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Abstract

Works in communication security policy have recently focused on general-purpose policy lan-

guages and evaluation algorithms. However, because the supporting frameworks often defer en-

forcement, the correctness of a realization of these policies in software is limited by the quality

of domain-specific implementations. This paper introduces the Antigone communication security

policy enforcement framework. The Antigone framework fills the gap between representations

and enforcement by implementing and integrating the diverse security services needed by policy.

Policy is enforced by the run-time composition, configuration, and regulation of security services.

We present the Antigone architecture, and demonstrate non-trivial applications and policies. A

profile of policy enforcement performance is developed, and key architectural enhancements iden-

tified. We conclude by considering the advantages and disadvantages of a broad range of software

architectures appropriate for policy enforcement.

Keywords: Security Policy, Cryptographic Protocols, Distributed Systems, Component Systems,
Software Architecture
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1 Introduction

A security policy is enforced when its semantics are realized by software behavior. Enforcement can

be as simple as the dropping of a packet by a firewall, or as complex as the execution of a leader

election protocol in a secure group. How an application or service enforces policy has a direct affect

on the security and efficiency of its operation.

Communication security policies have historically been crafted for the specific systems they sup-

port [60, 25]. The architects of these systems explicitly define the range of security behaviors desired.

Therefore, security is addressed only inasmuch as the architects foresee the needs of its future users.

Recent efforts within the security and policy communities have investigated general-purpose repre-

sentations that vastly increase the scope of policy [7, 45, 11, 41], and hence address the needs of a

much larger constituency. While these efforts have achieved many of the stated goals, they have not

yet considered general-purpose policy enforcement.

This paper introduces the Antigone general-purpose communication security policy enforcement

architecture. Antigone fills the gap between general-purpose representations and enforcement by

defining a framework in which the diverse services required by policy can be easily implemented

and integrated. We consider the number of systemic challenges presented by such an architecture,

and show how arbitrary session-oriented policy representations can be enforced. The architecture of

Antigone and its integration with several representative security services is detailed. The performance

of Antigone is measured and discussed. We show that the per-message overheads are measured in

the tens of micro-seconds, and the burst-rate bandwidth of network communication is reduced by

less than 15%. The flexibility of the architecture is demonstrated through several applications and

policies. We conclude by considering the trade-offs of other possible architectural designs.

Antigone does not implement policy-enforcing software, but provides APIs and an associated

framework for its definition and use. Built upon these APIs, Antigone mechanisms are software com-

ponents that implement security services. For example, one can implement the IPsec Encapsulating

Security Payload (ESP) [24] data transform in an Antigone mechanism. Note that such services often

require additional infrastructure to function. ESP is dependent on the cryptographic keys identi-

fied by a key management service. Furthermore, to be general, the implementation of ESP must

inter-operate with arbitrary services supporting the key management function (e.g., Kerberos [37],

IKE [15]). Antigone provides the framework in which these services can be implemented and their

operation flexibly coordinated.
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The term security policy has been used to represent many aspects of computer security [35, 59,

48, 7, 5, 3, 30]. This work considers the session-oriented provisioning and authorization policies

associated with communication in distributed systems [29]. A provisioning policy defines the services

and configurations used to implement security (e.g., cryptographic algorithms, data transforms). An

authorization policy defines the rights of the participating parties. Antigone policies govern sessions.

Antigone sessions are defined as continuous communication between two or more end-points. Antigone

supports peer, multiparty, or broadcast communication protocols, and does not rely on any particular

transport media (e.g., UDP, TCP, multicast). Coordinating the enforcement of the communication

security policy over time and across end-points is the central purpose of Antigone.

Antigone is the first general-purpose provisioning and authorization policy enforcement framework.

A central contribution of this work is the demonstration that policy representation can be separated

from enforcement. Antigone’s novel component architecture abstracts the specifics of security service

operation from policy. Policy users can adopt new policies without cognizance of its affect on the

enforcement infrastructure. This facility introduces a number of challenges. How the natural tensions

between generality, simplicity and performance are weighed was a major factor in the design of

Antigone, and its resolution a key contribution. We demonstrate the efficacy of our approach through

the design and use of diverse applications, and show that Antigone-based policy services can address

a wide range of environmental requirements.

The remainder of this paper considers how Antigone addresses the needs of general-purpose policy

enforcement. We begin in the next section by considering the goals and requirements of Antigone.

2 Requirements and Goals

The design of Antigone is driven by a range of security and systems-oriented goals and requirements.

We have identified the following goals for Antigone:

• Security - the semantics of policy must be correctly reflected in system behavior.

• Flexibility - the architecture must embrace a wide range of security services and authorization

models.

• Efficiency - the overheads associated with the policy enforcement framework must not limit the

application’s ability to properly function.
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• Simplicity - the exported interfaces must be only as complex is as necessary for the facilities

they implement.

These goals present a number of challenges, and ultimately dictate a set of design requirements.

Synthesized from these goals, the design of the Antigone architecture was built upon the following

central design requirements.

Antigone must be policy agnostic. Any mandate of a particular policy representation would limit

the environments in which Antigone can be used. Hence, it is important that the enforcement archi-

tecture is not dependent on any aspect of the policy language or its associated evaluation algorithms.

Antigone is currently restricted to session oriented communication security policies. Exploration of

other policy domains is left to future work.

The architecture must run-time configured and governed. The services required to enforce policy

must be (and often can only be) identified and configured at run-time. Hence, the architecture must

construct the correct security enforcement software based on run-time requirements. Moreover, the

trust, means, and form of authorization must be evaluated within the run-time context. That is, the

architecture must enforce run-time specified authorization policy.

Antigone must support the easy development or integration and use of security services. There are

two important facets to this requirement. First, the architecture must provide easy to use interfaces

for the rapid development or integration of security services. Second, the composition of security

services is not always straightforward; how state dependencies are managed will directly affect both

the efficiency and security of the solution. For example, data transform (e.g., payload encryption)

services are often dependent on the state (e.g., keying material) of key management services. The

architecture must support the efficient state sharing between service.

It is interesting to note that there is often tension between these goals and requirements, e.g.,

simplicity vs. efficiency, flexibility vs. easy service integration, etc. We discuss the affect these

tensions played on the Antigone design in the following sections. First, however, we delve into the

details of the definition and use of security policy within Antigone in the next section.

3 Policy

Antigone currently enforces communication security policy [30]. These policies define both session

provisioning and authorization. Provisioning policies specify the services and parameters used to
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implement communication security, and encompass any aspect of the security-relevant configuration

of the session [29]. For example, the Secure Shell (SSH) [60] defines and enforces provisioning policy

over remote user login sessions. Through local host configuration or command line parameters, each

end-point defines the required methods of authentication (e.g., password, public key), the message

transforms (e.g., SSH version 1, version 2), and the cryptographic algorithms (e.g., DES, 3DES) used

to support the remote login.

Authorization policy states the actions governed entities are authorized to perform [4, 48, 49].1 In

Antigone, the authorization policy states explicitly the set of actions a session participant is permitted

to perform. SSH specifies and enforces a simple, but illustrative, authorization policy by enumerating

a set of acceptable public key credentials. Any entity that is successfully authenticated using these

credentials is authorized to login to the system. The existence of the credential in the list acts as an

implicit authorization policy.

Note that Antigone authorization policy supports much finer grained access control than that

supported by SSH. Where necessary, session policy can stipulate control over fine-grained operations

(e.g., data transmission, key agreement protocol initiation). Fine-grained access control is particularly

useful in group sessions. For example, group authorities may wish to exert control over the session

(e.g., dictate keys, control membership, eject misbehaving entities). Fine-grained access control is

used extensively to control broadcast replication groups in the AMirD system (see Section 6.1).

A security policy is evaluated toward some policy decision. The chief difference between provi-

sioning and authorization policy is the result of this decision making process. Provisioning policies

define configurations and authorization policies determine whether some action should be allowed or

denied. A policy is enforced when that decision is realized in behavior. This work focuses on how

to perform enforcement flexibly, securely, and efficiently. We defer issues of evaluation to the other

works in policy specification.

Antigone provisioning and authorization policies define the security-relevant properties, parame-

ters, and facilities used to support a session. Policies state how security directs behavior, the entities

allowed to participate, and the mechanisms used to achieve security objectives. This novel use of

policy embraces dependencies between authentication, authorization, data protection, key manage-

ment, and other facets of communication. The way Antigone manages these dependencies is detailed

throughout and is a key contribution of this work.

1Authorization policy has been used synonymously with the term access control policy. We choose to use the former
except where common use mandates otherwise (e.g., to refer to fine-grained access control).

5



Participant 1
(initiator) Participant 2Internet

Enterprise 1 Enterprise 2

App. Policy

Enterprise Policy

App. Policy

Enterprise Policy

Session Policy

Reconciliation

Domain
Policies

Policy Instance

Figure 1: Policy construction - A session-specific policy instance is created by an initiator through
the reconciliation algorithm. The instance is subsequently used to provision and regulate the session.

3.1 Policy Determination

Policy is developed in Antigone from the stated requirements of interested parities through a policy

determination process. The result of determination is the concrete policy instance used to implement

a session. Described below, Antigone currently uses the Ismene policy language and associated

determination algorithms [30, 29]. Ismene is used throughout to motivate a discussion of enforcement,

but is not required. Other policy languages (e.g., SPS [61], KeyNote [8]) may be integrated with

Antigone as is necessary and desirable (see Section 4.3).

In Ismene, the policy instance enforced at run-time is the result of the reconciliation of session

and domain policies. A session policy acts as a template that identifies the (potentially many)

ways a session can be constructed. Each participant submits a set of domain policies identifying

the requirements and restrictions that must be addressed by the session. Depicted in Figure 1, an

initiator2 constructs a policy instance compliant with each domain and the session policy through

the reconciliation algorithm. To simplify, reconciliation arrives at the instance by refining the session

policy as directed by requirements stated in domain policies.

Antigone session provisioning identifies the software modules, called mechanisms, used to enforce

policy. Associated with a mechanism is a set of zero or more configuration parameters used to further

specify its operation. The authorization policy defined in the instance is represented as sets of rules.

Each rule associates a protected action with a conjunction of positive conditionals. Authorization

rules are consulted when an action is attempted, and the action is permitted where all conditions are

satisfied.

2Often a session participant, an initiator is the policy decision point performing reconciliation [11].
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% Provisioning policy

provision : ::

config(ESP(tunnel,3des,hmac-md5)),

config(IKE(preshared,grp2,3des,hmac-md5,3600)),

config(KA(60));

% Authorization/access control policy

accept_packet : credential(&key,$key.id=$sk) :: accept;

init_session : credential(&key,$key.key=$presharedkey),

timeofday(0900,1700) :: accept;

Figure 2: IPsec/Ismene Policy Instance - an instance defines the provisioning and authorization
policies enforced at run-time.

Figure 2 illustrates a simplified policy instance appropriate for an IPsec [25] session. The provision-

ing policy states that three mechanisms, ESP (data transform), IKE (key and session management),

and KA (failure detection), must be used to implement the session. The ESP mechanism is further

configured to implement tunnel-mode, triple-DES, and MD5 HMACs. The IKE configuration states

that preshared keys be used, identifies a set of cryptographic algorithms, and instructs IKE to refresh

the IPsec security association key once per hour. KA augments the IPsec service by introducing crash

failure detection. This service periodically transmits a keep-alive message (every 60 seconds), and

detects when other participants fail to do so.

The authorization policy for the accept packet action states that any properly formed packet

transformed using the session key should be accepted. The credential() conditional tests whether a

relevant credential has been supplied. In this case, the use of the session key $sk is sufficient proof of

authenticity, and hence the packet should be accepted. The second authorization rule, init session

defines when a session should be accepted. The timeofday conditional is consulted at the point at

which a particular session is initialized. If the time of day is between 9:00am and 5:00pm and the

requester proves knowledge of the preshared key $presharedkey, the session is accepted.

4 Architecture

This section presents the motivation, design, and operation of Antigone. Depicted in Figure 3, the

Antigone architecture consists of a collection of software components (mechanisms), a policy decision

point (policy engine), a bus controller (event controller), and application and network interfaces

(application and transport).
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Figure 3: Architecture - the mechanisms, interfaces, and policy engine coordinate to enforce run-time
determined policy.

Antigone is a single-threaded component architecture3. Communication between the infrastruc-

ture and software components is implemented by events. Applications transfer control to Antigone

through socket-oriented calls (e.g., send(), recv(), select()). Application actions (e.g., send) are

translated into events and delivered to all mechanisms. Policy is enforced by the mechanism reaction

to and creation of events. Cascading events direct the progress of the session, and ultimately the

application.

Motivated by multiprocessor architectures, the event bus directs virtual or real broadcast delivery

of events between the application interface and mechanisms. Events posted to the bus controller are

delivered in FIFO order to all mechanisms and the application interface. The decision to use an event

architecture was primarily motivated by the need for flexibility. Mechanisms can implement complex

interfaces through simple APIs by annotating events with custom data structures. This approach

enables the service composition needed by diverse application policies.

Antigone mechanisms are software components implementing policy. The mechanisms used to

implement the session are defined at run-time by the policy instance. While typically implementing

security services (e.g., authentication, key management), other session-oriented functions can be im-

plemented via mechanisms (e.g., auditing, failure detection and recovery, QoS). Section 4.4 provides

an overview of the design and use of Antigone mechanisms.

The policy engine acts as the policy decision point for Antigone. The provisioning policy is

enforced by provisioning the session. The policy engine directs provisioning by identifying and config-

3The decision to implement Antigone as a single thread greatly simplified component management (e.g., state main-
tenance), and allowed our efforts to be focused on issues of policy enforcement. We are currently in the initial phases
of implementing Antigone as a multi-threaded, multi-processor architecture.
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uring the set of required mechanisms at session initialization. The policy engine indirectly regulates

subsequent action within the session (e.g., connection initiation, message transmission) by evaluating

authorization policy. Mechanisms appeal to the policy engine for authorization policy decisions via

up-call. The design and use of the policy engine is presented in Section 4.3.

Persistent state is shared in Antigone through the attribute set. Similar to the KeyNote action

environment [8], the attribute set maintains a table of typed attributes. Attributes are defined by

{name, type, value} tuples. Mechanisms and the application interface are free to access, add, modify,

or remove attributes from the attribute set. Attributes are defined over basic data types (e.g., strings,

integers), identities (e.g., unique identifier), and credentials (e.g., keys, certificates). For example, the

local identity, session addressing information, and configured preshared keys (credentials) are stored

in the attribute set.

The application interface arbitrates communication between the application and Antigone through

a simple message oriented API. While an application need only use simple message interfaces, ad-

vanced calls are provided to extract and manipulate Antigone specific state. The transport layer

provides a single communication abstraction supporting varying network environments (i.e., a single

interface for TCP, UDP, multicast, and simplified ad-hoc networks [23]). For brevity, we omit further

details of the application interface and transport layers except where relevant to policy enforcement.

4.1 Policy Enforcement Illustrated

This section briefly motivates the design of Antigone by illustrating the enforcement of data security,

failure detection, and authorization policies defined by the policy instance presented in Section 3.1.

For this example, we assume that the session has been initialized (provisioned), and that an IPsec

security association (SA) containing the IPsec configuration and session key has been established. As

its operation is not relevant to the present discussion, we omit further mention of IKE. The following

text and Figure 4 describe transmission of a single application message, (where the letters a, b, c and

d correspond to the labeled figures):

a) The application transmits data over the session via the sendMessage API call. The call is

translated into an EVT SEND MSG event (SE) by the application interface, which is posted to the

bus controller. The application data (Dat) is encapsulated by the send event.

b) The bus controller delivers the send event to all mechanisms (via virtual broadcast). In response,

the ESP mechanism appeals to the policy engine for an access decision of the send action. All
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Figure 4: Policy Enforcement Illustrated - an application sendMessage API call is translated into
a send event posted to the bus controller (a). The reception of the event by the ESP mechanism
triggers the evaluation of the authorization policy via upcall (b), and ultimately to the transmission
of transformed data (c). The transmission triggers further event generation and processing (d).
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relevant state (e.g., current session key, bytes to transmit, etc.) is passed to the policy engine,

and used as input to the evaluation of the send authorization policy. Because transmission is

predicated solely on knowledge of the session key (credential), the policy engine accepts the

action.

c) ESP selects a data transform appropriate for the configured policy (i.e., 3des, hmac-md5). The

data is transformed and headers and HMACs attached. The transformed buffer is then sent to

the other session participants via the transport layer. An EVT SENT MSG (ST ) event containing

the sent buffer is posted to the bus controller following the transmission.

d) The sent event is posted to all mechanisms. The KA failure detection mechanism, using the

transmission indicated by the EVT SENT MSG event as an implicit keep-alive, resets an internal

keep-alive transmission timer.

Note that other policies may result in different behavior. Such is the promise of policy driven

behavior: requirements for content protection, failure detection and recovery, and other session behav-

iors are defined by policy. The use of common interfaces (e.g., events) allows the flexible composition

and configuration of those implementations necessary to address session requirements.

4.2 Event Bus

All events are delivered to every mechanism and the application interface via the event bus. Events

received on the bus are processed in accordance with each module’s purpose and configuration. Events

are acknowledged by each implementation with an indicator identifying whether the event was pro-

cessed or ignored. Events that are ignored by all modules are logged.

Event delivery is modeled as being simultaneous. The event bus guarantees that a) events are

delivered in FIFO order, and b) an event will be delivered to all mechanisms and the application

interface before any other event is broadcast. The event bus provides no guarantees on the ordering

of mechanisms to which the event is delivered. One advantage of this design is its use in multiprocessor

systems; mechanisms executing on separate processors can use the processor bus to receive and handle

events simultaneously. In this way, Antigone can optimize enforcement costs by committing processors

to high throughput mechanisms (e.g., the data handler in a video-on-demand server).

The authors of the Polylith system [42] have noted that broadcast delivery increases event granu-

larity. Events requiring ordering constraints must be decomposed and posted to enforce the ordering.

11



For example, if the send event defined in Section 4.1 was guaranteed to be delivered to the data

handler prior to failure detection mechanism, the failure mechanism could simply reset the keep-alive

timer only where the transmission was successful (and hence avoid the creation of the sent event).

In general, however, our experience in policy enforcement shows that such constraints are few [31].

However, due diligence must be expended in analyzing dependencies and incompatibilities in the use

of events across mechanisms.

4.3 Policy Engine

The policy engine makes Antigone policy agnostic. The policy engine does not implement evaluation

for a fixed policy representation, but provides a policy evaluation API [30]. All interpretation of

policy occurs within an externally defined language-dependent implementation that adheres to the

policy engine API. The Antigone enforcement infrastructure need not be aware of the mechanics of

policy evaluation. All policy decisions are deferred to the policy engine through the API. Antigone

currently uses the Ismene language to implement the policy engine. Policy engines built on other

languages will differ in operation not because of the mechanics of evaluation, but by the scope and

semantics of the supported policies. We are currently investigating the integration of policy engines

supporting a range of policy languages (e.g., SPS, KeyNote [8], GSAKMP [16]).

As directed by the run-time determined policy instance, the policy engine initially provisions the

mechanism layer by the appropriate software mechanisms identified at run-time. The provisioning

policy is not consulted after initialization. We describe how the instance is distributed to session

participants in Section 4.6. The policy engine enforces authorization policy over the lifetime of the

session. Each mechanisms identifies the set of actions to be protected by policy in its implementation.

For example, an IKE mechanism consults the policy engine when a participant attempts to initiate

a session. The rules associated with the init session action are evaluated, and access is granted

where the relevant conditions are satisfied.

Mechanisms are free to define new protected actions as needed. However, governing policies must

also define authorization rules for these actions. It is incumbent on the policy engine to decide what

to do when an action is undertaken for which no authorization policy is defined. For example, Ismene

implements a closed-world policy in which all such actions are denied.

Mechanisms supply information describing the context in which a particular action is attempted

when appealing to the policy engine for an authorization decision. The mechanism constructs an

action set (which is frequently a subset of the attribute set) of relevant information. This set primarily
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consists of the rights-proving credentials, but may also contain environmental data (e.g., current

processor load). The mechanism must decide on the appropriate set of attributes to provide to the

policy engine. For example, acceptance of an incoming packet encrypted under a session key implies

knowledge of the session key. Hence, the session key can be used as a credential when assessing

acceptance. We enumerate and discuss the set of actions supported by the current implementation

in [30].

4.4 Mechanisms

An Antigone mechanism defines a basic service required by the session. Unlike traditional protocol

objects in component protocol systems [50, 6], mechanisms are not vertically or hierarchically layered

(e.g., X-kernel [20]). Note that this does not mandate that mechanisms implement monolithic or

coarse-grained components. Each mechanism embodies an independent state machine, which itself

may be layered. For example, the layered Cactus membership service [19] can be integrated within

Antigone as a single mechanism.

A mechanism is identified by its type and implementation. Antigone currently supports six mech-

anism types: authentication, membership management, key management, data handling, failure

detection and recovery, and debugging. A mechanism implementation defines the specific service

provided. For example, we have implemented three multiparty key management mechanisms: Key-

Encrypting-Key [17], Authenticated Group Key Management [30], and Logical Key Hierarchy [58].

These categories are not exhaustive; new types (e.g., congestion control) or implementations (e.g.,

One-Way Function Tree key management [34]) can be introduced as new services are needed.

Internally, session operation is modeled in Antigone as signals. Each signal indicates that some

relevant state change has occurred. Policy is enforced through the observation, generation, and

processing of signals. Antigone defines event, timer expiration, and message signals. The interfaces

used to create and deliver signals are presented in Figure 5.

Events are notifications of internal state changes. An event is defined by its type and data. For

example, send events are created in response to an application calling the sendMessage API. This

event signals that the application desires to transmit content. The send event has an EVT SEND MSG

type and its data is (a pointer to) the content. Note that mechanisms are free to define new events as

needed. This is useful where sets of cooperating mechanisms need to communicate implementation-

specific state changes.

A timer expiration indicates that a previously defined interval has expired. Timers may be global
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Figure 5: Mechanism Signal Interfaces - Policy is enforced through creation and processing of events,
timers, and messages. Events are posted to and received via the event bus. Signals are processed and
emitted through the various post, register, send, and processing interfaces.

or mechanism-specific; all mechanisms are notified at the expiration of a global timer, and a registering

mechanism is notified of the expiration of a specific timer. Similar to events, a timer is defined by

its type and data. For example, the expiration of the keep-alive transmission timer discussed in

Section 4.1 signals that a keep-alive should be sent. The data identifies context-specific information

needed to process the timer expiration (e.g., keep-alive sequence number).

Messages are created upon reception of data from the transport service. Messages are specific to

(must be marshaled/processed by) a mechanism. Every message is defined by a mechanism identifier,

an implementation identifier, and a message type identifier. For example, the header {FDETECT MECH,

KA MECH, KA KALIVE} header identifies a failure detection, keep-alive implementation, keep-alive mes-

sage. This information is used to route incoming messages to the appropriate mechanism for process-

ing.

We have used the Antigone interfaces to implement large number of mechanisms supporting a wide

range of peer and multiparty services. The following subsections illustrate the use of these interfaces

by delving into the details of two important mechanisms: a data-handler and an authentication

mechanism.

4.5 Data Handling

The Antigone data handling (ADH) mechanism implements content security guarantees on applica-

tion messages through the application of cryptographic transforms. The ADH mechanism supports

confidentiality, integrity, authenticity, and sender authenticity. ADH is configured to provide zero or
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more of these properties. A data transform is defined for each unique combination of properties.

ADH handles outgoing application transmission as described in Section 4.1. Upon reception of

a message, ADH applies the reverse transform and evaluates the send action via the policy engine

(using the transform keys as credentials in the evaluation process). If a positive result is returned,

an EVT DAT RECV event encapsulating the recovered plaintext is posted to the event bus. Note that

a received message may require (e.g., is encrypted by) a session key that the local member has not

yet received. In this case, recovery is initiated by the posting of an EVT KDST DRP event. If available,

key management and failure recovery mechanisms use this event to initiate recovery (acquisition of

a new session key). Note that there is sufficient context within the header of every received message

to determine the transform and cryptographic algorithms under which it is transmitted. This allows

the transform, and indirectly the policy, under which a message is transmitted to be determined and

applied on a per-message basis.

ADH does not directly participate in the acquisition of the session keys. This highlights a de-

pendency between data handling and other security services; key management mechanisms must be

provisioned to negotiate keys appropriate for the ADH content policy. For example, a key manage-

ment mechanism that negotiates a 56-bit DES key is incompatible with an ADH policy that requires

the use of 128-bit AES. Such dependencies can only be resolved by the governing policy. How a

policy representation identifies and resolves such dependencies is a real and non-trivial problem. In

Ismene, dependencies (and incompatibilities) are annotated by policy assertions that are validated at

run-time.

The flexibility of ADH has allowed us to investigate the enforcement of many content policies. For

example, we have implemented several group source authentication mechanisms (e.g., packet-signing,

stream signatures [13]), and integrated DES, Blowfish, RC4, AES, SHA-1, and MD5 with all content

policies. We summarize an evaluation of the costs associated with content policy enforcement in

Section 7.

4.6 Authentication

An authentication mechanism initializes a session by performing mutual authentication, a key ex-

change, and policy instance distribution. Antigone sessions are established between an initializer and

one or more requestors. Note that it is assumed that a policy instance is established prior to session
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initialization4. Antigone currently supports three authentication mechanisms: a null authentication

mechanism (that exchanges keys and policy in the clear), an OpenSSL based mechanism [14], and a

Kerberos mechanism [37]. The following text describes the operation of the OpenSSL based authen-

tication mechanism (OAM) from the perspective of a requestor. However, independent of the means

of authentication, the operation of each of these mechanisms is largely similar.

Initially, the requestor evaluates a local policy to arrive at a default policy instance. This instance

defines the provisioning and authorization policy used to initialize the requestor environment, and is

discarded when the session-defining policy instance is acquired (see below). The policy engine creates

an authentication mechanism specified by the local policy instance when the application is initialized.

The authentication protocol begins when an EVT AUTH REQ event is posted by the application

interface. In response, OAM performs the SSL handshake (establishing a mutually authenticated

secure channel using certificate and addressing information stated in the local policy), and receives a

public key certificate for the initiator. The certificate is translated into an Antigone credential, and

provided to the policy engine for evaluation of the session auth action5. If the action is accepted by

the authorization policy, the mechanism obtains the policy instance and a long-term pair key over the

SSL-secured channel. The pair key is a symmetric key shared by the local requester and the initializer,

and is used to create a secure channel between these two entities. Note that the pair key is not used

to secure session content, but is used by key management services to negotiate and replace session

keys. The SSL connection is closed, and an EVT POL RCVD and EVT AUTH COM events are posted.

Upon reception of the EVT POL RCVD, the application interface destroys the configured mechanisms,

discards the local policy instance, and passes the received instance to the policy engine. The policy

engine uses the received instance to create and configure session-implementing mechanisms. Once

complete, the EVT AUTH COM signals that the session is ready to begin. This often leads to the initiation

of key management protocols.

A number of error conditions can arise during authentication. For example, a policy configured

retry timer is registered when the authentication process is initialized. Any exchange not completing

prior to expiration is retried and a retry count incremented. If a configured retry count is exceeded,

a fatal error is generated and the session is aborted. Similarly, any denial of a session auth action

fatally errors the authentication process, and terminates session.

4We describe a more flexible model where policy is determined during session initialization in [30].
5The validity of the certificate (e.g., certificate path construction, signature validation, and assessment of revocation

information) is assessed during the evaluation of the session auth policy.
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5 Optimizing Policy

This section briefly introduces architectural enhancements aimed at improving the performance and

usability of Antigone. For brevity, we omit a number of other architectural optimizations (e.g.,

slab-allocation [9]).

5.1 Policy Evaluation Cache

Where supported by policy, the enforcement of fine-grained access control policy can incur significant

overheads. For example, the costs of enforcing Ismene per-message transmission/reception authoriza-

tion policy (e.g., send action policy) in high-throughput applications can be prohibitive. However,

because of the way such policies are specified, most evaluation can be amortized. Hence, we introduce

a two-level cache that stores the results of rule and condition evaluation.

The condition evaluation cache stores the result of each condition evaluation (e.g., credential(),

timeofday()). In addition to a Boolean result, the evaluation process identifies the period over which

the result is valid. This validity period may be transient, timed, or invariant. Transient results

should be considered valid for only the current rule evaluation. Timed results explicitly identify the

period during which the result should be considered valid (e.g., until 4:30pm). Invariant results are

considered valid for the lifetime of the session. The cache is consulted during rule evaluation, and

timed cache entries evicted when the associated validity period expires.

The rule evaluation cache stores the relevant context under which an action was considered (e.g.,

evaluation credentials and conditions). Entries in the cache are considered valid for the minimum of

the reported condition evaluations. Hence, any participant testing the same conditions and credentials

(as would be the case in frequently undertaken actions) avoids repetition of potentially complex and

costly rule evaluation by accessing cached results.

5.2 Generalized Message Handling

By definition, a flexible policy enforcement architecture must implement a large number of protocols,

messages, and data transforms. However, correctly implementing these features requires the careful

construction of marshaling code. The Generalized Message Handling (GMH) service is designed to

address the difficulties of protocol development. GMH uses message specifications and system state

to marshal data. Message specifications are interpreted at run time, and the appropriate encryption,

hashing, encapsulation, padding, byte ordering, byte alignment, and buffer allocation and resizing are
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handled by the supporting infrastructure.

While we found that other marshaling compilers (e.g., RPC [54], CORBA [55]) provided excellent

facilities for the construction of plain-text messages, they provided limited support for complex secu-

rity transforms. Moreover, because message specifications are typically interpreted at compile-time, it

was difficult to support protocols with run-time specified behavior (e.g., run-time determined message

formats). This feature was required by many multi-party key management and source authentication

protocols.

We illustrate the use of GMH through the following (tunnel mode) ESP transform:

msgDef = “H[LLE[DDDDcc]]′′

Each character in the message specification represents a field (data) or encapsulation operation (e.g.,

encryption). The latter field types identify the scope of operations using bracket symbols. In the

above definition, the character L represents a long integer (SPI, sequence number), D represents

variable-length data (IP/TCP headers, payload, padding), and c represents a byte field (pad length,

next header). The symbols H[. . .] and E[. . .] signify HMAC and encryption operations. Mechanisms

associate data, keys, and cryptographic algorithms with each field at run-time. GMH marshaling

code is called, and a message buffer is created, transformed per the specification, and returned to the

calling mechanism.

Upon reception of a message, GMH reverses the marshaling process. However, GMH may not

initially have sufficient context to unmarshal all the data. In the above example, GMH does not know

a priori which key was used to calculate the HMAC (i.e., H[...]). GMH recovers as much data as

possible and appeals to the calling mechanism for guidance (through an upcall). The mechanism uses

the previously unmarshaled fields to determine the appropriate keys and algorithms (e.g., mapping

unmarshaled SPI to SA). The keys and algorithms are returned to GMH, and the process continues

(possibly recursively) until all fields are unmarshaled.

6 Applications

The value of Antigone is determined by the kinds of applications and policies it supports. This

section sketches several complex applications that illustrate the range and flexibility of Antigone.

Because past development has primarily focused on multiparty systems, we restrict the following to

group applications. The policies described below were developed for the specified environments. As

is the purpose of Antigone, other policies addressing other security requirements may be defined as
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is desirable.

6.1 AMirD

The Antigone MIRroring Daemon (AMirD) replicates filesystem content to groups of receiver agents

over a broadcast media [33]. The broadcast media allows large groups to quickly receive content

and has obvious applications to, for example, patch management and website mirroring. AMirD

replication operates in two phases: consistency control and content replication. The consistency

control phase identifies the state of the replicated filesystems. The replication phase distributes file

content. The control phase is governed by a single policy instance. Because files have different

sensitivity levels and access restrictions, a policy is determined and a new group established for each

file distribution in the replication phase.

Illustrated in Figure 6, an AMirD session consists of a collection of one or more exporters and

one or more importers. Each exporter periodically broadcasts the state of the exported filesystem

(i.e., file and directory names, modification dates, MD5 hashes of files). Importers request updates

for all files that are out of date or missing from its local mirror. Subgroups are established for each

file update (up to maximum number of simultaneous subgroups) based on a policy and file content

transmitted.

The policies appropriate for AMirD are as diverse as the environments in which it can be used. We

have extensively studied the AMirD policies for four example environments [33]. These environments
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represent very different views of security. Some policy requirements were shared by all the AMirD

environments. For example, all environments required some way to securely manage and communicate

group membership. Conversely, each environment required a different authentication mechanism. A

secure group membership mechanism was implemented. This mechanism uses the identities identified

by a separate authentication mechanism to drive the secure group membership protocols.

We briefly discuss the policy enforced by AMirD in two of the studied environments. Because

the environment is largely trusted, the local LAN environment required few protections. Adequate

enforcement of local user identification and optionally confidentiality of the file content was deemed

sufficient. This required the development of a new UNIX authentication mechanism and used a simple

data handler. In essence, the LAN environment needed a few lightweight security services.

The mobile user environment represents the canonical road warrior scenario. A local user mirrors

data from a remote service over an untrusted network. This environment requires strong authen-

tication (certificates) and authorization, as well as integrity of the control and file content. The

environment further required content sender authenticity (to combat content forgery by compro-

mised mobile users). However, because the costs of signing each packet were prohibitive, we use

stream signatures to the data handler (See Section 4.5).

The mobile user scenario also required dynamic policy enforcement. Any file (or filesystem) could

be marked as instantaneously sensitive in response to some heightened threat level. The infrastructure

would react by altering the data handler configuration of related sessions by adding a confidentiality

guarantee. The data handler would then encrypt all application layer traffic passing between the

end-points, in addition to applying the other integrity and sender authenticity transformations.

AMirD demonstrates the flexibility of Antigone. We implemented and tested all environments

using the same compiled code. Because new policy requirements can addressed without modifying

the application, developers can largely defer security issues to policy.

6.2 Legacy Systems Security

It is often difficult to retrofit security into legacy systems. For example, we found that adding security

to the vic and vat conferencing tools required major modification to the architecture and code [1].

The Socket s library addresses this difficulty by providing a socket API to an Antigone multicast

group [32]. Applications use this library by replacing existing socket calls (e.g., socket, bind, etc.)

with similarly named Socket s calls (e.g., socket s, bind s, etc.). The functions redirect operations

associated with multicast traffic to Antigone, and non-multicast traffic to the standard C library
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implementations.

Socket s acts as a “bump in stack” by inserting Antigone between the application and the stan-

dard network interfaces. The Antigone implementation executes in a separate thread and establishes

a socket with the parent application. Hence, Antigone acts a transparent proxy for all multicast

traffic, and enforces security policy over data sent through the multicast channel.

The policies appropriate for Socket s are simply those needed by secure multicast [28, 10]. Key

management and data handling are the essential policy requirements in this domain. Because of

the wide possible range of supported applications and environments, we implemented several key

management strategies. For example, our Logical Key Hierarchy [57] mechanism offers a highly

efficient approach for group key management. Because it was already highly flexible, we used the

existing data handler.

6.3 Reliable Multicast

Reliable and secure multicast systems have been studied for some time [43, 2]. The security services

supported by these systems are largely fixed for a set of target environments. Conversely, the Reliable

Transport Layer (RTL) [32] provides reliable (FIFO) delivery of application traffic under a policy-

defined Antigone security service. RTL uses a combination of Forward Error Correction (FEC) and

the approach used in the Scalable Reliable Multicast (SRM) protocol [12] to detect and recover from

lost packets.

RTL inserts two protocol layers between the application and Antigone. The FEC layer transmits

p + q forward-error correcting packets [44], where p is the number of original packets and q is the

desired redundancy. Receivers receiving any p of the packets can recover the original data. The SRM

layer uses a local recovery to increase the reliability of the group communication. Members detecting

lost packets use TTL-limited and randomly delayed broadcasts to request retransmissions.

RTL simply increases the security on multicast groups, and hence simple solutions for autho-

rization, key management, and data handling are often sufficient. However, the RTL service itself

requires policy; an RTL application can use FEC, SRM, or both. The selection of protocols and their

configuration (e.g., amount of redundancy, retransmit request strategy) are directly specified in the

policy instance. RTL probes the Antigone policy instance for the appropriate configuration during

initialization, and appeals to the application for direction where a configuration is not specified.
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recv send
Operation

usec % usec %

Event Processing 56.35 49% 37.44 39%

Marshaling 33.35 29% 25.92 27%

I/O 10.35 9% 19.2 20%

Authorization 8.05 7% 6.72 7%

Buf/Queue Mgmt. 6.9 6% 6.72 7%

Total 115 100% 96 100%

Table 1: Microbenchmarks - measured overhead of a single application transmission.

7 Performance Evaluation

This section investigates the performance of the Antigone architecture by profiling enforcement over-

head (microbenchmarks) and characterizing communication throughput and latency (macrobench-

marks). The current implementation, version 2.0, represents a complete redesign of the original

system [31]. Antigone 2.0 consists of 58,000 lines of C++ code in 133 classes (approximately 10%

of which was retained from the original Antigone architecture). Source code and documentation

for Antigone, the Ismene policy language, and applications are freely available from the Antigone

website [53].

The experiments described in this section were conducted on an isolated 100 Mbit Ethernet LAN

between two unloaded 750 megahertz IBM Netfinity servers. Each server has 256 megabytes of RAM,

a 16-gigabyte disk, and runs the Redhat 7.1 distribution of the Linux kernel 2.2.14-5.

7.1 Microbenchmarks

The first series of experiments sought to characterize the functional costs of policy enforcement in

Antigone. A test application was instrumented to classify the overheads incurred by the transmission

of a single message into event processing, marshaling, I/O, authorization, and buffer management

and queuing. All costs not specific to Antigone were removed from the test measurements (e.g.,

encryption). Measurements were obtained from the x86 hardware clock and averaged over 100 trials.

The results of these experiments are presented in Table 1.

Our experiments show that almost 50% of receive overhead (and 40% of send overhead) can be

attributed to event processing. This is the fundamental cost of an event architecture; processing costs

are often dominated by the event creation, delivery, and destruction.

Note that the difference between the total send and recv costs can be attributed to additional
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receive processing requirements; e.g., recursive unmarshaling, additional data copies. Our experiments

also reported a similar, but inverse, asymmetry between send and receive I/O. The send() system

call takes approximately twice as long to complete as recv(). The difference can be attributed to our

measurement technique; received packets are asynchronously serviced by an interrupt handler upon

arrival. Hence, much of the kernel processing was completed prior to the recv() system call, and

thus not included in the measurements.

About 30% of the overhead is consumed by marshaling. GMH interpretation of message template

structures and context processing up-calls is less efficient than hard-coded protocol implementations.

However, as GMH has not as yet been fully optimized, we are optimistic that these costs can be

further reduced.

These experiments also demonstrate that the cost of fine-grained access control enforcement can

be mitigated by caching. In these tests, the “send” action was regulated on a single unconditional

authorization rule (e.g., authorized by the session key). Hence, the “send” action policy was evaluated

only on the first send/receive, not consulted thereafter (e.g., invariant result served by rule evaluation

cache). Note that these results serve as a lower bound; other policies may require more complex or

frequent evaluation.

7.2 Macrobenchmarks

The second series of experiments profile enforcement costs by measuring the maximum burst rate

and average round trip time (RTT) under a range of security policies. Note that because the latency

measurements calculate the total round trip time, the results represent four traversals of the protocol

23



stack.

The direct experiment establishes a performance baseline using a non-Antigone application im-

plementing Berkeley socket communication. The null policy specifies no cryptographic transforms be

applied to transmitted data (i.e., data is sent in the clear). The integrity policy is enforced through

SHA-1 based HMACs. The confidentiality policies encrypt data using the identified algorithm. Ap-

propriate only for multiparty communication, the integrity, confidentiality, and source authentication

policy specifies SHA-1 HMACS, Blowfish encryption, and 1024-bit RSA stream signatures. A variant

of Gennaro-Rohatgi On-line signatures [13], the stream signature mechanism chains-forward signa-

tures by including a hash of each succeeding packet from an initial signed packet. A new stream

signature is generated once every 100 msec or when 20 packets are queued for transmission.

As presented in Figure 7, throughput in Antigone is largely driven by the strength of the enforced

data handling policy. While the testbed environment (direct) is capable of transmitting up to 9

MBytes/Second, Antigone is limited to just under 8 (null). This 11% reduction can be attributed to

the overheads described in the preceding section.

Integrity and confidentiality policies exhibit similar throughout. It is interesting that a confiden-

tially policy using the slower Blowfish algorithm only marginally reduces throughput over a similar

policy using RC46. Because the cryptographic algorithms are significantly faster than the network,

throughput is limited by marshaling. This further highlights the need for optimization of the GMH

service.

The integrity, confidentiality, and source authentication policy demonstrates the canonical strong

multiparty data handling policy. Our experiments show that high data rates can be achieved through

the application of stream signatures. Hence, the costs of strong data handling policies do not neces-

sarily prohibit their use in high-throughput applications (e.g., conferencing).

Presented in Figure 8, the latencies associated with the experimental policies mirror throughput.

The null and direct (differing by 10%), confidentiality and integrity policies (differing by at most 4%)

exhibit similar latencies. Note that the latency of integrity, confidentially, and source authentication

policy is dominated by a data-forwarding timer used by the stream signature transform. This timer

delays the packet transmission by 100 milliseconds in each direction, and hence, significantly affected

the RTTs.

6The throughput RC4 and Blowfish were benchmarked in the test environment at 51.17 and 24.30 MB/sec,
respectively.
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8 Alternative Architectures

While many aspects of the Antigone architecture are present in previous works, the unique require-

ments of policy enforcement made the direct use of existing component frameworks inappropriate.

Centrally, the need to compose re-configurable and fine-grained components at run-time dictated the

development of infrastructure not present in existing systems.

A number of recent works have investigated the construction of flexible and efficient distributed

systems from components [20, 50, 39, 6]. Components conforming to uniform interfaces are composed

in different ways to address application requirements. Hence, new requirements can be quickly ad-

dressed by altering the composition of underlying components. This approach has been successfully

extended to security [36, 38, 18], where services and protocols addressing a specific set of security

requirements are built from components. These works significantly constrain system organization;

largely motivated by protocol stack designs, components are organized into vertical or hierarchical

message processing pipelines. Hence, these frameworks are suitable for the creation of tightly cou-

pled protocol state machines. Antigone, in contrast, is composed of loosely coupled services. Each

mechanism transmits messages, processes timers, and monitors state independently of other services.

Hence, the traditional model of layered services (e.g., TCP/IP, Cactus) is not often suited to the

service composition offered by Antigone. Moreover, in traditional protocol component systems the

interfaces over which state is communicated are typically restricted to connection management and

data handling information. Note that while these architectures are not well suited to Antigone, they

may be useful in creating flexible implementations of individual mechanisms.

Configuration programming frameworks specify component interfaces through a language-agnostic

module interconnection language (MIL) [27, 42]. Developers construct distributed systems from MIL

component interconnection specifications. The framework translates and routes all communication

between the components defined by the developer. As these systems are designed to support communi-

cation between largely autonomous and distributed components, shared state is explicitly forbidden.

In contrast, the mechanisms of Antigone are required to share a significant amount of state (e.g.,

keys, timers, attributes, etc.). Hence, the loose coupling and translation overheads often make these

frameworks inappropriate for end-host policy enforcement.

Software buses have traditionally been used to construct distributed object architectures [51, 52,

55, 56, 40]. Components in these frameworks are typically used to define interfaces to database,

computing, or user-interface services. Communication between components is handled via standard-
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ized marshaling interfaces. Hence, tool-kits of diverse components can be used to flexibly construct

distributed systems. Components in these systems represent coarse-grained and possibly distributed

services. Hence, the overheads associated with inter-component communication (i.e., marshaling and

inter-process communication) are in conflict with the needs of high-performance policy enforcement.

The GAA-API system [46] provides a framework for evaluating and enforcing authorization policy.

GAA-API extends the traditional notion of authorization policy enforcement in diverse applications

(e.g., web server [47]) through advanced security policies that specify conditions that must be true

prior to, during, or after, or in response to a positive or negative evaluation. These conditions can

be both active (e.g., implement some operation) and stateful. As in Antigone, the management of

state present in GAA-API presents challenges. For example, the introduction of stateful condition

implementations requires careful policy specification to avoid non-deterministic evaluation. GAA-

API differs from Antigone in purpose and scope. GAA-API serves to extend authorization policy

enforcement behavior, but does not support the coordination of session provisioning. However, the

service of GAA-API could be used to enhance the Antigone authorization policy enforcement (i.e.,

used in conjunction with a provision policy language to implement a policy engine).

The STRONGMAN [26] shares many goals with Antigone. Both support a wide range of policies

over diverse applications. STRONGMAN provides facilities for the specification and automated

management of security policies. However, unlike Antigone, the policy enforcement software is largely

developed for each application independently [22, 21]. Hence, the focus of these two systems is quite

different.

9 Conclusions

This paper has introduced the Antigone general-purpose session security policy enforcement archi-

tecture. Antigone fills the gap between the general-purpose policy representations and the often

functionally limited enforcement systems that use them. This work further explores the separation

of policy representation from enforcement. We remove the barriers placed on policy by its repre-

sentation. Users can employ new or extended policies without requiring changes to the underlying

enforcement framework. However, this approach introduces a number of complexities. How Antigone

addresses the tensions between generality, performance, and simplicity is the driving force behind its

design.

The Antigone architecture addresses all of its primary design requirements. Antigone is policy
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representation agnostic. The policy engine interface abstracts the evaluation of policy away from the

enforcement mechanisms. Mechanisms do not need to be aware of any facet of the representation, and

can be used to enforce the policies of many different representations. Session security requirements

often can only be determined at run-time. Antigone constructs a security infrastructure at run-time

from the available security mechanisms as directed by the policy engine. Authorization policy is

subsequently evaluated and enforced throughout the session lifetime. We have further shown the ease

with which existing services can be integrated and new ones quickly developed. The event API allows

services to quickly build state machines that interact with the infrastructure and other mechanisms.

We have demonstrated how Antigone has achieved the goals of security, flexibility, efficiency, and

simplicity. AMirD and the other presented applications demonstrate how to simply and securely

build on Antigone enforced policy. The polices used by those applications, and indirectly the mech-

anisms that those policies require, further illuminate the broad range of Antigone enforcement. The

performance analysis demonstrates efficiency, and shows that the costs of using Antigone are nominal.

Much of the future of security lies in policy. The security requirements of current and future

environments are incompatible with the largely fixed security models embodied in current software

systems. Security policy addresses this incompatibility by allowing users and administrators, rather

than developers, to state what security should be applied to the environment. Because security

requirements are as diverse as the environments in which systems exist, support for flexible policy-

defined security is needed. Antigone and other works like it are actively pursing these goals, and their

ultimate success or failure will in some part define the security of future distributed systems.
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