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Abstract—Sharing and working on sensitive data in dis-
tributed settings from healthcare to finance is a major chal-
lenge due to security and privacy concerns. Secure multiparty
computation (SMC) is a viable panacea for this, allowing dis-
tributed parties to make computations while the parties learn
nothing about their data, but the final result. Although SMC
is instrumental in such distributed settings, it does not provide
any guarantees not to leak any information about individuals to
adversaries. Differential privacy (DP) can be utilized to address
this; however, achieving SMC with DP is not a trivial task, either.
In this paper, we propose a novel Secure Multiparty Distributed
Differentially Private (SM-DDP) protocol to achieve secure and
private computations in a multiparty environment. Specifically,
with our protocol, we simultaneously achieve SMC and DP in
distributed settings focusing on linear regression on horizontally
distributed data. That is, parties do not see each others’ data and
further, can not infer information about individuals from the final
constructed statistical model. Any statistical model function that
allows independent calculation of local statistics can be computed
through our protocol. The protocol implements homomorphic
encryption for SMC and functional mechanism for DP to achieve
the desired security and privacy guarantees. In this work, we first
introduce the theoretical foundation for the SM-DDP protocol
and then evaluate its efficacy and performance on two different
datasets. Our results show that one can achieve individual-level
privacy through the proposed protocol with distributed DP, which
is independently applied by each party in a distributed fashion.
Moreover, our results also show that the SM-DDP protocol
incurs minimal computational overhead, is scalable, and provides
security and privacy guarantees.

Keywords—Secure computation; differential privacy; multiparty;
distributed differential privacy; predictive models; regression

I. INTRODUCTION

Secure and private computation of statistical models is
increasingly used in different operational settings from health-
care [1]–[3] to finance [4] and security sensitive applications [5],
[6]. Given the distributed nature of these applications, security
and privacy are mostly achieved by utilizing Secure Multiparty
Computation (SMC). SMC allows distributed parties to jointly
compute an agreed function over their private inputs without
revealing those inputs to other parties. Each party learns the
final result, but no other information. However, SMC has a
major privacy concern for a targeted individual as it does not
guarantee that the final result of distributed computation would
not leak any information about an individual in a sensitive
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Figure 1. Illustration of secure multiparty computation with distributed and
centralized differential privacy methods.

dataset. Privacy of individuals and their data can be easily
violated. [7]–[9]. Therefore, there is a need for a mechanism,
where individual parties do not see each others’ inputs and
further can not infer their data from the final constructed model.
Indeed, combining SMC with Differential Privacy (DP) could
solve this privacy problem as DP introduces sufficient noise into
the final result to prevent any leakage about a single individual.

However, combining SMC with DP is not a trivial task.
In an ideal case, a trusted data collector1 can collect the data,
aggregate them and add calibrated noise to the results of
the queries (predictions) (Centralized DP (CDP) in Fig. 1).
However, a trusted party does not exist in many real life
scenarios. This technique would easily leak the model of the
sensitive data to an untrusted data collector who collects the
final model of the data. Even for scenarios with a trusted data
collector, relying on the centralized entity makes it a single
point of failure for the entire data collection mechanism.

On the other hand, another mechanism involves applying a
data sanitization technique (Distributed DP (DDP) in Fig. 1)
directly on the local data held by the parties. In this case, the
untrusted data collector can not infer individuals’ data since
sufficient noise is injected by DP to hide the individuals’ data.
However, this mechanism requires a meticulous analysis since
it may lead to a divergent or excessive amount of accumulated
noise due to DP at the data collector end. As such, this process
may lead to a significant accuracy loss in the final models,

1A data collector is either one of the parties or a third party. Every discussion
here applies to both of the types.
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which may cause catastrophic consequences in, for example, the
healthcare domain. Therefore, enabling distributed differential
privacy on local data with differential privacy guarantees on
final results is a challenging problem.

In this paper, we are motivated to provide a solution
to this problem. Specifically, we propose a novel protocol
for achieving Secure Multiparty Distributed Differentially
Private (SM-DDP) computations on sensitive data. The protocol
provides the guarantees of both SMC and DP. SMC is provided
through Homomorphic Encryption (HE) [10] while DP is
provided via Functional Mechanism (FM) [11]. An important
characteristic of FM is that it injects noise into the feature
matrices (i.e., coefficients of objective function), which can
be computed independently by each party in a multiparty
computational environment. We explore this feature of FM and
apply it to linear regression using our SM-DDP protocol, but
it can be applied to the computation of any statistical model
function that allows independent calculation from the local
statistics. We show that the accumulated noise in our protocol
is still bounded and convergent by using the infinite divisibility
property of Laplacian distribution [12]. Finally, we evaluated
SM-DDP protocol’s computational efficacy on linear regression
using two real-world datasets. We compare our results with the
use of Centralized DP (CDP) in a multiparty setting as in Fig. 1.
The intuition is that the distributed setting of DP (DDP), which
is proposed in this paper, would cause a greater accuracy loss
than the typical client-server setting of SMC systems. However,
we show exactly same trade-off can be achieved using the
SM-DDP protocol that is presented in Fig. 3. The extensive
evaluation results indicate that the proposed SM-DDP protocol
yields minimal computational overhead—less than a minute for
20 parties with 32 attributes and 10K samples. The individual
parties obtain better accuracy than that would be obtained
from a single party model. Finally, SM-DDP is scalable while
providing security and privacy guarantees.

Contributions: In this paper, we summarize our contributions
as follows:

• We proposed a novel Secure Multiparty Distributed
Differentially Private (SM-DDP) protocol to achieve
secure and differentially private computations in dis-
tributed multiparty settings. This protocol can be
applied to any statistical model function that allows
the calculation of global model from the independent
local statistics.

• We implemented the SM-DDP protocol on linear
models. We showed that SM-DDP allows parties
to compute regression model on pooled data while
providing secure computation and differential privacy
guarantees.

• We showed that the accumulated noise in our protocol
is bounded and convergent. This allows parties to build
a model function, which offers the individual-level
privacy against an untrusted data collector.

• We evaluated the performance of the proposed protocol
using two different datasets. The results demonstrated
that the parties compute the models in less than a
minute while preserving the security guarantees of
SMC and DP.

Organization: The rest of the paper is organized as follows:
We present the related work in Section II. In Section IV, we
give the technical preliminaries about SMC and DP methods
that we utilized. Then, in Section III, background about
regression analysis and specifically distributed calculation of
linear regression is given. In Section V, a novel protocol for
SM-DDP computation of a statistical model function f and
its application to linear regression is presented. Furthermore,
we give the experimental results for the application of our
protocol to linear regression in terms of accuracy, scalability,
computational overhead, and security trade-offs in Section VI.
Finally, we discuss some of the related issues in Section VII
and then we conclude the paper in Section VIII.

II. RELATED WORK

There have been many works on the secure computation of
linear regression over distributed databases [13]–[17]. In these,
the threat model is considered as a third party that does not
have access to data, but curious about it. However, one of the
parties may want to release the model function after computing
function securely, which still poses threats to the individuals [7]–
[9]. DP copes with this problem as it injects a certain amount
of noise to the results of the queries to mask the individuals in
the database. Indeed, there have been different works about the
DP [18]–[21] and particularly about differentially private linear
regression [11], [22]–[27]. However, these works consider DP
without SMC. Although they are useful, they only provide
privacy guarantees that the output of queries does not carry
information about the individuals.

Approaches combining SMC and DP to provide both
individual-level privacy and secure computation would be
more secure. However, combining DP and SMC is not trivial;
indeed, it is a rather challenging task since the application of
centralized DP just after SMC in client-server settings would
leak the model to an untrusted data collector, which results in
a privacy violation of individuals in the database. Applying
distributed DP directly on the local data held by the parties
is more secure, but if each user independently injects noise
randomly, it may lead to an excessive or uncontrollable amount
of accumulated noise at the data collector end. Recent works
focused on combining SMC and DP [28]–[30], but none of
them focused on linear regression. As pointed in [11], the main
reason behind this is that the regression analysis involves an
optimization problem, which makes it harder to control the
required amount of noise, and if the data is also distributed
among parties, that makes it much more difficult to control the
privacy-accuracy trade-off introduced by DP.In another relevant
work [31], a combination of SMC and DP is proposed for
aggregate classifiers. However, this approach injects the noise
to the optimum model parameter. This resulted in excessive
noise in the global model and significant loss in the accuracy.
Particularly, the experimental evaluation shows that when the
classifier is locally trained, the error rate obtained from locally
trained classifiers is higher than the optimum error rates that
could be obtained from a centralized approach. However, in
our work, we take a different approach from this work. We
deploy FM [11], which adds noise to local statistics, which
provides the same model as the centralized approach. Lastly,
even though a similar idea is proposed in [32], it is not analyzed
in detail.
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III. LINEAR MODELS

In this section, we start by introducing the linear models.
We, then, show how to compute linear regression in a distributed
fashion.

A. Background

Assume a database D consists of n observations {xi,yi}n
i=1,

where xi is a vector of d attributes (i.e., xi = (xi1,xi2, . . . ,xid)
and yi is a scalar response. The aim is to find a model function
f : X → Y that can predict yi ∈ Y as close as its actual value
using the attributes xi ∈ X . The type of the regression model
is decided by the type of the model function. For instance, in
linear regression, the model function is simply a straight line.
Model function f takes model coefficients w = (w1,w2, . . . ,wd)
and xi as inputs and outputs a prediction for the value of yi.
The deviations between predicted value and the actual response
value are calculated through a loss function � : Y ×Y →R. The
global value of w over the training data D is calculated by the
objective function. We denote the objective function by L and
it is calculated as follows:

L( f ,D) =
n

∑
i=1

�( f (xi,w),yi). (1)

B. Distributed Linear Regression

Regression is a statistical approach that explores the
relationships between a set of independent variables called
attributes and one dependent variable called response. In
regression, the relationship between the attributes and the
response is modeled using a prediction function.

In linear regression, L2-norm of the objective function
(i.e., �( f (xi,w),yi) = (w · xi− yi)

2) that is minimized in the
matrix form as follows:

w∗ = argmin
w

L( f ,D) = argmin
w

m

∑
i=1

(w · xi− yi)
2, (2)

where m is the number of tuples in the database. To calculate
the regression in a distributed way, we represent the regression
objective by minimizing with the Maximum likelihood Estima-
tion (MLE). MLE allows us to obtain the global solution of
the Equation 2 as follows2:

w∗ = (X�X)−1X�Y. (3)

We characterize the model parameter w of each party using
three parameters:

Pi = X�i Xi,Vi = X�i Yi,Oi = Y�i Yi (4)

Each party computes its local statistics < Pi,Vi,Oi > and
shares with other parties. Then, the global values of P ,V and
O are computed using the shared local statistics as follows:

P = X�X =
[
X�i1 |...|X�in

]
⎡
⎢⎣

Xi1
...

Xin

⎤
⎥⎦=

n

∑
k=1

X�ik Xik =
n

∑
k=1

Pk

2A unique solution only exists if (X�X)−1 is non-singular. In other cases,
there are techniques for solving Equation 2 [33]; however, it is out of the
scope of this paper.

V = X�Y =
[
X�i1 |...|X�in

]
⎡
⎢⎣

Yi1
...

Yin

⎤
⎥⎦=

n

∑
k=1

X�ik Yik =
n

∑
k=1

Vk

O = Y�Y =
[
Y�i1 |...|Y�in

]
⎡
⎢⎣

Yi1
...

Yin

⎤
⎥⎦=

n

∑
k=1

Y�ik Yik =
n

∑
k=1

Ok,

where n is the number of parties in the collaboration. Using
this, the global coefficients can be computed as follows:

w∗ = (X�X)−1X�Y = P−1V . (5)

In order to calculate the error of the global function, we
rewrite the objective function in Equation 2 in terms of the
local statistics (i.e., matrix form) as follows:

m

∑
i=1

(w · xi− yi)
2 = (Xw−Y)�(Xw−Y)

= ||(Xw−Y)||2
= w�X�Xw−2w�X�Y+Y�Y
= w�P w−2w�V +O,

(6)

where || · || denotes the Euclidean norm. We note that even
though we do not need O to calculate the global coefficients,
it is used for computing the error of the model.

IV. TECHNICAL PRELIMINARIES

Preserving the privacy of the users and data is a long-
studied problem in the area of cryptography [16], [18], [22],
[30], [34], [35]. As a result of these long-term studies, there are
several theoretically well-studied tools that can be employed
to protect the data and user privacy such as Secure Multiparty
Computation (SMC) [34] and Differential Privacy (DP) [20].
In this section, we introduce the essentials of the secure
computation and differential privacy primitives to understand
the implementation of SM-DDP algorithms. Particularly, we
introduce Homomorphic Encryption (HE) to provide SMC and
Functional Mechanism (FM) to provide DP guarantees.

A. Secure Multiparty Computation

SMC allows the computation of a function with multiple
inputs from different users while keeping the users’ inputs
hidden from each other. For instance, each party Pi in a n-
party environment holds input xi learns nothing but the output
f (x1, ...,xn) of a computation. In the literature, SMC schemes
are mostly achieved via either the Yao’s garbled circuits [36]
or Homomorphic Encryption (HE) [10]. In the following, we
use HE to provide guarantees of secure computation.

Homomorphic Encryption (HE)- HE provides an ability to
evaluate the functions directly on the encrypted data while
keeping the data confidential. The primary advantage of
the HE is that it does not require any interaction between
the parties other than the data exchange. That is, there is
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m1,m2 f (m1,m2)

c1,c2 f (c1,c2)
Eval(...)

Encpk(...)

Decsk(...)

f (...)

Figure 2. HE operations of encryption, evaluation, and decryption (pk is the
public key, sk is the secret key, and f is the function desired to be computed).

no additional communication complexity. However, it may
introduce computational overhead on large plaintexts. Recent
works improved its performance significantly by introducing
new techniques like single instruction, multiple data (SIMD)
operations [37] or using different mathematical assumptions
like learning with errors LWE [38], [39] (see [40] for a recent
survey about HE).

An HE scheme is primarily characterized by four operations:
key generation (KeyGen), encryption (Enc), decryption (Dec),
and evaluation (Eval). KeyGen is the operation that is used to
generate a secret and public key pair for the asymmetric version
of HE or a single key for the symmetric version. KeyGen,
Enc and Dec are similar to the ones used in conventional
encryption schemes. However, Eval is an HE-specific operation,
which takes ciphertexts as input and outputs a ciphertext
corresponding to a functioned plaintext. Fig. 2 illustrates a
commutative diagram depicting the relationship among the four
major operations. The simplified version of the diagram shows
only one homomorphic encryption with two ciphertexts [41].

B. Differential Privacy (DP)

DP is a statistical disclosure control technique ensuring
that the outputs of queries do not leak information about the
individuals found in a dataset. It injects a certain amount of
noise into the replies of the queries so that while it is not
possible to infer an individual-level leak, the output of the
query is still “almost” the same. In other words, query results
of a data release algorithm for two closely similar data sets
give the same answer. The formal definition of ε−differential
privacy is formulated as follows [42]:

Definition 1. A randomized algorithm M is ε-differentially
private if for all data sets D and D′ differing on at most one
element and all S⊆ Range(M ),

Pr[M (D) ∈ S]≤ exp(ε)×Pr[M (D′) ∈ S], (7)

where Range(M ) shows all possible outputs of the function
(query), f .

The definition states that two adjacent sets D and D′, which
differs at most one element, act approximately the same against
a query3 defined by a given mechanism M. ε can be considered
as the degree of the privacy guarantee and the amount of
information which can be learned from a result of a single

3The queries or functions correspond to the predictions in the statistical
models.

query is bounded by exp(ε). Since ε is too small, its guarantee
is preserved for consecutive queries. Differential privacy works
on the release mechanism and does not modify data or the
format of the data in any way.

The parameter ε, called privacy budget, is the main
parameter to tune the balance between privacy and accuracy.
Decreasing ε increases the privacy guarantees while decreasing
the accuracy. The common mechanism to control the amount
of noise that needs to be added is Laplace Mechanism (LM).
In this case, the noise is drawn from a Laplace Distribution.
The probability density function of LM is as follows:

Lap(x|b) = 1

2b
exp

(
−|x|

b

)
, (8)

for scale b and center 0. It is shown that LM preserves ε-
differential privacy [42].

Definition 2. Given any function f :N|X | →R
k, the mechanism

is a Laplace Mechanism M if:

M (x) = f (x)+η, (9)

where x ∈ X and η is a vector of independent and identically
distributed random variables drawn from Lap(Δ f/ε).

In addition to the ε, sensitivity is another important parame-
ter in DP to determine the optimum noise amount. It is defined
as follows:

Definition 3. For a function f : D→ Rk, sensitivity of f is

Δ f = max
D,D′

‖ f (D)− f (D′) ‖ (10)

for all D,D′ differing in at most one element.

The sensitivity shows the maximum number of elements
that can change in two different queries.

Functional Mechanism (FM)- FM is an algorithm that is used
to provide differential privacy guarantees for a set of linear
models [11]. It is an extension of the Laplace Mechanism. The
goal of the algorithm is injecting the noise to the polynomial
coefficients of a model’s objective function. This is accom-
plished with the mechanism of objective perturbation [22].
The optimization of the noisy objective function gives new
model parameters that ensure the ε-privacy of each element in
a database. Algorithm 1 [11] presents the functional mechanism.

Algorithm 1 [11] Functional Mechanism (D, L , ε)

Input: Let L( f ,D) =
J

∑
j=1

∑
φ∈Φ j

n

∑
i=1

λφiφ(w)

1: Set Δ = 2max
w

n

∑
i=1

||λφi ||1
2: for each j ∈ {0, ...,J} do
3: for each φ ∈Φ j do
4: λφ = ∑n

i=1 λφi +Lap(Δ
ε ) � noise in ject

5: end for
6: end for
7: Compute new w∗ = argmin

w
L( f ,D) � optimize

8: return w∗
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Figure 3. Secure Multiparty Distributed Differentially Private (SM-DDP) protocol for the computation of a linear model coefficients. The parties create a ring
topology and the Data Collector (DC) initiates the protocol. The protocol can be applied to any statistical model function that allows independent calculation of
local statistics.

As illustrated in Algorithm 1, FM takes a dataset D, the
polynomial representation of the objective function L, and the
privacy budget ε as inputs and it returns the differentially private
model coefficients w∗. It firstly injects noise drawn from a Lapla-
cian distribution (Lap(Δ

ε )) into all the coefficients λφi of the
polynomial representation of the objective function and then the
optimization is performed using noisy coefficients. It is shown
that it satisfies ε-differential privacy [11] i.e., the predictions
using w∗ does not leak any information about an individual
in the database data. For example, if we have a quadratic
objective function in the matrix form of w�P w+w�V +O,
where P , V , and O are the coefficients of the polynomial
representation of the objective function. FM firstly injects noise
into the coefficients, which results in w�P ∗w+w�V ∗+O∗.
Then, the optimization problem (i.e., w∗ = argmin

w
L( f ,D)) is

solved using P ∗, V ∗, and O∗.

V. SECURE AND DIFFERENTIALLY-PRIVATE DISTRIBUTED

COMPUTATIONS

In this section, we propose a novel protocol for secure
multiparty distributed and differentially private (SM-DDP)
computations through the use of homomorphic encryption (HM)
and functional mechanism (FM). We evaluate its application
to linear regression and discuss its extension to the logistic
regression that can be used in supervised classification.

Consider n parties P1, . . . ,Pn, where each has private hori-
zontally distributed database D1, . . . ,Dn. Each database consists
of a certain number of tuples in the format of ti = (xi,yi).
The parties would like to jointly build a linear model of the
pooled database f (D), where D = ∪n

i=1Di so that the security
guarantees of both SMC and DP are preserved. Before running

the protocol, each party in the collaboration agrees on the
function to be computed and compute a collection of local
statistics Mi = (Li1 , . . . ,Lit ). We assume the linear model can
be computed using the local statistics generated by each party
independently i.e., ηglobal = f (M1, . . . ,Mi, . . . ,Mn). We define
the guarantees and goals of our protocol as follows:

• Individual privacy: No information leaks about the
individuals in the private databases held by the parties,
i.e., tuples ti is not leaked.

• Data privacy: Information about the statistics of the
data does not leak in the databases held by the parties,
i.e., the statistics about the data Mi is not leaked.

• Correctness: The parties receive the correct output of
the model.

We note that using SMC only would violate the individual
privacy while using DP only violates the data privacy. In our
combined protocol, we achieve individual privacy through FM
and data privacy through HE and since all operations in the
protocol are deterministic, the correctness is satisfied by design.
We note that we assume there is a secure channel between
parties to exchange messages.

Fig. 3 illustrates our protocol to be able to perform SM-DDP
computations. It is initiated by one of the parties called data
collector (DC). In the setup phase, DC generates a key pair
(pki,ski) and computes its own local statistics Mi independent
from other parties. Then, in the next phase, DC applies DP
by injecting (adding) noise drawn from a random distribution
that satisfies ε-differential privacy into its local statistics. The
encryption of the noisy local statistics is transmitted to the
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Algorithm 2 Computation of Linear Regression using SM-DDP protocol

Input: Each party holds a database in the format of Di = (xi,yi)
n
i=1 i.e., horizontally partitioned

The global privacy budget ε.
Output: The differentially private global regression model of D = ∪n

i=1Di

Setup: Runs at the party Pi (DC)
1: (pki,ski)← KeyGen() � generate the key pair of HE
2: ηmax, ηmin ←ComputeMinMax(D) � calculate the global max and min of each attribute via [43]
3: Δ← 2(d +1)2 � calculate the global sensitivity, d is the number of attributes

Secure Regression Protocol: each party Pj runs locally
Input: Received aggregate statistics for all previous parties as:

ξ: Epki(∑
j−1
k=1 P ∗k )

κ: Epki(∑
j−1
k=1 V ∗

k )

δ: Epki(∑
j−1
k=1 O∗k )

4: Dnorm
j ← (D j−ηmin)/(ηmax−ηmin) � perform min-max normalization

5: P j ← X�j X j, V j ← X�j Y j, and O j ← Y�j Y j � compute local statistics
6: εi ← αε � compute its share from the global privacy budget
7: (P ∗j ,V ∗

j ,O∗j )← FM.NoiseIn ject(P j,V j,O j) � apply FM noise injection

8: C∗j =
(
Epki(P

∗
i ),Epki(V

∗
i ),Epki(O

∗
i )
)

� perform encryption
� add its own encrypted local statistics to the received aggregate statistics

9: Epki(∑
j
k=1 P ∗k )← Epki(P

∗
j )+ξ

10: Epki(∑
j
k=1 V ∗

k )← Epki(V
∗
j )+κ

11: Epki(∑
j
k=1 O∗k )← Epki(O

∗
j )+δ

12: Send( Epki(∑
j
k=1 P ∗k ), Epki(∑

j
k=1 V ∗

k ), Epki(∑
j
k=1 O∗k ) ) to Pj+1 � send updated aggregate statistics to the next party.

Reconstruction: runs at the party Pi (DC)
Input: Received aggregate statistics for all parties as:

ξ: Epki(∑
n
k=1 P ∗k )

κ: Epki(∑
n
k=1 V ∗

k )
δ: Epki(∑

n
k=1 O∗k )

13: P ∗ ← Dski

(
ξ
)

� acquire the cleartext

14: V ∗ ← Dski

(
κ
)

� acquire the cleartext

15: O∗ ← Dski

(
δ
)

� acquire the cleartext

16: (P ∗,V ∗,O∗)← FM.Optimize(P ∗,V ∗,O∗) � apply optimization

17: w∗ ← P ∗−1V ∗ (i.e., w∗ = argmin
w

w�P ∗w+w�V ∗+O∗) � compute the global parameters

18: Err← w∗�P ∗w∗+w∗�V ∗+O∗
19: Publish( w∗, Err ) to all parties.

� Use of Model:
20: f (xi,w∗)← ∑n

i=1 xiw∗i for an input xi ∈ Xi � computes the normalized predictions
21: ypred ← f (xi,w∗)(ηmax−ηmin)+ηmin � perform de-normalization to get actual values

next party Pi+1. The next party Pi+1 also computes its local
statistics and injects noise into them. The result is encrypted
with pki and the function is evaluated homomorphically with
the inputs of parties Pi and Pi+1. The protocol is continuous in
the same way, where parties are located in a ring topology. At
the final step, the securely evaluated function result is used by
the party Pi which decrypts it with ski. In the end, Pi reveals
the differentially private global model.

A. Case Study: Linear Regression

In this subsection, we show how to compute linear regres-
sion using our protocol proposed in Fig. 3. Particularly, we
use functional mechanism shown in Algorithm 1 by splitting it

into two parts: NoiseIn ject() and Optimize(). In NoiseIn ject(),
the noise drawn from Laplacian distribution (Equation 8) is
injected into each coefficient of the polynomial representation
of the objective function. Then, in Optimize(), the optimization
problem of the objective function is solved by applying
regularization and spectral trimming introduced in [11] in order
to avoid unbounded noisy objective function. Moreover, in FM,

it is assumed that

√
∑d

i=1 x2
id ≤ 1. Therefore, a secure maximum

computation is performed to calculate ηmin and ηmax in setup
phase of Algorithm 2, where ηmin (resp. ηmax) is vector consists
of global minimum (resp. maximum) of each attribute. Before
applying FM, each party normalizes its database using the
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global maximum and minimum values. This guarantees that
the local sensitivity of the parties is always same as the global
sensitivity as we focus on the horizontally distributed data.

Algorithm 2 illustrates the computation of linear regression
algorithm using the protocol presented in Fig. 3. In linear
regression, the global model is calculated by simply aggregating
locally calculated noisy statistics. While aggregating the local
statistics, the noise of each party is aggregated as well.
Therefore, it is necessary to make sure the final model will
not violate ε-differential privacy nor cause an unbounded noise.
Particularly, the noise is injected to each coefficient as follows:

Pi
∗ = Pi +Lap

(Δ
εi

)
. (11)

Then, when DC computes the global model, the local statistics
are summed up as follows:

P ∗ =
n

∑
i=1

Pi
∗ =

n

∑
i=1

(
Pi+Lap

(Δ
εi

))
= P +

n

∑
i=1

Lap
(Δ

εi

)
. (12)

Moreover, V ∗ and O∗ can be computed similarly. In all P ∗,
V ∗, and O∗, the noise term is ∑n

i=1 Lap
( Δ

εi

)
. In order to make

sure that the accumulated noise is also Laplacian distribution,
we use the following theorem.

Theorem 1. Let Y , Y1, Y2... be non-degenerate and symmetric
i.i.d. random variables with variance σ2 > 0, and let νp be a
geometric random variable with mean 1/p, independent of the
Yi’s. Then, the following statements are equivalent (Proof is
given in [12]):
(i) Y is stable with respect to geometric summation, i.e., there
exist constants ap > 0 and bp ∈ R, such that

ap

νp

∑
i=1

(Yi +bp) = Y ∀p ∈ (0,1) (13)

(ii) Y possesses the Laplace distribution with mean zero and
variance ν2. Moreover, the constants ap and bp must be of the
form: ap =

√
p, bp = 0

From the theorem above, a Laplace distribution can be
calculated by summing up several Laplace distributions in a
certain form. In other words, the sequence of partial sums,
ap ∑

νp
i=1(Yi+bp) converges to a Laplace distribution under beta-

distributed ap. We addressed requirements of the theorem in
Algorithm 2 by multiplying the noise distribution of local
parties with a number drawn from the geometric distribution
i.e., ap ∑n

i=1 Lap
( Δ

εi

)
, where ap is a geometric random variable.

VI. PERFORMANCE EVALUATION

In this section, we give the experimental results for the
application of our SM-DDP protocol to linear regression. Table I
presents the notations used throughout the experiments. We first
demonstrate how we set the parameters that are introduced in
the distributed setting. Particularly, the success probability of the
geometric random variable p in Equation 13 and α introduced
in Algorithm 2 is investigated. After experimentally tuning
these two parameters, we test the final protocol with a different
dataset without random sampling directly as it is collected.
During evaluation, we focus on the following questions: (i)
Can we obtain a differentially private global linear regression
model from differentially private local statistics? (ii) Does our

TABLE I. ABBREVIATIONS AND NOTATIONS USED IN EXPERIMENTS

Notation Description Range

DDP Distributed Differential Privacy -

NoDP No Differential Privacy -

CDP Centralized Differential Privacy -

ε global privacy budget {0.1,0.2,0.4,0.8,1.6,3.2,6.4,12.8}
εi local privacy budget εi = αε
α local privacy ratio i.e., α = εi/ε {1,10,100}
p success probability of the geo-

metric random variable, ap

{0.1,0.5,0.9}

n number of parties [1,100]

L number of levels in HElib {4,6}
nslots number of slots in HElib calculated by HElib

s minimum of nslots {82,162,242,322,402}

approach support up to 100 parties? (iii) How long does it take
to complete the protocol? (iv) Does it guarantee the security
and privacy of both data and individuals? We analyzed and
discussed each of these questions in Sections VI-A-VI-D.

Dataset- We used two real-world datasets to evaluate the
algorithms of our protocol. Both datasets include highly
sensitive data. The first dataset is Integrated Public Use
Microdata Series (IPUMS) [44]. It contains 370K decennial
census records of people living in the US with 14 attributes,
7 of which are demographic information and the rest are
working hours per week, the number of years residing in
the current location, the number of children, the number
of automobiles, and the annual income. The attributes are
used to predict the annual income of a person. The second
dataset is the warfarin dataset collected by the International
Warfarin Pharmacogenetics Consortium (IWPC) [45]. The
dataset contains clinical and genetic data of patients to predict
the stable therapeutic dose of warfarin. Clinical data includes
demographics, background, and phenotypic attributes. Genetic
data includes genotype variants of CYP2C9 (*1, *2 and *3)
and VKORC1 (one of seven single nucleotide polymorphisms
in linkage disequilibrium). 21 sites in 9 countries and four
continents contributed to the dataset. We used a subset of this
dataset wherein patient samples include no missing attributes.
Overall, we used 1400 complete patient samples from seven
medical institutions. We used IPUMS dataset to experimentally
set the parameters of our protocol and we tested the final
protocol with the IWPC dataset, where each party corresponds
to a medical institution in the dataset.

Evaluation Metrics- We applied stratified cross validation to
split the dataset into training and test sets. To evaluate the
model’s prediction accuracy, we used Mean Squared Error
(MSE) as it is a commonly used metric for linear regression
analysis. It is calculated as 1

n ∑n
i=1(ŷi− yi), which gives the

average of the squared errors between actual (yi) and predicted
(ŷi) values in n data samples. The lower values of MSE shows
better predictions. Finally, it is worth mentioning that all the
experiments show 100 independent runs and their average is
reported in this work.

Experimental Setup- To evaluate the computational overhead,
we used open-source HE library (HElib) [46], which implements
BGV homomorphic cryptosystem [38] and we ran experiments
on 16-core Intel Xeon CPU at 1.90 GHz running Linux
Server. In BGV, a prior level L should be set before initiating
the computation. In addition to the level L, HElib also has
a parameter nslots which defines a number of slots for
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Figure 4. Tuning p . Variation of error is tested for several values of p. As a
result, p = 0.1 is not stable or convergent; p = 0.5 is convergent, but error is
much higher than CDP for especially small ε values. Hence, we chose p = 0.9
as the best case.
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Figure 5. Tuning εi. Variation of error is tested for several values of local
privacy budget εi for α = εi/ε. For α = 1, error is too high for small ε values.
For α = 10, error is lower than CDP and and it converging to the value as
NoDP. For α = 1, error is low, but it converges to a value higher than NoDP.
Hence, we chose α = 10 as the best case.

the utilization of SIMD techniques [37], [47]. HElib allows
encrypting multiple messages at one time through its SIMD
features by packing the messages into the independent slots
of an array. We note that the parameter L affects not only
the number of allowed homomorphic operation but also all
the other timings and the key size. Therefore, the parameter
L should be optimized so that the minimum L is set without
failure of the decryption. To do so, we first calculated the table
of a number of homomorphic operations for each level L and
we used the minimum level for each number of the party.

Furthermore, in our experiments, the data encrypted is
the local statistics i.e., not the raw data. The size of the
local statistics is considered the same for all the parties. The
homomorphic operation computed for linear regression is the
element-wise matrix addition. To take advantage of HElib
library SIMD features, we converted matrices into arrays and
the parameter of minimum number for nslots was set to the
length of the array for each statistics. This prevents data loss
during the conversion. We did not utilize any multi-threading
technique during our experiments to see the lower bound of
the performance of our protocol. Thus, our results are lower
bound and can be improved with the use of any multi-threading
technique.

A. Accuracy Analysis

We evaluate the accuracy-privacy trade-off of distributed
evaluation of differential privacy on linear regression. Specif-
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Figure 6. A real test: Warfarin dataset with 7 parties with εi = nε and p = 0.9.
Exactly the same trade-off as the centralized differential privacy is obtained.

ically, we compare our results with the centralized approach.
In Centralized Differential Privacy (CDP), the accuracy of
the regression depends only on the global privacy budget
ε. However, in Distributed Differential Privacy (DDP), each
party has its own local privacy budget εi and DDP is applied
independently by each party. We note that this is a particular
property of FM. In FM, data is first normalized and the optimum
noise amount is only determined by the number of the attributes
which is same for all parties. Therefore, the size and the range
of the local statistics are same for all the parties; it does not
depend on the number of tuples in the local database. Since all
parties are identical, we choose the same local privacy budget
εi for all the parties. Finally, in our fist three experiments
(Fig. 4, 5, and 7), we used IPUMS dataset and split it into
parties using random sampling methods. In the last experiment,
we used IWPC dataset for accuracy evaluation. We split the
dataset based on the given medical institutions (See Fig. 6)

The first set of experiments was conducted to analyze the
optimum value of p, which is a parameter of geometric random
variable ap given in Equation 13. In theory, ap is required to
obtain a Laplace distribution in the global model, thereby it
is required to be able to satisfy ε-differential private model.
To present the impact of the parameter p on the accumulated
global noise, we kept the party number constant for several
values of p and various ε values (εi = ε). To do so, each party
multiplies the noise drawn from Laplace distribution with a
random variable ap, which is a geometric random variable with
success probability p. We compared the error rates of CDP,
DDP, and NoDP algorithms in terms of MSE.

Fig. 4 illustrates the error and privacy budget trade-off
for various values of p. We varied p from {0.1,0.5,0.9}. We
found that DDP with p = 0.1 does not converge to a value
while increasing the value of ε. However, p = 0.5 and p = 0.9
converges to the same value as NoDP as it is desired and when
p is 0.9, it gives similar results to CDP. In the sequel, we tuned
p = 0.9 and used it in our experiments.

In the second set of experiments, we were interested in
finding the optimal local privacy budget εi for a predetermined
global privacy budget. In other words, we assume all parties
agree on a global privacy budget according to the sensitivity
of the dataset, which was indeed calculated by the number of
attributes. We denote the ratio of local privacy budget to the
global privacy budget as α, i.e., α = εi/ε. We first tried the
value of α less than 1, the result of DDP was much worse than
CDP. This is because smaller εi means more noise injected
locally by each party than the centralized approach. This noise
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Figure 7. Impact of number of parties in the collaboration for εi = nε and
p = 0.9.

decreases the accuracy significantly. Therefore, we changed α
from {1,10,100} and compared the results with CDP and NoDP
mechanisms. The results are presented in Fig. 5. We found that
if α is the number of parties, which is 10 in this experiment,
the plot gets closer to CDP and the error is converging to NoDP,
which is the desired case. Therefore, in the rest of experiments,
we set α = n, where n is the number of parties.

So far, we tuned the parameters of our approach experimen-
tally. Now, in our last experiment, we evaluated the efficiency
of our protocol using the dataset (IWPC dataset) collected from
multi sources. We applied DP locally on each party’s dataset
and calculated the global model and error. Our goal was to
see the feasibility of our approach in a real case and test the
feasibility of our approach.

In this experiment, we set εi = nε, p = 0.9 as we found
in earlier experiments. We compared the performance of CDP,
DDP, and NoDP algorithms. Fig. 6 shows MSE rates for varying
ε. We found that the same trade-off with CDP can be achieved
by applying DP while training the classifiers locally. We note
the DDP is also converging to the error of NoDP when ε
approaches infinity as desired.

B. Scalability Analysis

In this set of experiments, we evaluated the scalability of
our proposed protocol. We set εi = nε, where n is the number
of parties; as we found α = n is optimum and for a different
number of parties, we split the dataset into the number of
parties (n) by using random sub-sampling. Then, each party
applies DP locally, but we note that the pooled dataset is still
the same.

Laplace distribution is infinitely divisible [12]. Therefore,
the accumulated error of global model should not be affected
by the number of parties. We ran the analysis for some users
ranging from 1 to 100 and present the results in Fig. 7. The
results demonstrated an interesting point, which is when ε =
0.01, even though CDP is not stable, DDP is. On the other
hand, when ε is 1 or 100, the error rate stays the same even
for 100 parties. This means our protocol is scalable even for
100 parties.

C. Computational Overhead Analysis

In this subsection, we evaluate the computational overhead
of linear regression presented in Algorithm 2. We found that DP
algorithms do not introduce computational overhead. Therefore,
we only evaluate the computational overhead of our SMC

algorithm, which consists of three main parts: Key generation
of HE, min-max, and regression computation.

Fig. 8 shows the computation time for different dimension
sizes. Fig. 8a presents the time for secure computation of finding
global min-max of each attribute. It increases quadratically with
the number of parties. However, this algorithm runs at the setup
phase, so it is performed before initiating the computations.
There are two interesting results worth to note. First, the time
of secure regression computation increases linearly as a number
of parties in the collaboration increases, but with a different
slope for dimension, which is illustrated in Fig. 8. The reason
for the linear increase is that the number of encryptions and
homomorphic evaluations are directly scaled by the number of
parties in the group. Second, similar results hold for the overall
computation time (see Fig. 8c), but as a minor change since
the key generation time shifts the lines in the y-axis and also
increases the scale. However, similar to the secure min-max
computation, the execution of the key generation algorithm
does not require all parties in the group to be online since it
occurs in the setup phase. On the other hand, we also note
that size of the local database of each party does not have an
impact on the total computational time since parties only share
the local statistics, which is dependent on the attribute size,
instead of the raw data. As can be seen in Fig. 8c, the overall
computation of the protocol including both offline and online
phases for 20 parties with 32 attributes and 10K samples is less
than a minute. Hence, our SM-DDP protocol yields minimal
computational overhead.

D. Security and Privacy Analysis

In this section, we discuss the security and privacy guar-
antees of SM-DDP protocol given in Fig. 3. As all the
communication among the parties is encrypted, the security of
the algorithm is simply reduced to the security of underlying HE
scheme. A leak can occur only if DC is corrupted since the data
is encrypted using the public key generated by DC. However,
even in this case, DC will only obtain the noisy local statistics,
not the raw data, and at the end of the protocol, DC has only
control over the aggregated data while reconstructing the global
model and it can not know which party contributed to the result.
While the protocol is running, the view of all the other parties
consists of homomorphically encrypted data. Therefore, if the
given homomorphic encryption scheme is semantically secure,
the parties can not distinguish the corresponding plaintexts. So,
the computation is private even in the presence of an honest,
but curious adversary model presented in [48]. Therefore, data
privacy is preserved.

On the other hand, we both showed theoretically (Sec-
tion V-A) and experimentally (Fig. 6), a differentially private
global model can be obtained through the locally applied DP.
Therefore, it is not possible that an untrusted data collector
can infer information about the individuals. Furthermore, the
collaboration comes with a price as the local parties used εi
instead of ε. Therefore, the local privacy guarantee is decreased
by α (i.e., εi is increased by α), even though the global model’s
guarantee is still the same, meaning that data privacy against an
untrusted DC is still preserved and the local privacy guarantee
is important only if the underlying SMC is bypassed. Finally,
since we set α as the number of parties in the collaboration,
each party should take this into consideration while deciding
on the global privacy budget.
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Figure 8. Performance evaluation of SM-DDP computations of linear regression algorithm.

VII. DISCUSSION

The preceding analysis showed how to achieve secure
multiparty computation and differential privacy in distributed
settings focusing on linear regression on horizontally distributed
data. That is, parties do not see each others’ inputs and further
can not infer individuals’ data from the final constructed model.
A limitation of our algorithm is that we assume parties do
not collaborate to learn a target party’s input. However, if the
party that generates the key pair conspires with the parties that
are neighbors of a target in the ring topology, the noisy local
statistics (ξ, κ, δ) of the victim can be extracted. More generally,
this is known as active corruption, where the data collector is an
active attacker and has control over the other corrupted parties.
Our protocol in Fig. 3 achieves only a collusion threshold of
1, but the distributed DP algorithm that we present here can
easily be adapted to work with recent solutions in SMC such
as [34], which is secure in the presence of an active adversary
corrupting up to n−1 of the n parties. To extend our work with
these more secure SMC schemes, it suffices to use the noisy
output of the functional mechanism instead of using the local
statistics directly as input to the underlying SMC algorithm.

In our evaluation, we used HElib, an implementation of
the fully homomorphic operation, to compute generic results.
It supports both addition and multiplication; however, while
computing the linear regression coefficients, we only used the
addition operation. The performance of secure computation
can be improved by using other libraries such as Paillier
cryptosystem [49], which is only additively homomorphic
cryptosystem.

Finally, our algorithms can be easily extended to other
algorithms such as logistic regression in a supervised classifi-
cation setting. In logistic regression, each party independently
computes a score vector ui and information matrix Ii. Instead
of injecting noise to the local statistics as in linear regression,
noise can be injected into ui and Ii vectors. However, the
optimization of objective function differs in logistic regression
as it requires several iterations. Fortunately, there exist some
techniques that let implementing the iterations for computing
the secure multi-site logistic regression [7]. Combining this
secure multi-site logistic regression algorithm with FM would
solve this issue. We defer the detailed application of this method
to future work.

VIII. CONCLUSION

In this work, we have proposed a novel Secure Multiparty
Distributed Differentially Private (SM-DDP) protocol to achieve
private computations in a multiparty environment as an appli-
cation in linear regression. Using homomorphic encryption
and functional mechanism, we first presented a protocol to
provide the guarantees of secure multiparty computation and
differential privacy. Then, we built the algorithms that would
allow distributed parties to compute a global model while
preserving the privacy of their data and individuals found
in the dataset. Any statistical model function that can be
independently calculated by sharing the local statistics of the
parties can be computed through this protocol. Finally, we
evaluated the performance of the proposed protocol on two
datasets, namely, warfarin dose and budget predictions. Our
findings show that a party can achieve individual-level privacy
via our proposed protocol for distributed differential privacy,
which is independently applied by each party in a distributed
fashion. Moreover, the experiment results demonstrated that the
proposed SM-DDP protocol is both feasible and scalable that is
its computational overhead is minimal and overall computation
time is sub-linear with the number of parties. Indeed, SM-
DDP protocol provides security and privacy guarantees while
being feasible and scalable. Our future work will extend
the algorithms outside the linear models and investigate the
accuracy and performance trade-offs of other algorithms. We
are also planning to compare the performance of Laplacian
mechanism used in FM with other DP mechanisms such as
Exponential Mechanism [21] and Sample-and-aggregate [50].
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[34] I. Damgård, V. Pastro, N. Smart, and S. Zakarias, “Multiparty com-
putation from somewhat homomorphic encryption,” in Advances in
Cryptology–CRYPTO 2012, 2012.

[35] F. K. Dankar, “Privacy preserving linear regression on distributed
databases,” Transactions on Data Privacy, 2015.

[36] A. C. Yao, “Protocols for secure computations,” in Foundations of
Computer Science, 1982.

[37] N. P. Smart and F. Vercauteren, “Fully homomorphic simd operations,”
in Designs, codes and cryptography, 2014.

[38] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “fully homomorphic
encryption without bootstrapping,” in Theoretical Computer Science,
2012.

[39] Z. Brakerski and V. Vaikuntanathan, “Efficient fully homomorphic
encryption from (standard) lwe,” SIAM Journal on Computing, 2014.

[40] A. Acar, H. Aksu, A. Selcuk Uluagac, and M. Conti, “A Survey on
Homomorphic Encryption Schemes: Theory and Implementation,” ArXiv
e-prints, Apr. 2017.

[41] C. Gentry, “Computing on the edge of chaos: Structure and randomness
in encrypted computation.” in Electronic Colloquium on Computational
Complexity (ECCC), 2014.

[42] C. Dwork, A. Roth et al., “The algorithmic foundations of differential
privacy,” Foundations and Trends R© in Theoretical Computer Science,
2014.
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