening an application through a regular launcher
vs our transiency launcher, which incurres an overhead of 0.02 ms. This per-
formance overhead, which is added by the extra instructions executed to
revoke/restore read permissions of the APK file, is negligible.

Fig. 8. Overview of the architecture of the Metis app. This app provides a user inter-
face in which users can read weekly tutorials to learn about computer security. How-
ever, in the background, Metis is performing some data collection to learn more about
your daily patterns, such as where you work, and when and how you get there. Metis
only needs the INTERNET and ACTIVITY RECOGNITION permissions, which are
granted by default, to achieve its data collection goals. This makes Metis a good can-
didate to show that transiency is necessary to prevent apps from collecting data when
users are not expecting it.



Application Transiency: Towards a Fair Trade of Personal Information 61

6 Case Study: Measuring Impact of Transiency on Data
Collection

To show the kind of impact that treating applications as transient would have
on sensitive data collection, we develop the Metis app. Figure 8 shows the overall
architecture of Metis.2

6.1 Metis, the Knowledge Sharing App

Metis is an application that gives users a weekly article about computer security
topics. The Metis UI is a simple webview object that displays the contents of
a webpage hosted on a Github repository. The app displays a blog-style article
with content to read. While looking like an innocent educational app in the
foreground, Metis performs sensitive data collection in the background. The data
collection strategy is inspired by the recent work of Chatterjee et al., in which
they studied market applications that contribute to intimate partner violence.
We focus on finding device resources that would reveal sensitive information
without the user knowing or expecting it. We find that the INTERNET and the
ACTIVITY RECOGNITION permissions are good candidates for our purpose.

INTERNET. Metis, since it must request a webpage from Github to display
its contents, needs to request the INTERNET permission. We find that we could
approximate the user’s location by connecting to a geo-locating website, such as
Ipdata.co [40]. In addition to an approximate location, Ipdata.co reveals other
potentially sensitive information: whether the user is on WiFi/cellular network,
and the organization providing the IP. The figure below shows the information
given by querying the API of Ipdata.co:

ACTIVITY RECOGNITION. We use the approximate location information
and combine it with the information available from the Activity Recognition API
[49]. By requesting the normal ACTIVITY RECOGNITION permission, we are
able to setup Metis to receive physical activity changes of the user. For example,
if the user starts walking or driving, Metis will receive a broadcast. This allows
us to recognize patterns of driving to and from work, for example.

2 Source code: https://github.com/rva5120/Metis v2.

https://github.com/rva5120/Metis_v2


62 R. Alvarez et al.

6.2 Data Collection: Transient vs. Non-transient

We compare the amount of data collected by Metis when it is treated as transient
vs. non-transient.

Experiment. We run Metis on a rooted device with the transiency launcher
described in Sect. 4.4 installed. We install two versions of Metis: Metis-T (treated
as a transient application), and Metis-NT (treated as a non-transient applica-
tion). We run this experiment for 1 day. Starting around 9 AM, we opened both
applications. A few seconds later, we close both applications. Then, around 10:20
AM, we open both applications and leave them open. Below are the results cap-
tured until 12:30 PM by both apps.

Fig. 9. Results of running Metis-NT. Fig. 10. Results of running Metis-T.

Metis-NT Results. The non-transient version of Metis is able to capture that
we possibly commuted to work in the morning around 9:20 AM, which took
around 10 min (see Fig. 9). It was detected that we walked for another 20 min,
although during the experiment we walked for about 8 min. However, Metis-
NT may not have received the “transition to STILL broadcast” until 9:50, so
it records that we walked for longer than we actually did. Metis-NT also ran a
background process around 12:24 PM where it recorded the geo-location received
by Ipdata.co. In this case, Metis-NT detected that we were on a Pennsylvania
State University network in University Park, PA which was the correct City,
Region and University during our experiment.

Metis-T Results. Metis-T, on the other hand, is unable to detect the drive to
work in the morning (see Fig. 10). It was only able to detect the walking activity
around 12 because we left the app open after 10:20 AM.

Transiency has an impact over when Metis is able to collect sensitive infor-
mation. By preventing Metis from running after being closed, we are able to
preserve the privacy of an event that was not intended for Metis to detect. Also,
transiency can have a major impact on protecting users by treating applications
found by [27] as transient.

7 Discussion

By implementing transiency, we learn that most applications do not need the
privilege of running constantly to provide their applications services. To pre-
vent their execution while closed, we also explore the idea of installing and

http://Ipdata.co


Application Transiency: Towards a Fair Trade of Personal Information 63

uninstalling applications. Installing an application every time the user opens it
safely meets the privacy requirements, since the application is not able to exe-
cute code. However, it added too much overhead to the overall user experience.
Also, uninstalling apps required users to interact with the application as if it
was the first time they opened it. For example, a user would have to login every
time they opened the app, which may cause an inconvenience. Therefore, we
discarded this idea.

One of the main limitations of transiency for the current Android implemen-
tation is the inability to support notifications. In the future, it would be worth
exploring what modifications can be made to the notifications API to be able to
support transient notifications. Transient notifications would give applications
the ability to ask the user for permission to run for a clearly specified purpose,
implemented by a fine-grained API that does not allow the application to violate
users’ expectation of privacy.

We also observed that some applications already display a transient behav-
ior. For example, Spotify will only play music while the application is open.
If the user closes the application, music will stop playing. PrivateRide [6] is
another example of an application that was re-designed to respect user privacy.
These apps show that it is possible to design applications that provide useful
functionalities without abusing privacy.

Lastly, we find that another benefit of transiency was addressing that users
forget or find it inconvenient to delete unused applications [38]. If applications
are treated as transient by default, users can rest assured that installing an
application is not equivalent to giving it the privilege of running unconstrained.

8 Future Work

The classification of applications as either transient and non-transient provided
was intended as a coarse approximation of the applications that could be treated
as transient. In so doing, shed light in the likely impact of transiency on a real
system. However, the system used by Google to categorize applications based on
functionality is an imperfect medium to perform this analysis. As future work,
we plan on incorporating the methods and findings of studies like AWare [7] and
Turtle Guard [10] (which extensibly studied usability and contextual cues) to
provide a more fine-grained classification methodology.

9 Conclusion

Throughout this paper, we explored the idea of enforcing transiency, which dis-
ables apps that were not explicitly opened by the user. Currently, Android appli-
cations can collect sensitive information even if they are not being used. Privacy
is still an ongoing problem, which starts with the lack of control users have over
the amount of information applications can collect. Transiency solves this issue
intuitively, moving towards a fair trade of personal information in exchange for
application services.



64 R. Alvarez et al.

Acknowledgements. Thank you to Kim, Cookie, Bon Bon, and all the SIIS labers
for the much needed support on my first paper journey. This material is based upon
work supported by the National Science Foundation under Grant No. NS-1564105. Any
opinions, findings, and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the National Science
Foundation.

References

1. Elenkov, N.: Android Security Internals. No Starch Press, San Francisco (2015)
2. Stamp, M.: Information Security Principles and Practice. Wiley, Hoboken (2011)
3. Jaeger, T.: Operating System Security. Morgan & Claypool Publishers, San Rafael

(2008)
4. Nissenbaum, H.: Privacy as Contextual Integrity. Washington Law Review (2004)
5. Enck, W., et al.: TaintDroid: an information-flow tracking system for realt ime

privacy monitoring on smartphones. In: OSDI (2010)
6. Pham, A., et al.: PrivateRide: a privacy-enhanced ride-hailing service. In: Proceed-

ings of the 17th Privacy Enhancing Technologies Symposium (2018)
7. Petracca, G., et al.: AWare: preventing abuse of privacy-sensitive sensors via opera-

tion bindings. In: Proceedings of the 26th USENIX Security Symposium. USENIX
Security (2017)

8. Narain, S., Noubir, G.: Mitigating location privacy attacks on mobile devices using
dynamic app sandboxing. In: Procededings of the 19th Privacy Enhancing Tech-
nologies Symposium (PETS) (2019)

9. Zhou, Y., Zhang, X., Jiang, X., Freeh, V.W.: Taming information-stealing smart-
phone applications (on Android). In: McCune, J.M., Balacheff, B., Perrig, A.,
Sadeghi, A.-R., Sasse, A., Beres, Y. (eds.) Trust 2011. LNCS, vol. 6740, pp. 93–107.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21599-5 7

10. Tsai, L., et al.: Turtle guard: helping Android users apply contextual privacy pref-
erences. In: Proceedings of the 26th USENIX Security Symposium (2017)

11. Liu, B., et al.: Follow my recommendations: a personalized privacy assistant for
mobile app permissions (2016)

12. Hornyack, P., Han, S., Jung, J., Schechter, S., Wetheral, D.: These aren’t the droids
you’re looking for: retrofitting Android to protect data from imperious applications.
In: CCS (2011)

13. Wijesekera, P., et al.: The feasibility of dynamically granted permissions: aligning
mobile privacy with user preferences. In: NDSS (2017)

14. Votipka, D., Rabin, S.M., Micinski, K., Gilray, T., Mazurek, M.M., Foster, J.S.:
User comfort with Android background resource accesses in different contexts. In:
Proceedings of the 14th Symposium on Usable Privacy and Security (2018)

15. Egelman, S., Felt, A.P., Wagner, D.: Choice architecture and smartphone privacy:
there’s a price for that. In: Böhme, R. (ed.) The Economics of Information Security
and Privacy, pp. 211–236. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-39498-0 10

16. Felt, A.P., Egelman, S., Wagner, D.: I’ve got 99 problems, but vibration ain’t one:
a survey of smartphone users’ concerns. In: 2nd Annual ACM CCS Workshop on
Security and Privacy in Smartphones and Mobile Devices (2012)

17. Felt, A.P., Ha, E., Egelman, S., Haney, A., Chin, E., Wagner, D.: Android per-
missions: user attention, comprehension, and behavior. In: Proceedings of the 8th
Symposium on Usable Privacy and Security (SOUPS) (2012)

https://doi.org/10.1007/978-3-642-21599-5_7
https://doi.org/10.1007/978-3-642-39498-0_10
https://doi.org/10.1007/978-3-642-39498-0_10


Application Transiency: Towards a Fair Trade of Personal Information 65

18. Bonné, B., Peddinti, S.T., Bilogrevic, I., Taft, N.: Exploring decision making with
Android’s runtime permission dialogs using in-context surveys. In: Proceedings of
the 13th Symposium on Usable Privacy and Security (SOUPS) (2017)

19. Pu, Y., Grossklags, J.: Valuating friends’ privacy: does anonymity of sharing per-
sonal data matter? In: Proceedings of the 13th Symposium on Usable Privacy and
Security (SOUPS) (2017)

20. Tsai, J., Egelman, S., Cranor, L., Acquisti, A.: The effect of online privacy infor-
mation on purchasing behavior: an experimental study. In: 6th Workshop on the
Economics of Information Security (2007)

21. Samat, S., Acquisti, A.: Format vs. content: the impact of risk and presentation
on disclosure decisions. In: Proceedings of the 13th Symposium on Usable Privacy
and Security (SOUPS) (2017)

22. Rao, A., Schaub, F., Sadeh, N., Acquisti, A., Kang, R.: Expecting the unexpected:
understanding mismatched privacy expectations online. In: Proceedings of the 12th
Symposium on Usable Privacy and Security (SOUPS) (2016)

23. Oates, M., et al.: Turtles, locks, and bathrooms: understanding mental models
of privacy through illustration. In: Proceedings of the 18th Privacy Enhancing
Technologies Symposium (PETS) (2018)

24. Ismail, Q., Ahmed, T., Caine, K., Kapadia, A., Reiter, M.: To permit or not to per-
mit, that is the usability question: crowdsourcing mobile apps’ privacy permission
settings. In: Proceedings of the 18th Privacy Enhancing Technologies Symposium
(PETS) (2017)

25. Wijesekera, P., Baokar, A., Hosseini, A., Egelman, S., Wagner, D., Beznosov, K.:
Android permissions remystified: a field study on contextual integrity. In: Proceed-
ings of the 24th USENIX Security Symposium (2015)

26. Felt, A.P., Chin, E., Hanna, S., Song, D., Wagner, D.: Android permissions dymisti-
fied. In: CCS (2011)

27. Chatterjee, R., et al.: The spyware used in intimate partner violence. In: IEEE
Symposium on Security and Privacy (2018)

28. Bowers, J., Reaves, B., Sherman, I.N., Traynor, P., Butler, K.: Regulators, mount
up! analysis of privacy policies for mobile money services. In: Proceedings of the
13th Symposium on Usable Privacy and Security (SOUPS) (2017)

29. Das, A., Borisov, N., Chou, E.: Every move you make: exploring practical issues
in smartphone motion sensor fingerprinting and countermeasures. In: Proceedings
of the 18th Privacy Enhancing Technologies Symposium (PETS) (2018)

30. Reyes, I., et al.: Won’t somebody think of the children? examining COPPA com-
pliance at scale. In: Proceedings of the 18th Privacy Enhancing Technologies Sym-
posium (2018)

31. Venkatadri, G., Lucherini, E., Sapiezynski, P., Mislove, A.: Investigating sources of
PII used in Facebook’s targeted advertising. In: Proceedings of the 19th Privacy
Enhancing Technologies Symposium (2019)

32. Foppe, L., Martin, J., Mayberry, T., Rye, E.C., Brown, L.: Exploiting TLS client
authentication for widespread user tracking (2018)

33. Bashir, M.A., Wilson, C.: Diffusion of user tracking data in the online advertising
ecosystem. In: Proceedings of the 18th Privacy Enhancing Technologies Symposium
(2018)

34. Lifshits, P., et al.: Power to peep-all: inference attacks by malicious batteries on
mobile devices. In: Proceedings of the 18th Privacy Enhancing Technologies Sym-
posium (2018)



66 R. Alvarez et al.

35. Eskandari, M., Ahmad, M., Oliveira, A.S., Crispo, B.: Analyzing remote server
locations for personal data transfers in mobile apps. In: Proceedings of the 17th
Privacy Enhancing Technologies Symposium (2017)

36. Brookman, J., Rouge, P., Alva, A., Yeung, C.: Cross-device tracking: measure-
ment and disclosures. In: Proceedings of the 17th Privacy Enhancing Technologies
Symposium (2017)

37. Zhou, X., et al.: Identity, location. inferring your secrets from Android public
resources. In: CCS, Disease and More (2013)

38. Park, H., Eun, J., Lee, J.: Why do smartphone users hesitate to delete unused
apps? In: MobileHCI (2018)

39. Senate: Testimony of Mark Zuckerberg. https://www.judiciary.senate.gov/imo/
media/doc/04-10-18%20Zuckerberg%20Testimony.pdf. Accessed Feb 2019

40. https://ipdata.co/ . Accessed Feb 2019
41. Statista: Distribution of free and paid Android apps (2019). https://www.statista.

com/statistics/266211/distribution-of-free-and-paid-android-apps/
42. Statista: Number of Available Applications in the Google Play Store (2019).

https://www.statista.com/statistics/266210/number-of-available-applications-in-
the-google-play-store/

43. Statista: Number of Paying Spotify Subscribers. https://www.statista.com/
statistics/244995/number-of-paying-spotify-subscribers/

44. Google (2019). https://developer.android.com/
45. Google (2019). https://developer.android.com/guide/components/fundamentals
46. Google (2019). https://source.android.com/
47. Google: Codelabs (2019). https://codelabs.developers.google.com/
48. Google: Android Open Source Code (2019). https://source.android.com/
49. Google: Activity Recognition API (2019). https://developers.google.com/location-

context/activity-recognition/
50. IPData.co (2019). https://ipdata.co/
51. Google: Google Answers. https://support.google.com/android/answer/9079646?

hl=en. Accessed Feb 2019
52. Google: The Recents UI (2019). https://developer.android.com/guide/

components/activities/recents
53. Google: Work Manager API (2019). https://developer.android.com/reference/

androidx/work/WorkManager
54. Google: Android 9.0 Behavior Changes (2019). https://developer.android.com/

about/versions/pie/android-9.0-changes-all

https://www.judiciary.senate.gov/imo/media/doc/04-10-18%20Zuckerberg%20Testimony.pdf
https://www.judiciary.senate.gov/imo/media/doc/04-10-18%20Zuckerberg%20Testimony.pdf
https://ipdata.co/
https://www.statista.com/statistics/266211/distribution-of-free-and-paid-android-apps/
https://www.statista.com/statistics/266211/distribution-of-free-and-paid-android-apps/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://www.statista.com/statistics/244995/number-of-paying-spotify-subscribers/
https://www.statista.com/statistics/244995/number-of-paying-spotify-subscribers/
https://developer.android.com/
https://developer.android.com/guide/components/fundamentals
https://source.android.com/
https://codelabs.developers.google.com/
https://source.android.com/
https://developers.google.com/location-context/activity-recognition/
https://developers.google.com/location-context/activity-recognition/
https://ipdata.co/
https://support.google.com/android/answer/9079646?hl=en
https://support.google.com/android/answer/9079646?hl=en
https://developer.android.com/guide/components/activities/recents
https://developer.android.com/guide/components/activities/recents
https://developer.android.com/reference/androidx/work/WorkManager
https://developer.android.com/reference/androidx/work/WorkManager
https://developer.android.com/about/versions/pie/android-9.0-changes-all
https://developer.android.com/about/versions/pie/android-9.0-changes-all

	Application Transiency: Towards a Fair Trade of Personal Information for Application Services
	1 Introduction
	2 Background
	2.1 Android OS Overview
	2.2 Sensitive Resource Access Control

	3 Application Transiency Design Goals
	4 Application Transiency Implementation
	4.1 Enforcing Transiency
	4.2 Making Transiency Intuitive
	4.3 Applying Transiency to Popular Applications
	4.4 Android Implementation: Transiency Launcher

	5 Evaluation
	5.1 Characterization of Market Applications
	5.2 Classification Through Google Play Categories
	5.3 Implementation Performance

	6 Case Study: Measuring Impact of Transiency on Data Collection
	6.1 Metis, the Knowledge Sharing App
	6.2 Data Collection: Transient vs. Non-transient

	7 Discussion
	8 Future Work
	9 Conclusion
	References




