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Abstract—Advanced targeted cyber attacks often rely on
reconnaissance missions to gather information about potential
targets, their characteristics and location to identify vulnerabil-
ities in a networked environment. Advanced network scanning
techniques are often used for this purpose and are automatically
executed by malware infected hosts. In this paper, we formally
define network deception to defend reconnaissance and develop
a reconnaissance deception system, which is based on software
defined networking, to achieve deception by simulating virtual
topologies. Our system thwarts network reconnaissance by delay-
ing the scanning techniques of adversaries and invalidating their
collected information, while limiting the performance impact on
benign network traffic. By simulating the topological as well as
physical characteristics of networks, we introduce a system which
deceives malicious network discovery and reconnaissance tech-
niques with virtual information, while limiting the information
an attacker is able to harvest from the true underlying system.
This approach shows a novel defense technique against adversar-
ial reconnaissance missions which are required for targeted cyber
attacks such as advanced persistent threats in highly connected
environments. The defense steps of our system aim to invalidate
an attackers information, delay the process of finding vulnera-
ble hosts and identify the source of adversarial reconnaissance
within a network.

Index Terms—Software-defined networks, security services,
security management.

I. INTRODUCTION

THE STATIC nature of computer networks enables adver-
saries to perform network reconnaissance and identify

vulnerabilities which can be exploited by advanced targeted
cyber attacks. Network reconnaissance missions provide a
tactical advantage for attackers on cyber infrastructure by iden-
tifying potential targets and their vulnerabilities, as discussed
in [18], [26], [29], [34], [36], and [43]. In particular, insider
adversaries are probing networked environments to identify
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hosts and open ports and map their topology to find known and
zero-day vulnerabilities to perform further attack maneuvers.

Highly effective scanning strategies for network reconnais-
sance are known and have been analyzed in the context of
computer worms such as in [20], [39], and [40], and are
precursors to a high percentage of cyber attacks. In partic-
ular, Panjwani et al. [30] conclude that up to 70% of attacks
are preceded by an adversarial scanning activity. Such recon-
naissance techniques are highly effective by exploiting certain
features in networks, such as the uneven distribution of hosts
in the address space or the configuration and composition of
network topologies, to increase their efficiency of identify-
ing potential targets. Sophisticated targeted attacks, such as
APT [1], [13], [36], depend on fingerprinting of organizational
networks to identify hosts and vulnerabilities necessary for the
development of a battle plan and the execution of further attack
maneuvers.

In this paper, we aim to deceive such malicious recon-
naissance and discovery techniques by showing a virtual
topological view of a networked system which hides its true
underlying network and its potential vulnerabilities that can
be exploited by attackers. The simulation of a virtual network
view invalidates the set of information an attacker collects
about a networked system and achieves the goal of signifi-
cantly delaying the rate of identifying vulnerable hosts. This
procedure gains additional time that can be used to identify a
malicious scanner and isolate it from the network.

Techniques such as social engineering, zero-day
vulnerabilities, drive by downloads or manual infec-
tion [1], [12], [13], [36] of hosts inside organizational
networks are serious security threats which can cause
significant damage and are hard to detect. In our threat
model we consider such adversaries that are present inside a
network and have at least one host infected with some sort of
malware. Our proposed defense system addresses adversarial
reconnaissance and discovery activity, which presents the
third stage of an advanced cyber attack as defined by
Symantec [12]. To address threats caused by reconnaissance
missions of insider attackers, we develop a formal deception
approach which identifies certain features of a networked
system that are modified by our Reconnaissance Deception
System (RDS) to invalidate the set of information an attacker
collects about the system. The challenge in the design of
such a system is to guarantee the network functionality and
minimize the performance impact for legitimate traffic, while
maximizing the effectiveness of the defense strategy. A crucial
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part of our proposed defense solution is the composition of
virtual network views, the placement of hosts and honeypots
and the simulation of consistent network characteristics in
virtual topologies to delay attackers from identifying real and
vulnerable hosts in the underlying network.

In our system, a different virtual network view can be
assigned to every host or to specific hosts. This makes our
defense approach independent of the source of malicious
network scans, which we assume is not known initially.
The implementation of our system ensures a clear separation
between virtual network views, which are only visible to the
assigned hosts, and the remaining underlying network.

As our main contribution, we develop a formal decep-
tion approach and use this definition as the basis to design
and implement a RDS (Reconnaissance Deception System).
Further, we evaluate its goals of deceiving and detecting
insider adversaries, while limiting the cost to achieve increased
security. We publish an open-source proof of concept proto-
type of our system at [10]. In the evaluations we demonstrate
that our system increases the duration required to identify vul-
nerable endpoints in a network up to a factor of 115 while
limiting the performance impact on legitimate traffic. In more
detail, the following is a summary of our contributions:

• Definition of a reconnaissance deception approach:
We identify an information set collected by adversaries
during reconnaissance missions. To minimize the useful-
ness of this information for attackers, we define a set of
network features that have to be modified to deceive the
reconnaissance goal of an adversary. We discuss differ-
ent approaches and strategies for the generation of virtual
network topologies in which vulnerable entities are strate-
gically placed to minimize their detection likelihood by
adversaries.

• Design and implementation of RDS: To realize and
evaluate the defined deception goals, we implement a
research prototype of RDS, based on SDN, to simulate
complete virtual network topologies including its phys-
ical network characteristics. The combined functionality
of our deception server, SDN controller, honeypot server,
delay handler and virtual topology generator achieves
thorough network deception, while maintaining the full
network functionality for legitimate traffic.

• Evaluation of defense effectiveness and performance:
By executing malicious scanning techniques on simulated
virtual topologies in our test environment we show that
our system is able to significantly delay the detection of
vulnerable hosts up to a factor of 115. We also demon-
strate that our solution keeps the performance overhead
on legitimate traffic within defined limits.

• Identification of infected hosts in a network: Our SDN
controller implementation dynamically analyzes SDN
flow rule statistics and is able to identify scanning activ-
ity based on the distribution of network traffic on specific
flow rules. We show in our experiments that our system
is able to identify malicious scanners before an attacker
is able to find vulnerable hosts in a network.

A preliminary version of our work on cyber decep-
tion appeared in [14]. In this paper we extend the system

architecture of RDS to simulate the physical characteristics of
a virtual network topology, which is crucial for the deception
of advanced attackers.

II. RELATED WORK

In recent publications [18], [25], [26], [41], the authors
introduce systems that performs dynamic address space ran-
domization based on Software Defined Networking (SDN)
technologies to defend against adversarial scanners, such as
worms. Although being an effective defense approach, these
systems suffer from high overheads which we avoid in our
solution and are not able to dynamically detect the source of
scanning traffic that our solution achieves by simulating entire
virtual topologies. In particular, the introduced system in [25]
relies on DNS queries which have to be performed for every
new connection to a legitimate host that is established within a
new randomization interval (usually 1-5 seconds). In addition
to sending a DNS request in the proposed system, the DNS
reply message is intercepted by the SDN controller and rewrit-
ten to match the address randomization strategy. To evaluate
their system performance, we implemented the proposed DNS
protocol which requires 51.6ms on average to resolve a name
which has to be done every 1-5 seconds if a new connection
to a host is established. Our system in comparison only takes
16.7ms on average to resolve a name. In addition, our RDS
has to perform name resolution only upon the deployment of
a new virtual view which is done every few hours with the
assignment of a new DHCP lease.

Sun and Sun [45] propose a defense system based on IP
address randomization and the placement of decoys. They
also introduce a network connection migration mechanism
to seamlessly move existing connections between legitimate
users when the IP addresses of servers change. In contrast to
our system, which targets internal adversaries who are present
in an enterprise network, [45] focuses on scanners such as
ZMap [17] originating from the Internet.

Trassare et al. [37] propose techniques to deceive network
reconnaissance focused on mapping a topology by using the
standard traceroute function. The authors especially focus on
the defense of critical routers and links in a network topology.

Chiang et al. [16] and Robertson et al. [33] discuss an
approach to build a cyber deception system. An overview of
the design of such a system is presented, but the authors do not
provide a detailed formulation of network reconnaissance or
evaluate specific attack strategies depending on reconnaissance
missions.

In comparison to existing network deception systems, we
demonstrate that RDS is able to identify the source of mali-
cious scanning traffic by analyzing the flow statistics of SDN
flow rules used to simulate virtual topologies. Current defense
approaches do not consider such techniques to identify and
isolate the source of adversarial scanning traffic. This gives
our proposed system an advantage over current approaches to
effectively defend and identify an adversary performing recon-
naissance. A deception feature which is unique to RDS, and
was not considered in previous publications, is the simulation
of consistent physical network features as we introduce in this
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work. Without simulating consistent physical characteristics of
deception mechanisms advanced attackers are able to deduce
that they are deceived and use such knowledge as a counter
maneuver as we demonstrate in Section V-E.

Honeypots are an essential component in our RDS for the
simulation of virtual network views. We use honeypots as traps
and decoys in virtual networks to detect malicious scanning
traffic and identify adversarial hosts. For the usage and con-
figuration of honeypots we follow best practices as defined in
well cited publications such as [32] and [44].

We consider a number of well cited publica-
tions [28], [39], [40] for the analysis and implementation
of malicious network scanning strategies which have been
initially observed in computer worms. To evaluate our RDS
we implemented adversarial scanning strategies as discussed
in these papers.

III. PROBLEM DEFINITION

In this section, we formally define insider reconnaissance
and describe the assumed threat model.

A. Insider Reconnaissance

Adversarial reconnaissance is geared to gather information
about potential targets in networked systems. Scanning strate-
gies that perform active probing of addresses in a network to
identify online hosts and collect information about them and
their connectivities are typically used for this purpose. One
can represent the information gleaned via reconnaissance as a
set T , where:

T = {AV = Addresses of potentially vulnerable hosts, NS =
Network size, ST = System topology, PNC =
Physical network characteristics}.

Insider attackers (e.g., malware programs) typically scan a
networked system at very low rates in order to stay unde-
tected. Once an information set T is obtained, it can be further
observed for exploitable targets, such as open ports at hosts
or network services with known vulnerabilities. The attacker’s
goal is to increase the cardinality of T and execute parallel kill
chains on the multiple targets identified, to achieve the highest
rate of success.

To prevent such reconnaissance, one defense approach is to
minimize the useful information an attacker can collect in T .
Our RDS framework seeks to populate the set of T with fake
information so that an attacker is not able to determine what
information in T is virtual and what is real.

B. Threat Model

We consider insider adversaries who have placed them-
selves in the network (on one or more hosts), using
techniques such as social engineering, exploiting zero-day
vulnerabilities, via drive by downloads or by manual infec-
tion [1], [12], [13], [15], [36], [46]. Our defense approach is
based on measuring the reconnaissance information a strong
insider is able to gather in the information set T . Based on
that, RDS aims to minimize the usefulness of T by transform-
ing it into a different set T ′. Planning of sophisticated targeted
attacks (e.g., Advanced Persistent Threats or APTs) requires a

high granularity of insider information T which our solution
prevents with providing T ′ to an adversary.

We assume that the location of an attacker inside the
network is unknown initially. With RDS, a different virtual
network view can be assigned to every host in a network
to make our defense approach independent of the source of
malicious scanning traffic.

For securing the SDN controller from attacks,
numerous solutions have recently been published
(e.g., [27], [31], [35], and [46]), which can be deployed
to protect the SDN control infrastructure from being compro-
mised. For the purposes of our analysis, we do not consider
attackers penetrating the SDN controller or outside scanners
which are addressed by mechanisms such as Firewalls
or Intrusion Detection Systems, and have inherently less
information than insiders.

C. Reconnaissance Deception

Our key idea is to map a set of network features NF, to a
different set NF′; this new set mis-informs the attacker and
provides a set T ′ which is populated with false information.
RDS achieves this by simulating a virtual network which is
the only view exposed to an attacker performing reconnais-
sance. An attacker collects information to construct a set T as
defined previously. With RDS, the adversary will populate T
with information with regards to the simulated virtual network
instead of the real underlying network. The composition of a
virtual network is critical to ensure that the information col-
lected by an attacker is useless for further attack planning. Let
the set of network features that RDS wants to hide be:

NF = {TL = Topological location of hosts, NH =
Number of hosts, AH = Addresses of hosts, CH =
Connectivity between hosts, LB = Link bandwidth, HD =
Host delay}.

These network features NF, are transformed into a new (vir-
tual) set of features NF′. With NF′, the attacker generates
a new set T ′ that is quite different from T , i.e., T is now
transformed into T ′: Stated formally,

NF′ = {TL′, NH′, AH′, CH′, LB′, HD′} → T ′

= {AV ′, NS′, ST ′, PNC′}

Towards achieving the above transformation, RDS performs
a set of agile maneuvers. These maneuvers can be seen as
a function, T ′ = f (NF′), which result in T ′. Performing
these transformations will significantly delay adversarial scan-
ners, invalidate any collected information by the adversary
and allows the quick identification of infected hosts. These
maneuvers are:

• Dynamic address translation (AV ′ = f (AH′)): Our
system performs on-the-fly packet header rewriting to
hide the real host addresses and make the overall address
space of a network appear larger. The translation of the
real underlying network’s address space into a signifi-
cantly larger virtual address space increases the search
space for adversarial scanners. Since the addresses of
potentially vulnerable hosts are changing with every
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assignment of a new virtual network view, as we dis-
cuss in more detail in Section IV-B, previously collected
addresses of potential targets are invalidated.

• Route mutation (ST ′ = f (TL′, CH′)): We introduce
virtual routers with our deception system and simulate
virtual paths spanning multiple hops from a source to
a destination host. This maneuver enables RDS to alter
the topology of different network views so that a scanner
is not able to draw conclusions about the real network
topology.

• Vulnerable host placement (ST ′ = f (TL′, CH′)):
Dynamic address translation in combination with route
mutation allows us to simulate virtual topologies consist-
ing of multiple subnets. By placing vulnerable hosts in
virtual subnets according to different strategies we dis-
cuss in Section IV-B, RDS aims to increase the duration
a malicious scanner takes to identify them. We define
vulnerable hosts as real hosts of the underlying network
which could potentially be corrupted by a cyber attack.

• Honeypot placement (NS′ = f (TL′, AH′, NH′)): To
enlarge virtual networks we place honeypots which act
as decoys and are closely monitored to detect malicious
activity. By placing honeypots, we increase the number of
potential targets for an attacker. Hereby, dynamic address
translation allows RDS to make a single honeypot server
appear as a target at many addresses and therefore signif-
icantly increases the search space for malicious scanners.
For the setup and generation of honeypots, we follow
best practices as introduced in previous publications such
as [44].

• Delay and bandwidth adjustment (PNC′ = f (LB′, HD′)):
Attackers collecting data from a network can use sta-
tistical analysis tools or network tomography tech-
niques [22], [23], [38] to determine certain topological
characteristics or differentiate a real target from a honey-
pot. By using specific queuing policies and adjusting the
delay to make observed network characteristics consis-
tent, our RDS system aims to deceive adversarial probing
techniques which analyze physical characteristics of a
topology.

• Dynamic detection of malicious flows: By evaluating the
statistics of every flow rule in SDN switches, our decep-
tion system is able to detect malicious flows which try
to establish connections to honeypots or protected hosts.
We demonstrate in Section V-F, that RDS is able to detect
the location of adversarial scanners before they are able
to identify any vulnerable hosts in a virtual network view.

To present a simple example of the defense approach we
achieve with RDS, we show a virtual topology in Figure 1
(top), which is deployed to be seen from the perspective of
node 3 and significantly differs from the real network (bot-
tom). We refer to node 3 as the view node. The view node is
the node in the network to which a specific virtual network
view is given. The design of our system considers the assign-
ment of different network views to all or specific hosts in
a network, making this defense approach independent of the
source of malicious scans, which we assume is not known
initially.

Fig. 1. An example of network deception via the projection of a virtual
network which places critical resources in a way to deceive adversaries.

Hosts 1, 2 and 5 are seen as vulnerable resources that have
to be protected. In case node 3 is performing an adversarial
network scan the placement of the vulnerable resources, is crit-
ical. The location of vulnerable hosts, relative to the position
of an attacker, impacts their detection time, since malicious
scanning strategies often depend on locality as we discuss in
Section V-C. Because host 4 in the virtual network topology is
not supposed to be contacted by host 3, the link connecting it
to the rest of the network is deactivated. The remaining nodes
in the virtual topology in Figure 1 are honeypots and act as
traps for potential adversaries.

Certain nodes in a network depend on the knowledge of the
real underlying network topology. Examples are scheduling
or load balancing algorithms that often choose geographically
close nodes for load distribution, or applications that per-
form automatic discovery for legitimate purposes of resources
and services in a network. A deception system, such as ours,
would interfere with legitimate network discovery applications
as listed. Therefore, nodes that require a real view of the
network topology have to be identified by a network operator
and should not have virtual network views assigned that would
deceive information collected by legitimate network discovery.
To ensure this, we emphasize a clear separation between vir-
tual network views and the real underlying topology in the
implementation and design of our system.

IV. SYSTEM DESIGN

In this section we introduce the implementation and design
of our Reconnaissance Deception System in detail. The core
parts of RDS consist of a sophisticated system of SDN flow
rules generated by our SDN controller, which cooperates with
a deception server to manipulate the network traffic in a way
such that a network appears different than it actually is.

A. System Architecture Overview

Our system comprises five main components, a SDN con-
troller responsible for dynamic generation and management
of the flow rules to steer and control the network traffic, a
deception server to manipulate the network traffic and simulate
certain virtual network resources considering a specific user
policy, a honeypot server to simulate virtual honeypot nodes,
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Fig. 2. Architecture of RDS.

a virtual network view generator which provides a description
of the virtual network components and their connectivity and
traffic queuing to control link delay and bandwidth.

When a packet arrives at a SDN switch connected to our
system the controller deploys a flow rule in accordance with
the virtual network view description which either forwards the
packet to the deception server, or sends the packet to its desti-
nation host after tags are added to the packet and addresses are
translated. If a packet is sent to the deception server, a reply
packet is crafted in accordance to the network view and sent
back to the source, possible artificial delays are considered. If
a packet is forwarded to a real end host or honeypot, artificial
delay is added to the reply packet to guarantee consistency
which is performed by implementing our proposed queuing
disciplines at the end hosts. For the implementation of our
deception server and SDN controller we follow best practices
to meet security standards.

In our RDS the deception server is responsible to handle
certain packets and generate reply messages according to the
specified virtual network view. In a large network the decep-
tion server can turn into a bottleneck since requests of many
end-hosts need to be handled. To maintain scalability of our
system, the deception server can be replicated so that each
instance of the server handles a specific subnet or a share of the
IP address space of the underlying network topology. Based
on a packet’s source address, the deception server is able to
differentiate between different deployed virtual network views
and generate reply packets accordingly. Such a distribution can
be managed by the SDN controller to forward packets to their
dedicated deception server.

Our system is implemented in Python. We use the POX
framework [8] to implement our SDN controller and the
Scapy framework [11] to implement our deception server. We
tested our implementation in Mininet [4] which is the current
state-of-the-art SDN network emulator. Our SDN environment
supports OpenFlow [6] version 1.3, which serves as the proto-
col for the communication between SDN controller and SDN
switch. In Figure 2 we show an architectural overview of our
RDS system.

B. Virtual Network View Generator

As we discuss in Section III-C, a virtual network view is
a topology that is exposed to a client and is significantly

Fig. 3. Virtual Network view from the perspective of node 1 (top) and from
the perspective of node 3 (bottom).

different from the actual underlying network topology. A
virtual network view is specified by a machine readable
description of real hosts, honeypots and network paths between
such endpoints as defined in the set of features NF. Generating
a virtual network view depends on the number of simulated
subnets S and the number of hosts (real hosts and honeypots)
H per subnet. For the complexity of our generation algorithm
we can define an upper bound of O(S · H). Since the number
of honeypots per subnet is determined randomly between an
upper and a lower bound and the number of real hosts in a vir-
tual subnet is typically significantly smaller than the number
of honeypots, H can be seen as a constant factor. Therefore we
can assume a linearly increasing computation time of a virtual
network view description with a growing number of subnets S.
Measurements on a machine with an Intel i7 processor show a
computation time for a virtual network view with 25 subnets
of 200-250ms on average.

In the description file of a virtual network view it can also
be specified if a real host of the underlying network is visible
in the virtual network view or not. This feature makes our
system also function as a distributed access control list, since
different subsets of real hosts can be shown in a virtual view.
Each virtual network view is associated with a DHCP lease
that is offered to a host in order to connect to the network.
The assignment of a DHCP lease triggers the generation and
deployment of a virtual network view in our system. Here,
the deployment time consists of the view computation time
as discussed above, as well as the deployment time of SDN
flow rules, which is done on demand in a re-active way and
is in the order of milliseconds depending on the hardware
switch. The update interval of a virtual network view is there-
fore dependent on the duration of the assigned DHCP lease,
which typically ranges from a few hours to multiple days.
The overall generation and deployment time, which can be
assumed to be ∼1 second does therefore not present a sig-
nificant overhead in our system since it only occurs with the
assignment of a new DHCP lease.

As an example of virtual topologies, consider the network
views shown in Figure 3. The top virtual network view shows
a topology from the perspective of node 1. Besides honeypots
(unnumbered nodes), the real nodes 2, 3, 4 and 5 appear to
be in a different subnet which is three hops away. The real
nodes can be considered as vulnerable and therefore have to be
protected from malicious scans. The bottom part of Figure 3
shows the virtual network from the perspective of node 3.
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Instead of simulating multiple virtual subnets, our RDS places
all nodes, including vulnerable nodes and honeypots in one
subnet with a big IP address space of 10.0.0.0/8. Both virtual
topologies show valid defense strategies that can be simulated
with RDS by generating a particular virtual view description.

The specific description of a virtual view is generated by our
virtual network view generator. As input, the list of real hosts
visible in the virtual view, the addresses for the honeypot and
deception servers, the virtual IP address space, the number of
subnets and the placement strategy for real hosts have to be
provided. Our generator starts by assigning a random number
of honeypots within an upper and a lower bound to each virtual
subnet and places the real hosts in the virtual subnets accord-
ing to the specified placement strategy. Placing a number of
honeypots in each subnet of a virtual network view enables
our system to detect the location of adversarial scanners by
closely monitoring the traffic to honeypots which is done by
the SDN controller. Therefore, honeypots in RDS primarily act
as traps to detect unwanted traffic in the network. By choos-
ing a strategy which randomly places honeypots in the address
space of a virtual network, we aim to reveal scanning strategies
typically used for network reconnaissance before attackers are
able to detect vulnerabilities in our system as we evaluate in
Section V-F. We plan to investigate additional honeypot place-
ment strategies to further reduce the required detection time
of the source of scanning traffic in our future work.

For the placement of vulnerable hosts we have to consider
if the module to simulate the physical network characteristics,
such as bandwidth and delay, is activated. If physical network
characteristics are simulated, hosts have to be placed under
consideration of their real hop distance and round trip time
to the view node as we discuss in detail in Section IV-E. If
our RDS is simulating virtual topologies without the physical
characteristics, the placement strategies of real hosts include (i)
random placement, (ii) placement with high address distance
from the view node, and (iii) a placement to create a uniform
distribution of nodes across the simulated IP address space.

The virtual IP addresses used in a view are assigned ran-
domly within the provided address space to each real host and
honeypot, considering their placement in the virtual topology.
This procedure follows the deception principle introduced in
Section III-C to transform the set of network features NF into
NF′ as summarized below:

• IPv4 address space of a virtual network AH → AH′
• List of real hosts that are visible in a virtual network

CH → CH′
• Placement strategy of real hosts in a virtual network

AH → AH′, NH → NH′, TL → TL′
• Number of simulated subnets in a virtual network AH →

AH′, NH → NH′, TL → TL′
• Number of honeypots per subnet NH → NH′, TL → TL′
• Host delay and link bandwidth HD → HD′, LB → LB′
To simulate physical network characteristics in a virtual

network view, our RDS uses queuing and introduces arti-
ficial delay as we discuss in detail in Section IV-E. Here,
our system aims to limit the performance overhead added
to legitimate traffic. Delay and bandwidth characteristics for
connections to honeypots are correlated with the measured

characteristics of real nodes. For an attacker collecting physi-
cal network characteristics, measurements from honeypots will
appear indistinguishable from those observed from real hosts.
This will prevent attackers from differentiating honeypots from
real hosts based on their physical network characteristics.
Figure 3 shows a simplified example of the adjusted delay
and link bandwidths in virtual network views.

To summarize, a machine readable virtual topology descrip-
tion contains the following information:

• Virtual network view node specification
• Port and address information of the deception servers
• Real addresses of visible real hosts
• Real addresses of honeypot servers
• Deceptive IP addresses of real hosts and honeypots, as

they appear in the virtual topology
• Virtual path information to real hosts and honeypots
• Configuration of traffic queuing and delay adjustment
The generation and deployment of a network view has a

delay in the order of a second and can therefore be performed
on request as an agile defense maneuver.

C. Software Defined Networking Controller

The main tasks of the SDN controller component is to
dynamically generate flow rules which are pushed to an SDN
switch to steer and control the network traffic. An additional
task of the SDN controller is to analyze the flow statistics
of the switch rules and identify malicious behavior of the
network endpoints. To steer and control the network traf-
fic, the SDN controller dynamically generates rules upon the
arrival of a packet that does not match any current flow
rule in the SDN switch. For reasons of system scalability
we chose a re-active rule generation approach versus a pro-
active approach which we will explain in more detail in
Section IV-C1. Our SDN controller constructs the follow-
ing flow rules based on the provided virtual network view
description:

• Forward ARP requests to deception server: Handling
ARP packets is a crucial part in our deception system.
ARP requests are usually flooded into the network to
discover hosts and match IP to MAC addresses. In our
system the deception server handles all ARP requests and
sends the appropriate response packets. This way we can
ensure that hosts which are not supposed to be discovered
stay hidden. We are also able to introduce honeypots into
the system by sending appropriate ARP responses.

• Send packets with specific TTL to deception server: Our
SDN controller generates rules to match packets with spe-
cific TTL (Time To Live) values. This is an important
part for route mutation and the introduction of virtual
routers. With this function our system is able to deceive
network mapping functions such as traceroute and make
paths appear different than they actually are.

• On the fly adjustment of TTL fields: An important part
of deceptive route mutation is to adjust the TTL field of
response packets appropriately. This can be done on the
fly with specific SDN rules in the switch when packets
are passing through.
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• Forwarding of ICMP error packets to the decep-
tion server: ICMP error packets, such as Destination
Unreachable contain a nested packet which reflect the
original packet received by the sender. The information
in a nested packet is not automatically adjusted when
it passes through a SDN switch and would therefore
leak information from the real network into the virtual
network. Therefore ICMP error messages are forwarded
to the deception server in our system and the informa-
tion in nested packets is adjusted appropriately before it
is delivered to its destination host.

• Routing of DHCP packets: As we discuss in
Section IV-B, a virtual network view is associated with a
DHCP lease. Therefore our deception server also serves
as a DHCP server and assigns a lease associated with a
virtual network view to a host that tries to connect to
the network. Our SDN controller installs rules to match
DHCP discover packets and forward them to the decep-
tion server. Additional rules ensure that response packets
are correctly transmitted to the requesting host.

• Routing of DNS packets: To guarantee reachability
of legitimate services in a network, DNS requests are
handled by our deception server as we explain in
Section IV-D. To route DNS packets, the appropriate
flow rules between nodes and the deception server are
established.

• Routing packets to and from honeypots: The use of hon-
eypots enables our system to make a network appear
significantly larger than it actually is. Honeypots are
also used as decoys for adversaries. With the use of
dynamic header rewriting (explained later), we are able
to make one honeypot appear as many different network
endpoints to a scanner. The flows from and to honey-
pots are monitored and flow statistics are analyzed by
the SDN controller for the identification of malicious
hosts.

• Dynamic address translation: To hide the real addresses
in a virtual network view, our system rewrites packet
headers on-the-fly according to the specification of a
virtual network view. Hereby we differentiate between
the real IP address, which is seen in the real underly-
ing network and the deception IP address which is only
seen by a host that has a specific virtual network view
assigned.

• Packet tagging and queueing: To adjust delay and band-
width for the simulation of network characteristics, the
flow rules to control traffic deployed by our SDN con-
troller forward packets through specified queues on a
switch to regulate bandwidth and add a tag to each
packet. We configure the queues for bandwidth regu-
lations according to a fair queuing policy to limit the
negative impact of bandwidth regulation on benign traffic.
The addition of artificial delay is done in a decentralized
way at the end host by sending reply packets through
a pre-deployed queuing discipline at the end host. With
this architectural design we aim to prevent the forma-
tion of a system bottleneck. We explain this in detail in
Section IV-E.

By using SDN flow rules to steer and control the network
traffic, RDS also acts as a distributed access control list. If
a view node tries to send packets to a host that is set as
being invisible in the virtual network view, the packet is
silently dropped and not forwarded. Besides constructing SDN
flow rules based on the virtual network view description, our
SDN controller also analyzes flow statistics to detect mali-
cious activity. Upon the identification of a host with scanning
activity, based on its transmitting traffic pattern, the SDN con-
troller notifies an administrator and removes the appropriate
flow rules from the switch to isolate a malicious host. We
further discuss this in Section V-F.

1) On the Benefits of Using SDN: Software Defined
Networking provides a unique platform for efficient and
centralized network management. The framework provided
by SDN to define traffic rules on a packet flow level,
allows network operators to dynamically deploy security
policies with a higher granularity compared to common
network stacks. This ability, to programmatically control
network traffic in an agile way, enables the implementation
of novel, policy driven, defense approaches as we present in
this paper.

To maintain a scalable number of flow rules on a SDN
switch, which can impact performance [21], [42], a best prac-
tice for the deployment of flow rules is a re-active way which
we implement in our system. Here, an initial packet trig-
gers the generation of a flow rule in the controller which
is dynamically deployed on the data plane and automatically
expires after an idle timeout (30 seconds in our implementa-
tion). In Section VI we evaluate the scalability of flow rules
to implement our network deception system.

D. Deception Server

To process the traffic forwarded through the flow rules to
our deception server, we implement different handlers which
receive packets from nodes connected to the network and craft
responses according to the view specification. It has six main
components that are essential for deceiving malicious scanners
as introduced as follows:

• DHCP Handler: The DHCP handler component acts sim-
ilar to a DHCP server and is responsible for assigning
DHCP leases to nodes which want to connect to the
network. Every virtual network view is associated with
a DHCP lease that is assigned for a specific duration to
a node connecting to the network. If a device sends a
request for a DHCP lease to our deception server, the
deception server triggers the creation of a virtual network
view and assigns a DHCP lease.

• ARP Handler: All transmitted ARP requests are for-
warded by appropriate flow rules to our deception server.
Based on the specifications in a virtual view file, our
deception server crafts an ARP response packet and sends
it to the requesting node. If the requesting node is not
allowed to connect to the address requested in an ARP
packet, the deception server will not send a response.
In case the view specification places the requested node
outside of the requester’s subnet, an ARP packet with the
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address of the according virtual gateway/router is sent in
response.

• ICMP Handler: ICMP error messages are forwarded by
specific flow rules to our deception server. Packets such as
a Destination Unreachable messages often contain nested
packets with the original information received by the
transmitting host. The information in nested packets is not
automatically updated in SDN switches, therefore we are
forwarding such packets to our deception server where
the information in nested packets is adjusted according
to the specified virtual network view before the packet is
delivered to its destination.

• DNS Handler: To guarantee the reachability of legiti-
mate services, our deception server also handles DNS
requests, and creates appropriate responses. Hereby, the
DNS entries are specific to network views assigned to
nodes and are removed with the expiration of virtual
network views. In RDS, the overhead caused by updat-
ing DNS entries is acceptable since it only has to be
done with the assignment of a new network view, which
duration is usually between a few hours to multiple days.

• Gateway Simulator: To appear realistic, some endpoints
are simulated by our deception server which sends appro-
priate response packets if a probing packet is received.
Certain components of a virtual network view do not have
an actual endpoint. Such endpoints are for example virtual
routers or gateways that connect virtual subnetworks.

• Route Simulator: The route simulator is responsible
for the deception of network mapping functions such
as traceroute. If a malicious scanner is sending prob-
ing packets to a specific node with TTL values lower
than the number of hops specified in the virtual network
view, our deception server answers on behalf of a virtual
gateway/router that is on the path between the scanning
source and destination.

E. Traffic Queuing and Delay Handling

Besides using scanning methods to map a network topol-
ogy as we discuss in Section V-C, advanced attackers can also
use techniques, such as analyzing the statistics of round trip
times or the measured bandwidth on links to find inconsis-
tencies between the physical network characteristics and the
observed topology. This would enable attackers to differentiate
real from virtual nodes. To thwart such attack strategies, we
introduce methods to guarantee consistency of collected mea-
surements. By using queuing and introducing artificial delay
to certain packets, we change the link bandwidth LB → LB′
and the host delays HD → HD′ so that the physical charac-
teristics an attacker is able to observe from a virtual network
view are transformed into characteristics that are controlled
by our system PNC → PNC′. The introduction of noise into
measurements will significantly limit the accuracy of attack
methods analyzing collected measurements as stated in [38].

We calibrate the listed physical features of a network for
honeypots and real hosts with the generation of a virtual
network view. In the following, we discuss our approach

Fig. 4. Queuing disciplines to delay outgoing packets.

for configuring delay handling and traffic queuing, so that
honeypots and real hosts are indistinguishable for adversaries.

Adjusting the characteristics, bandwidth and delay, mea-
sured from a view node to real hosts has to be done with
caution since we want to limit the overhead we artificially
introduce to benign traffic in the network.

Bandwidth and delay measurements to a benign server
under realistic traffic conditions will naturally show some vari-
ance depending on the current network status. To guarantee
consistent characteristics, our systems initially collects mea-
surement data from real servers and uses those as the basis to
generate characteristics for virtual network views.

1) Delay Consistency: To control the delay in virtual
network views, RDS deploys a system of traffic queuing dis-
ciplines at each destination host in a decentralized way, which
contain multiple traffic control classes to adjust the delay of
reply packets from a destination host depending on its loca-
tion in a virtual topology. The virtual delay δv observed to an
endpoint can be seen as the sum of existing delay δe plus the
introduced artificial delay δa as shown in Equation 1.

δv = δe + δa (1)

Based on the hop distance in a virtual topology from a view
node to a real server, we calculate the artificial delay δa that
has to be added to the existing delay in a virtual network
view. To add the delay δa to a host which is placed in a vir-
tual network view, we calculate the artificial delay δhd

a for
hop distance hd and delay outgoing packets at the specific
host. To delay packets from a node we use the traffic control
functionality on Linux hosts. Since hosts can be placed in dif-
ferent virtual network views concurrently, we install a system
of qdiscs (queuing disciplines) [3], where each queue adds a
specific artificial delay δhd

a to outgoing packets as shown in
Figure 4.

The queuing disciplines as shown in Figure 4 are calibrated
on system startup and deployed on each honeypot and real
host, which represent potential attack targets, in a network. To
determine which packets to assign to which queuing discipline,
the SDN controller in our system deploys flow rules which tag
packets to a destination host according to their virtual network
view. Based on the VLAN tag, the system of queuing disci-
plines at a destination host can identify the packet and delay
its outgoing transmission by δhd

a . The tag on reply packets is
removed at the switch, as we show in Figure 5.

To guarantee consistency of hosts within subnets we need
to ensure that the combined delay δhd

v of δe and δhd
a in a subnet

s with a hop distance of hd to the view node is consistent for
all honeypots and real hosts in s.
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Fig. 5. Tagging packets to add artificial delay.

Algorithm 1 DetermineDelayValues()
1: delayRH = {}, delayHP = {}
2: deviationRH = {}, deviationHP = {}
3: hopdistance = {}, hopdelay = {}, hopdev = {}
4: delayartificial = {}, devartificial = {}
5: for all node in network do
6: ds[] = collect list of delay samples to node
7: calculate average delay ds from ds[]
8: calculate standard deviation σ from ds[]
9: if node is real host then

10: delayRH [node] = ds
11: deviatiosRH [node] = σ

12: end if
13: if node is honeypot then
14: delayHP[node] = ds
15: deviatiosHP[node] = σ

16: end if
17: hopdistance[node] = hopcount to node
18: end for
19: calculate average delay per hop hopdelay based on delayRH
20: calculate average deviation σ based on delayRH
21: for all hop distance hd in maximum virtual network diameter do
22: if hopdelay[hd] and hopdev[hd] can be interpolated then
23: hopdelay[hd] = interpolate(hd,hopdistance,delayRH )
24: hopdev[hd] = interpolate(hd,hopdistance,deviatiosRH )
25: else
26: hopdelay[hd] = hd · hopdelay
27: hopdev[hd] = hd · σ

28: end if
29: end for
30: for all node in network do
31: for all hop distance hd in maximum virtual network diameter do
32: δhd

v = hopdelay[hd]
33: σhd

v = hopdev[hd]
34: if node is real host then
35: δhd

a = δhd
v - delayRH [node]

36: σhd
a = σhd

v - deviatiosRH [node]
37: end if
38: if node is honeypot then
39: δhd

a = δhd
v - delayHP[node]

40: σhd
a =σhd

v - deviatiosHP[node]
41: end if
42: delayartificial[node][hd] = δhd

a
43: devartificial[node][hd] = σhd

a
44: end for
45: end for
46: return [delayartificial,devartificial]

The calibration of consistency features for honeypots is
performed based on the features observed from real nodes.
In the case of honeypots we have to ensure that the phys-
ical characteristics of honeypots in a subnet s correlate to
the characteristics of real hosts in the same subnet s, so that
an adversary is not able to differentiate these two types of
endpoints in a virtual network view.

To configure the system of queuing disciplines for each host
as shown in Figure 4, we have to determine the base delay δhd

a ,
as well as the bounds +/ − σa to randomly select the delay
time from a uniform distribution for an outgoing packet for
each queue. We determine these factors in Algorithm 1.

TABLE I
MEASURED AND CALCULATED DELAY VALUES (IN [MS])

We calibrate the introduced queuing disciplines based on
collected measurement data from existing hosts in the network.
Algorithm 1 starts by sampling delay data from real hosts
and honeypots in the network and calculate the average delay
ds and standard deviation σ from a node (lines 5-18). Based
on the collected data we calculate the average delay per hop
distance hopdelay and the average standard deviation per hop
distance σ (lines 19-20).

If enough hosts can be sampled for delay, δv values for
certain hop distances can be interpolated (lines 23-24). If
interpolation is not possible, for example if a delay value for a
specific hop distance is outside the collected data, we multiply
the hop distance hd with the average delay and standard devi-
ation (lines 26-27). This results in an array of delay values,
hopdelay[δ1

v , δ2
v , δ3

v , . . . , δN
v ], where N is the maximum hop

distance in a virtual network view. A similar array is generated
for the standard deviation per hop.

In the remaining part of Algorithm 1 (lines 30-45) we use
the determined data to calculate the artificial delay δhd

a and
standard deviation σ hd

a for each real node in the network and
for 1...N hop distances hd to configure the introduced queuing
disciplines.

Since artificial delay can only be added to packets, but not
subtracted, the existing delay δe to a node has to be considered
for the placement in a virtual network view. The returned list
of delay values in Algorithm 1 indicates the minimum hop
distance a host has to be placed in a virtual network view from
the view node to guarantee consistent delay measurements.
For example, if the list [−δ1

a,−δ2
a,−δ3

a, δ4
a, δ5

a] is returned,
the corresponding node has to be placed at least 4 hops away
from the view node in a virtual topology.

To evaluate the correctness of Algorithm 1 we compare the
distribution of generated artificial delays with the distribution
of measured delays with a Chi2 test. At the top part of Table I
we show measured delay data in our network from different
hosts. The bottom part shows the calculated δhd

a and σ hd
a for

a host with δ1
e = 1.46 and σ 1

e = 0.07. The bottom part of
Table I also shows the resulting δv values and the Chi2 test
results which show that the artificially generated host delays
are statistically indistinguishable from the measured delay dis-
tributions. If the calculated Chi2 test result is greater than α
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(we use a 95% significance level α = 0.05) the compared dis-
tributions are statistically indistinguishable, which is the case
in all our evaluated samples.

2) Bandwidth Consistency: Since real hosts and honeypots
can be used in multiple different virtual network topolo-
gies, we use queuing in our system to guarantee a minimum
bandwidth for each view node and make the observed link
bandwidths to network endpoints consistent. To implement
QoS in our system, we use the OpenFlow functionality to for-
ward packets to a queue id instead of forwarding them directly
to a switch port. On a switch, we have to configure a list of
queues to control the bandwidth to virtual network endpoints.
The actual queues have to be configured on the switch which
can require vendor specific commands. For the development of
RDS we used OpenVSwitch [7], which can also be executed
on bare-metal hardware switches. Here a QoS policy has to
be created to implement queues which aim to stay between an
upper and a lower bound of a specified bandwidth.

To configure queuing for controlling the rate to nodes, we
have to specify the overall rate of the QoS policy QoSrate, the
guaranteed rate on each queue Queuemin and the maximum
rate on each queue Queuemax. To configure the QoS policy, it
has to hold that the overall QoS rate is less than the sum of
all guaranteed rates: (QoSrate ≤ ∑N

i Queuei
min).

To provide a fair share of bandwidth to each user, we con-
sider the available link rate LR to a host in our network. To
determine the minimum guaranteed rate to a node Queuei

min,
we divide the overall rate LR by the number users N of this
link, so that Queuei

min = LR / N. We can set the maximum
available rate for a user to Queuemax = LR.

With this configuration the rate a user can observe to dif-
ferent network endpoints depend on the current traffic load
and network status. This models the bandwidth distribution
between hosts how it would usually be done in a network
with a fair queuing scheduling policy.

F. System Prototype

We release a proof of concept prototype implementation of
RDS at [10] as open-source. The prototype can be tested in
standard SDN emulators, such as Mininet, and on hardware
platforms that support the required OpenFlow functions. We
would like to point out that the implementation of our system
we release is a research prototype that gives a proof of concept
of the introduced deception techniques and was used in the
experiments we discuss in the evaluation section. The released
software is not at a status that is ready for the market or can
directly be deployed in a production network.

V. EVALUATION

In the following we present experimental results about the
performance of our proposed defense system.

A. Test Environment

To evaluate our system in a real world setting and measure
its performance, we emulate a SDN based enterprise network
as shown in Figure 6. Our test network consists of multiple
connected subnetworks, where the nodes in each subnetwork

are connected with an instance of OpenVSwitch [7] which
is controlled by a SDN controller. To emulate the function-
ality of our test-network we use Mininet [4]. All hosts in
our test-network are running Ubuntu Linux 14.04. The topol-
ogy of the test-network, we use for our experiments, is a
medium-size enterprise network with four subnetworks that
contain different servers providing services to the clients on
the network. The servers host services such as Web-servers,
printer server, database server and shared network directories
which are constantly used by the clients.

Multiple client endpoints in our test-network have virtual
network views simulated (we visualize two in Figure 6), and
therefore see a different network than the real underlying
network and have access to a subset of the endpoints and
services provided in the real network.

In Figure 6 we also show how our system can be deployed
in a distributed manner. Deployment of distributed SDN con-
trollers is an ongoing research topic, for the purpose of this
work to evaluate the introduced defense techniques, we imple-
mented the required functionalities in our SDN controller to
forward network traffic appropriately between different con-
nected subnetworks. Two of the SDN controllers that control
the subnetworks where nodes have virtual network views simu-
lated, are the RDS controllers. The remaining SDN controllers
steer the network traffic in two subnets where currently no
nodes have virtual network views simulated. These controllers
can be off-the-shelf such as layer 2 learning switches imple-
mented in platforms like POX, OpenDayLight or Floodlight.
Figure 6 also shows the deployment of our deception servers;
each deception server handles the simulation of the virtual
network views in a subnetwork. We want to demonstrate with
this setup that our system can be deployed in a distributed
manner and is therefore able to scale to larger networked
systems.

B. Invalidation of Attacker Information

Many targeted cyber attacks, such as Advanced Persistent
Threats (APT) [1], [13], [15], [36], [46], depend on network
reconnaissance and discovery missions where the internal
topology of a network is mapped. The purpose of an attacker
with such missions is to gather the set of information T (as
discussed in Section III-A) for further attack planning.

As discussed in Section IV, RDS generates a new virtual
network view with every assignment of a DHCP lease to a host
in a network. The duration of a DHCP lease can be adjusted
by network administrators and can be in the order of a few
hours to multiple days. RDS is able to assign a different vir-
tual network view to every host in a network. Using RDS,
the features of the real network NF are transformed into the
feature set of a virtual network view NF′; this will invalidate
the information collected by an attacker, by transforming T
into T ′. This is periodically achieved with every assignment
of a new DHCP lease that is correlated to a different virtual
network view. In a newly assigned virtual network view the
topology, network size and address space, honeypot and host
placement has changed after the assignment of a new DHCP
lease and the connecting host sees a new network topology
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Fig. 6. Emulated enterprise test network.

that is significantly different than the previous one. Targeted
cyber attacks, such as APT, which depend on collecting infor-
mation over long periods of time about the composition of a
network are not able to gather consistent information about the
system infrastructure necessary to plan further attack steps.

To show that our system achieves deception and makes
an attacker believe a virtual network topology is real, we
evaluated our deception system with NMAP [5] and multiple
adversarial scanning strategies we discuss in the next section.
We performed hundreds of NMAP scans in virtual network
topologies simulated by our deception system. All matched
the exact specification of the virtual network view, thus achiev-
ing complete deception and minimizing the amount of useful
information an attacker gathers in the set T ′. We also evalu-
ated virtual network views generated by our system with the
recently proposed open source tool Degreaser [19]. Degreaser
is designed to detect network deception techniques. We tested
multiple virtual network views with different strategies and
configurations, Degreaser did not label any hosts or honeypots
in these views as being a decoy. This shows that our system is
able to make virtual network views appear realistic and believ-
able. In addition to invalidating the collected information of
adversaries, we will show in the following that our system
significantly delays the detection rate of vulnerable hosts by
attackers and show how the gained time is used to identify the
source of malicious reconnaissance traffic.

C. Defending Malicious Network Scanning

To evaluate the effectiveness of RDS against network
scans we implemented a number of common network
scanning techniques which are discussed in the litera-
ture and are known to be used in malware as discussed
in [18], [25], [26], [39], and [40]. To implement these scan-
ning strategies we used the python library libnmap [9],
which provides an API to NMAP [5], as well as the python
framework Scapy [11].

As discussed in [40], an adversarial scanner selects a scan-
ning space (�) which denotes the IP address space that is
considered for selecting addresses to probe. In an enterprise
network, the considered scanning space is usually selected

based on the IP address prefix of the network an adversary
aims to probe. Also the address distance (λ), which specifies
the numerical difference between the IP addresses of a scan-
ner and its scanned target, has an impact on the performance
of a scanning technique. The following introduced scanning
techniques actively probe a network for its features NF to
retrieve an information set T which can be used for further
attack planning.

Uniform scanning probes random hosts within the scan-
ning space �. Each probe transmitted by a scanner, has an
equal probability to detect a potentially vulnerable host in the
network. The detection time of vulnerable hosts in this scan-
ning strategy depends on the size of the overall scanning space
�. IP addresses to probe are chosen randomly, therefore every
transmitted probe has an equal chance of

n

�
to hit a vulnerable

host h if a network contains n vulnerable hosts.
Local-preference scanning, as discussed in [25] and [40],

is a biased scanning technique where certain regions of a
network are chosen based on information that can be retrieved
from the local host. In current state-of-the-art networks,
hosts are not uniformly distributed within the address space.
An adversarial scanner can increase the speed to detect
vulnerable hosts when it scans the IP space where hosts
are more densely distributed as explained in [40]. Local
preference scanning takes advantage of this and scans IP
addresses that are closer to its own local address and there-
fore have a smaller address distance λ(h), with higher
probability.

Preference sequential scanning probes the IP address
space sequentially, i.e., in an additive way. In preference
sequential scanning we assume that a scanner is using local
preference and selects a start IP address with a small address
distance λ(h) to its host IP address.

Non-preference sequential scanning is similar to prefer-
ence sequential scanning, but selects its starting IP address in a
random manner within the scanning space �. Sequential scan-
ning without local preference can show a better performance
than preference sequential scanning, since the selected start
IP address can be closer to addresses of vulnerable hosts than
the local address of the scanning host.
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Fig. 7. Average vulnerable host infection rate over time for the scanning strategies Preference Parallel, Local Preference, Preference Sequential, Non-
Preference Sequential, Uniform with and without our deception system. Vulnerable hosts are distributed evenly over the address space within 12 virtual
subnets.

Fig. 8. Average vulnerable host infection rate over time for the scanning strategies Preference Parallel, Local Preference, Preference Sequential, Non-
Preference Sequential, Uniform with and without our deception system. Vulnerable hosts are distributed evenly over the address space within 25 virtual
subnets.

Preference parallel is a technique which is using paral-
lelism that can significantly increase the performance of a
scanning method, but has the drawback of causing a large
amount of network traffic which makes it easy to detect. This
technique can also be seen as a simulation of a type of cooper-
ative scanning or divide-and-conquer scanning where multiple
hosts cooperate with each other to find vulnerabilities. With
this strategy multiple probing messages are sent out in parallel
using local preference. We use 12 parallel probing messages
in our experiments.

D. Delaying Adversarial Scanners

To show the effectiveness of our deception system in delay-
ing the identification of vulnerable (real) hosts by adversaries,
we executed the introduced malicious scanning techniques in
the real underlying network without our system in place and
compare it to the performance of the scanning techniques when
virtual networks are simulated for the nodes in the underlay-
ing network. In our evaluation we consider every real host
that is visible in a virtual network view as being a potential
target that can be corrupted by a cyber attack and is therefore
vulnerable.

A simplified visualization of the test-network for this exper-
iment is shown in Figure 6. We measured the detection ratio
of vulnerable (real) hosts in relation to scanning time over
multiple iterations and show the averaged results. For each
scanning technique, the scanning performance is shown with
(RDS) and without (No RDS) our system deployed.

In Figure 7 and 8 we present experimental results when
the introduced adversarial scanning techniques are applied in
simulated virtual networks. In the shown charts, we present
the detection ratio of vulnerable (real) hosts which are placed
in a virtual network on the Y axis in relation to the scanning
time shown on the X axis.

The results presented in Figure 7 are measured when virtual
networks with 12 subnets and up to 25 hosts per subnetwork
are simulated and vulnerable (real) hosts are distributed evenly
over the virtual network. RDS delays a malicious scanner in

our experimental scenario by ∼40 minutes on average. This
delays attackers scanning for the network for vulnerable hosts
by a factor of 10 on average, which is sufficient to identify a
malicious scanner and isolate it from the network as we will
show in Section V-F.

In Figure 8 we present the performance of the intro-
duced adversarial network scanning techniques when virtual
networks with 25 subnets and up to 45 hosts per subnet-
work are simulated and vulnerable (real) hosts are distributed
evenly over the virtual network. Due to the simulation of vir-
tual networks that are significantly larger, our system is able
to delay an adversarial scanner by a factor of 22 on average
resulting in an additional ∼100 minutes on average until an
attacker is able to identify a vulnerable host.

Delaying reconnaissance missions with our deception
system depends on the size of the simulated virtual network
and the placement of vulnerable hosts which is achieved by
transforming the feature set NF of the real network into
the feature set NF′ of a virtual network as discussed in
Section III-C. In further experiments we were able to delay
adversaries seeking to identify vulnerable hosts of up to a fac-
tor of 115. This can be achieved by simulating large enough
virtual networks and using a strategy where vulnerable hosts
are placed with high address distance from the scanning
source. This shows that for the defense against adversarial
network reconnaissance and discovery, the principle: The big-
ger the haystack, the longer the search is simple but very
effective.

E. Defending Analysis of Network Characteristics

As we discuss in Section IV-E, attackers can use techniques,
such as statistical analysis, to determine certain features of a
network and differentiate real hosts from honeypots. To ana-
lyze the techniques introduced in Section IV-E, we collect
response time statistics from hosts and apply a number of
statistical tests to detect if we are able to differentiate vul-
nerable hosts from honeypots. In the performed experiment,
the real hosts, which we consider as vulnerable, are located
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Fig. 9. Comparison of host response times with and without consistency.

closer to the view node and therefore have a faster response
time compared to our honeypot server.

In Figure 9 we show a comparison of measured host
response times. The red squares show the response times
of honeypots when the consistency techniques introduced in
Section IV-E are applied, while the purple diamonds show real
hosts without the consistency techniques applied. In this case
the real hosts are outliers and can be identified by applying
methods to detect statistical outliers.

The green circles show the adjusted host response times
with our consistency techniques in place, which can no longer
be differentiated from the response times observed from hon-
eypots. Depending on the network status and traffic load, the
existing delay of hosts may vary. To address such cases a
higher granularity of queuing disciplines can be defined so
that the SDN controller is able to dynamically change the tag-
ging of packets and send them to a different queuing category
at the destination to adjust the artificial delay δa.

In Table II we show a comparison of the statistical test
results to distinguish real hosts from honeypots based on the
observed response times. As defined by the National Institute
of Standards and Technology (NIST) [2] we use three different
tests for the detection of statistical outliers to differentiate real
hosts from honeypots. In the shown experiment we simulate
virtual subnetworks with 50 hosts, consisting of 45 honeypots
and 5 real hosts. We compare the test results when our consis-
tency module is deactivated and activated. If the response times
are not adapted to be consistent, the applied tests are able to
distinguish the real hosts from the honeypots within a virtual
subnetwork. When our consistency modules are activated the
response times of honeypots correlate to the response times
of real hosts which makes them statistically indistinguishable.
For the results shown in Table II we configured the honeypot
response times by using Algorithm 1.

F. Identification of Malicious Nodes

In a software defined network, the controller is able to
request flow rule traffic statistics from a switch. In our RDS,
the SDN controller monitors the flow rules between honey-
pots and real hosts. We assume that in general benign network

TABLE II
HOST DETECTION BASED ON RESPONSE TIME

Fig. 10. Average time to detect a malicious scanning source and remaining
time until the first vulnerable host is identified by a scanner in a virtual
network with 12 subnets and 25 hosts per subnet.

nodes are not sending probing messages to random addresses
or establish connections to honeypots. In case a node starts to
send packets to honeypots a malicious activity can be assumed
and the transmitting node can be observed more closely. In
our RDS, the SDN controller periodically requests flow statis-
tics from the SDN switches to check how many packets where
transmitted to honeypots. If our controller notices traffic from a
node to honeypots, we flag the transmitting node as a potential
scanner and isolate it from the network. Using flow statistics
has already been proven as being an efficient technique for
real time detection of anomalies as discussed in [24].

In Figure 10 we show the average identification times of a
malicious scanning host in a our test environment by our SDN
controller, and the remaining time until a scanning node will
detect the first vulnerable (real) host in a virtual network. The
virtual topologies used to evaluate these results have similar
characteristics as used for the results presented in Figure 7.

As shown, by analyzing the SDN flow rule statistics our
system is able to identify a malicious scanning source before
it detects any vulnerable hosts. Upon the detection of a scan-
ning node, our system is able to isolate a potentially malicious
host by updating the appropriate flow rules from the SDN
switch and notify an administrator. Updating flow rules in SDN
switches can be done in a fraction of a second as discussed
in [42]. As we present in Figure 10, in the test environment
RDS identifies scanning activity at least 30 seconds before
any vulnerable hosts will be detected, this gives our system
enough time to isolate a potentially malicious host from the
rest of the network.

VI. SYSTEM PERFORMANCE

The increased security we seek to achieve with the simu-
lation of virtual networks, has associated costs. In the case
of RDS, the cost to defend malicious reconnaissance missions
can be quantified in terms of the latency overhead added to
legitimate traffic and the number of required SDN flow rules
for the simulation of virtual networks.
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Fig. 11. Average number of OpenFlow rules in a SDN switch per minutes
of system operation time over 100 hours.

To guarantee consistency in the measured physical charac-
teristics in a virtual network view, we introduce artificial delay
and control the link bandwidth as discussed in Section IV-E.
The latency overhead on benign users if our consistency mod-
ule is activated is defined by the artificial delay δa and standard
deviation σa added to the existing delay δe of a network end-
point. The total delay, δv = δe + δa, also depends on the
placement of a node in a virtual topology. As explained in
Section IV-E1, the artificial delay δa increases with the virtual
hop distance of a host in a virtual topology to the view node.
Therefore the upper bound of delay overhead introduced by
our system can be defined as (δhd

a +σ hd
a ), where hd is the hop

distance to the view node. The overhead in terms of bandwidth
capacity is bounded by the guaranteed rate Queuei

min we assign
to a traffic queue for a host i as we discuss in Section IV-E2.

To evaluate the overhead in terms of the number of SDN
rules generated by our system, we measured the current num-
ber of rules in a switch’s memory per minute while our system
was deployed in a network. In Figure 11 we show data col-
lected over more than 100 hours of operation of our system,
while various scanning activity was performed by multiple
hosts that had virtual network views with 12 subnets and 25
honeypots per subnet simulated. As shown, the vast majority
of the time, less than ten OpenFlow rules where installed on a
switch and overall more than 500 rules where installed for less
than 15 minutes during an operation time of more than 100
hours. On average we measured 5.4 rules in a switch’s memory
during more than 100 hours of operation time of our system.
As we discuss in Section IV-C1, a number of SDN rules of
this magnitude can be handled by modern SDN switches and
should not cause any noticeable performance impact.

VII. CONCLUSION

In this paper we define a deception approach as a defense
strategy against network reconnaissance and introduce the
design and implementation of RDS. We introduce a generator
to create virtual network views, based on our defined deception
approach, to camouflage critical resources and place vulner-
able endpoints at locations in a virtual network topology to
significantly increase their detection time by an adversary. By
analyzing the traffic flows, our system is able to identify the
source of adversarial reconnaissance traffic and isolate a mali-
cious host from the network. The evaluation we present in this
work shows that our system is able to delay malicious network
scans up to a factor of 115, while controlling the performance
impact on legitimate traffic in the network.
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