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ABSTRACT

Modern detection systems use sensor outputs available in the de-
ployment environment to probabilistically identify attacks. These
systems are trained on past or synthetic feature vectors to create
a model of anomalous or normal behavior. Thereafter, run-time
collected sensor outputs are compared to the model to identify at-
tacks (or the lack of attack). While this approach to detection has
been proven to be effective in many environments, it is limited to
training on only features that can be reliably collected at detection
time. Hence, they fail to leverage the often vast amount of ancillary
information available from past forensic analysis and post-mortem
data. In short, detection systems do not train (and thus do not learn
from) features that are unavailable or too costly to collect at run-time.
Recent work proposed an alternate model construction approach
that integrates forensic “privilege" information—features reliably
available at training time, but not at run-time—to improve accuracy
and resilience of detection systems. In this paper, we further eval-
uate two of proposed techniques to model training with privileged
information: knowledge transfer, and model influence. We explore
the cultivation of privileged features, the efficiency of those pro-
cesses and their influence on the detection accuracy. We observe
that the improved integration of privileged features makes the re-
sulting detection models more accurate. Our evaluation shows that
use of privileged information leads to up to 8.2% relative decrease
in detection error for fast-flux bot detection over a system with no
privileged information, and 5.5% for malware classification.

CCS Concepts

eComputing methodologies — Learning paradigms; eSecurity
and privacy — Intrusion detection systems;
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1. INTRODUCTION

Detection systems use traditional learning algorithms such as
support vector machines and neural networks to learn detection
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models. The models aim at learning patterns to estimate an under-
lying dependency, structure or behavior of a system with a limited
number of observations from historical data (also referred as training
data). A training data is a collection of a pair of features and class
labels such as anomalous or normal. For instance, in network level
malware detection, the features may be extracted from packets of
incoming/outgoing traffic. In mobile malicious application identifi-
cation, features may contain textual descriptions and permissions.
The detection systems seek to learn models from the features that
can accurately make predictions on unseen samples.

The quality of the detection model is largely dependent on extract-
ing all information relevant to a particular task so as to improve the
accuracy. However, learning algorithms typically used for training
of detection systems build a model assuming that the features used
to make predictions at run-time will be identical to the one used for
training. This model restricts the detection systems to the features
that are reliably measurable once deployed to make predictions. For
instance, security data repositories store a myriad of information
from packets, log files, and other sources, but they cannot be all
leveraged by detection systems in real-time [1, 2]. Much of the use-
ful information only becomes available after further investigation
and analysis. This latency thus prevents detection systems from
including potentially key features at run time. Therefore, the funda-
mental problem is using such features at training; even if constraints
at run-time prevent them being used by the detection systems.

Our starting point is recent work by Celik et al. [3], which used
privileged information (features available at training time, but not
at run-time), to improve the accuracy of detection. Their analysis
of privileged information demonstrated that the additional discrimi-
nating knowledge extracted from privileged features systematically
enhances the resulting model’s generalization capabilities outside
of their traditional feature set. The authors explored the use of
privileged information and noted briefly that the cultivation of the
privileged features was essential for good accuracy. In this paper,
we explore that aspect of technique selection that is cultivated by the
features of the dataset. In this, we make three primary contributions:

e We demonstrate the utility of privileged information with
several examples from recent literature.

e We apply two different approaches to train detection systems
that exploit privileged information, and present guidelines
and cautions for the cultivation of privileged information to
maximize detection gain.

e We show that correct cultivation of privileged information
in detection systems decreases relative detection error on
average 8.2% for fast-flux bot detection over systems with no
privileged information and 5.5% for malware classification.


http://dx.doi.org/10.1145/3041008.3041018

2. PRELIMINARIES

Our focus is on systems that incorporate learning models in de-
tection algorithms. Below, we provide a definition of privileged
information in a security setting, introduce the techniques to build
privileged information augmented detection algorithms and demon-
strate the utility of privileged information with examples.

2.1 Privileged Information

The formal definition of privileged information is proposed in
learning theory as a form of student learning with an intelligent
teacher. Vapnik and Izmailov motivate the insight by better than a
thousand days of diligent study is one day with a great teacher [4].
The intuition suggests an intelligent teacher providing a student with
examples along with additional explanations such as comments,
comparisons, and so on. This idea is formalized under the Learning
Using Privileged Information (LUPI) paradigm [5]. The crucial
point in this paradigm is that the privileged information is available
when the teacher interacts with a student and is not available at test
time when student operates without the supervision of teacher [4].

Our intuition is that there are many examples of security sensitive
applications that can benefit from privileged information. Privileged
information is not a replacement for a secondary, in-depth analysis;
but it does provide useful information for building a unified detec-
tion model along with features available at run-time with an increase
in both in false positives and negatives rates. In the following, we
give a formal definition and show how we improve generalization
of detection models, thus increase the accuracy of detection.

Definition 1 (Privileged information in a security setting). The
privileged information represents the features relevant to a particular
task that are bounded by constraints on using them after system
deployment. The main constraints include but are not limited to
high resource consumption, computational overhead, human labor,
tamper-resistible systems, and error-prone processes. These con-
straints affect the availability of corresponding input features; thus,
it cannot be assumed that such features will be reliably available
when making predictions for the purposes of detection at run-time.

In a traditional detection setting, a training set consists of a
pair of features and a class in (m+1)-dimensional feature vector
as X = (x,y) € R™ x Y where y is a target class such as malicious
or benign. Training set is used to learn a detection model f(x). As
opposed to traditional detection systems, we consider a detection
setting where the feature space, X, is split into two categories at
training time to characterize the information utilization of a system.

Definition 2 (Standard and privileged set). A Standard set X5 =
{x;,i=1,...,T,x; € RM} is composed of features that are avail-
able both before and after deployment of a detection system, while
features of privileged set X* = {x;,i = 1,...,T,x; € RV} have con-
straints that makes them unavailable at run-time.

We use both standard and privileged set for a model generation.
Figure 1 illustrates the detection at training and run-time time with
and without privileged information. The primary purpose of this
feature space is to leverage the amount of data that is relevant to an at-
tack and, therefore, improve the generalization of models. However,
building a system with privileged information is challenging since
it cannot be combined with the standard set at run-time. Therefore,
traditional detection eliminates the privileged set to infer knowledge
in the models. We use two approaches to integrate privileged in-
formation into detection algorithms. The internal model generation
process we use is composed of two different techniques [3]:
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o Knowledge transfer- This general algorithm considers a map-
ping function where each privileged feature is defined as a
target and the standard set as the input vector. The goal is
“estimating” the privileged set with plausible values based on
a nearly precise understanding of the relationship between
each privileged feature and a subset of standard features.

e Model influence- This technique takes a radically different
formulation in which we influence the model generation with
privileged information. We implement Support Vector Ma-
chines Plus (SVM+) algorithm to influence standard feature
set errors with privileged information. In turn, resulting detec-
tion model includes the knowledge extracted from privileged
set, yet does not require them for prediction at run-time.

Each technique is based on different assumptions about the under-
lying training set and detection model generation. However, central
to all of the techniques is extracting vital information from the privi-
leged features and leveraging them to learn models without needing
them at run-time. To establish a baseline for comparison, we define
two detection strategies based on the available features trained to
learn a model. This corresponds to a system that has either access
to both standard and privileged sets (X%,X*) or only to the standard
set (X5) at run-time. To establish a baseline for comparison, we
define two detection strategies based on the features trained to learn
a model. These strategies have either access to both standard and
privileged sets (X5, X*) or only to the standard set (X®) at run-time.
We define the strategies as follows:

1. Learning a model from complete set: This ideal system learns
a detection model from both standard and privileged sets. This
corresponds to a model inferred from the relevant features to
perform detection. However, this model is impractical to run
at deployment due to the constraints introduced in Definition
1 are present on a subset of features at run-time.

2. Learning a model from standard set: This system learns a de-
tection model solely using the standard set. This corresponds
to existing detection systems which make predictions using
the features that are reliably available at run-time.

In strategy 1, expected loss of a system with samples drawn from
an unknown probability distribution p(x,y) is minimized as follows:

R®) = [ [ L(0x0).9)p(x.y) dxdy

where L(f(x,0),y) is the loss function and 6 is the detection model
hyperparameters. Equation 1 leverages the all information inferred
from complete training set. In the presence of constraints defined on
a subset of features, we aim to obtain expected loss of techniques
similar to Equation 1 which aims at better detection than using solely
standard set as introduced in strategy 2.

ey

2.2 Examples

We demonstrate the utility of privileged information with several
examples from recent literature. We remark that previous works on
combating detection systems may include privileged information in
their existing algorithms to augment their accuracy of detection.

Data collection is not practical. Many systems audit data gener-
ated from various sources such as operating systems, application
software or network devices for future analysis. The correlation of
data from these sources may result in finding better patterns. How-
ever, algorithms may be overwhelmed by the bulk volume and the
computational costs of processing the raw data [6]. These make
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Figure 1: Comparison of a traditional detection and proposed solution in [3]: (Left) Existing detection systems generate model trained
on standard set and evaluate unseen samples using the standard set. (Right) The proposed solution trains both standard set and privileged set,
yet model only requires the standard set for performing detection on unseen samples.

the algorithms impractical for time critical tasks because of the sev-
eral minutes/hours of data collection and processing. In such cases,
features involving complex and expensive data collection can be
defined as privileged to provide real-time detection.

Data collection incurs resource consumption. The growth of mo-
bile malware requires the presence of robust malware detectors on
mobile devices. One might consider collecting data for numerous
type of attacks; however, comprehensive data collection may drain
the battery quickly and make users disable the detection mecha-
nism [7]. Instead, some features can be defined as privileged to
prevent users limiting the trade-off between usability and security.

Data processing involves human intervention. The acquisition
of data at detection time may require a skilled domain expert or
a physical experiment. For instance, manual analysis of semantic
information measured from attack alerts. The cost associated with
the data acquisition process thus renders a fully labeled training
set feasible, whereas acquisition of some data at detection time is
relatively impossible [8]. Thus, these features can be identified as
privileged to outperform the accuracy of a traditional system.

Data available after the fact. Data acquisition from geographi-
cally diverse modules can be a strict requirement depending on the
aggressiveness of auditing and the granularity of network moni-
toring. However, imperfections such as long network congestion,
data disruption or restricted access due to privacy issues in data
acquisition may prevent continuous monitoring [2]. In these cases,
some features can be identified as privileged to eliminate the strict
requirement of obtaining them in a timely fashion.

It turns out that we can define a set of features as privileged
to overcome the constraints that prevent using them for detection
at run-time. To do so, we present the techniques that efficiently
exploits the confidence information revealed by the privileged set.

3. METHODOLOGY

We seek here to evaluate the capacity of privileged features to
improve detection, thus building towards a generally applicable
technique to refine the input space of a dataset. We use two tech-
niques to model training with privileged information: knowledge
transfer, and model influence. We empirically evaluate the accuracy
of techniques on two detection systems. Our evaluation shows that
correct cultivation of privileged information improves the detection
gain of privileged-augmented detection.
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3.1 Knowledge Transfer

We start with a general approach based on using multiple mech-
anisms of knowledge transfer (KT) [3, 4]. Knowledge transfer
formulates a mapping function from standard inputs by defining
privileged inputs as target variables. For instance, consider an input
x; is identified as privileged, and the remaining features are standard
inputs. We learn a mapping function f(-) for x} where the output
of the function is the predicted value of the privileged input, and
the input of the function is the subset of the standard inputs. These
functions are learned and stored to estimate the value of a privileged
input. This process can be generalized as part of a broader definition
of a set of privileged inputs.

The key point in knowledge transfer is finding a precise map-
ping function. To do so, as a first knowledge transfer option, we
implement variants of multiple regression. The mapping function of
regression is defined as x} = f(Xj»7 B) +¢€ where f(-) is a regression
function, B is a vector of k coefficients and € is an error term. For
each privileged input, we select a set of standard inputs X‘} CcXto
learn the underlying relationship between x} and X*. In this setting,
we model the relationship of a privileged input and standard inputs
with two regression models [9]. First, we use maximum likelihood
estimation (Mle) to learn the coefficients by fitting the polynomial to
the standard inputs. We use the sum of the squares error to minimize
the error between the predicted values of privileged inputs with the
corresponding actual values. The errors are considered as Gaussian
distributed. Second, to control the over-fitting phenomenon in the
previous method, we use maximum-a-posteriori estimation (Map).
In this, we add a penalty term to the error function to avoid the coef-
ficients to be so large. We model the priors as Gaussian distribution
for insufficient or poorly distributed training sets.

As a second mapping function, we implement a weighted similarity-
based (wSim) method. This option is used to estimate the privileged
inputs from the most similar samples found in training set. We find
the closest subset of the samples that are selected by using a similar-
ity measure between privileged sample and training samples. We
first arrange k nearest samples in increasing order of their distances.
Then, the privileged inputs are replaced by assigning weights that
are inversely proportional to the similarities of their neighbors. This
allows us to infer privileged inputs with only the most similar ob-
served inputs by weighting their similarity rather than by using the
closest k samples. The privileged input x} of a sample is inferred
from k nearest neighbors samples in training set as follows:

X = Z s(xi,xj)x; / Z s(x7,%j)

jeK;; JjekK;

@



where s is the similarity measure, calculated between the observed
values of the samples x;', and x;. After examining a number of
similarity measures, we found that Euclidean distance gives the
most accurate predictions in our experiments (See Section 4).

In practice, regression-based and similarity-based options are
expected to learn the patterns of training set which should mostly
suffice for determining the nearly precise mapping functions to esti-
mate the privileged inputs. However, we might quickly lose track of
such patterns for any number of reasons; therefore unstable detec-
tion outputs may occur. We next bring up a discussion to show the
reasons and provide solutions.

Discussion- Our implementation of nonlinear multiple regression
variants may cause problems if multicollinearity among the inputs
is not identified. Multicollinearity refers to high correlation of in-
dependent input with a combination of at least one independent
input [10]. Thus, multiple regression options are well suited only
when there is no perfect correlation between standard and privi-
leged inputs. Otherwise, regression options may result in abundant
near similar inputs, and may artificially alter the output of different
models. Consider a probabilistic classifier that explicitly assumes
independence between the inputs for detection. Adding a similar
input may assign more weight to that particular sample’s target class.
This may subvert output of the system unexpectedly. We note that
this assumption is not limiting because inputs crafted appropriately
with input selection or projection techniques may eliminate them.

To address multicollinearity problem, we construct input selection
maps which are used to reduce the size of standard inputs to derive
the privileged ones. Input selection maps include variance inflation
factors (VIF) which point the dependencies among multiple standard
inputs, as opposed to only correlations among pairs of standard
inputs [10]. The identification of the dependencies is crucial, as
we map privileged inputs from the multiple standard inputs. We
obtain VIF to indicate the variance proportion (VP) along with the
condition indexes (CI) which indicate set of standard inputs that
are associated highly collinear relations with a privileged input [11].
By examining the input selection maps, we transfer the knowledge
from standard inputs when CI along with VP is quite satisfactory,
i.e., not fairly large (VP > 0.5, CI > 30) [10]. This notion of input
selection defines a metric for the robustness of inferring privileged
inputs from standard inputs which in turn improves the detection
accuracy (We give examples in Section 4).

On the other hand, the weighted similarity-based option has a
drawback of not building a model until the time that privileged in-
puts are present. In regression variants, we generate each mapping
function at training time. Then, these functions are stored to esti-
mate each privileged input at run-time. However, similarity option
repeats similar searches over dataset at detection time which might
be computationally expensive for large training sets. In these cases,
we apply stratified sampling to reduce the size of the training set.

These constraints add an extra challenge to estimate privileged
inputs. Thus, the options should be carefully applied to counter the
risk of oversimplifying the multilevel nature of dataset under study.
We next present model influence to relax these constraints.

3.2 Model Influence

Recall that knowledge transfer options estimate values for privi-
leged inputs. However, the constraints previously introduced needs
to be tackled. Reflecting on this point, we now ask the essential
question: Can we perform detection in a single step without esti-
mation of privileged inputs? To address this question, we use the
recently introduced paradigm called LUPI [3, 5, 4].

The LUPI paradigm illustrates a concept of human experience
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inspired by learning with a teacher. Paradigm defines an access
to the samples, and an additional explanation from a teacher at
training time. This concept is leveraged for improving detection
in the presence of privileged inputs [3]. We introduce standard
inputs X* as the samples that we access, and privileged inputs X*
as the explanation from the teacher. We implement the algorithmic
realization of paradigm called SVM+ which extends the formula of
state-of-the-art SVM algorithm. To understand how we influence
the detection model with the privileged inputs, first we show the
formulation of model influence (Proof and implementation details
is given in technical report [12]):

1 m m
L(w,w*,b,b*,0,8) = EHWHZ + ) o — Z o, yifi
i=1 i=1

14

objective function

WP+ Y+ 5i-0)F ()

i=1

influence from privileged inputs

Equation 3 influences the detection boundary of standard inputs
fi =wTx} + b at x] with the correction function defined by the privi-
leged inputs f;* = w*Tx} + b* at the same location. The correction
functions of privileged inputs are considered as the slack variables €
of SVM algorithm whereas determined by the inputs that are only
available before deployment. This enables a detection model to
utilize privileged inputs by providing a measure of confidence for
each labeled sample in correction space. We also use radial basis
function (RBF) to perform a non-linear classification by implicitly
mapping the inputs into higher dimensional input space.

Model influence differs from knowledge transfer in two ways.
First, detection model is learned using both standard and privileged
inputs before deployment. However, it applies only standard inputs
and does not infer values. Second, while model influence defines its
optimization problem that restricts the application of various models,
knowledge transfer options are flexible to the application of various
models. Overall, given a set of privileged inputs before deployment,
model influence allows learning models for detection without the
need of privileged inputs.

Discussion- Model influence follows a different route and elimi-
nates assumption of generating a relevant mapping function defined
between standard and privileged inputs. Thus, there are no strict
relations required to exploit between standard and privileged in-
puts. This eliminates a cumbersome process of finding a proper
mapping function as in knowledge transfer. That is, if similarity
measures of standard and privileged inputs are not appropriate in
correction space, these privileged inputs are rejected. In this way,
detection model is influenced when privileged inputs find out to
be contributing to the detection. This makes model influence more
robust to the samples with the inputs that distinctly lies abnormal
distance from the range of the standard inputs. However, knowledge
transfer options may conform privileged inputs within the range of
the standard inputs. For instance, inferring a privileged outlier input
that is not observed in the training set as in similarity-based option
of knowledge transfer.

Another advantage of model influence is converging from a sig-
nificantly smaller number of samples. The model requires O(+/n)
samples compared to O(n) samples for traditional learning methods.
However, the convex optimization problem of Equation 3 works
with the dual representation and is limited to small to a medium
number of samples. Recent attempts have proposed to accelerate
the computation by using specialized kernels [4].



4. EVALUATION

We evaluate techniques on two real-world security datasets: fast-
flux bot detection (Section 4.1) and malware classification (Section
4.2). We first describe the experimental setup and evaluation steps,
and then evaluate the systems.

Experimental Setup- We first build the input space for each of the
given raw datasets. Then, we use three state-of-the-art classifiers to
learn the detection models: Random Forest Classifier (RF), Support
Vector Machines (SVM) and k-Nearest Neighbors (kNN) algorithm.
Then, we identify the set of inputs that have constraints at run-
time. These privileged inputs are integrated into detection systems
systematically with approaches. The evaluation process includes the
application of techniques and compares them with two strategies:

e A system learns a model from complete features that com-
prised of standard and privileged features.

e A system learns a model solely from standard features in
which training set is built by eliminating the privileged inputs
from the complete features.

Evaluation Metrics- To formalize our discussion of privileged in-
puts, we evaluate the effectiveness of strategies both in terms of
detection error and performance loss. Detection error shows the
average rate of a model that incorrectly labels a sample after n runs
over a test set. Performance loss is used to establish a baseline for
the relative detection loss of models on using complete features. It
summarizes the empirical results to determine the technique that
drives the accuracy closer to the result of complete features. It is
defined as follows:

(1-Rc(6)) — (1-Ri(6))
(1-R(8))

where R, is the detection error obtained from complete features and

R; represents the detection error of the applied technique.

To report comparable results, we ran experiments by using strat-
ified random sampling to split the dataset into from 10% to 60%
training set and the remaining as a test set. All experiments are run
over 3-10 independent realizations, and results are reported with the
mean and standard deviation. Finally, we tune hyperparameters of
the models via grid search based on 5-fold cross-validation over the
training set, and then they are used to learn the models.

4.1 Case Study: Fast-Flux Bot Detection

Our first case is a fast-flux service bot detection (FFdetector) [13].
Fast-flux servers are adopted by attackers to hide the actual IP
addresses of the servers for malicious activities. FFDetector is
designed to detect the fast-flux servers using multiple sources of
information. The combination of inputs from various sources is
intended to improve the discrimination of content delivery networks
(CDN) from fast-flux servers, as they share many technical similari-
ties. The raw dataset consists of 4 GB DNS requests of benign and
active fast-flux servers collected in early 2013. Each DNS packet
is dissected to construct the19-dimensional numerical inputs. First
two columns of Table 1 present the categorization of timing, domain
name, spatial, network, and DNS answer inputs. The extraction
of these inputs entails various dependencies. For instance, domain
name based inputs require a reliable whitelist of benign domain
names to measure the similarity of a domain. These dependencies
entail computational delays in mission critical systems. For exam-
ple, finding the KL-Divergence of a given domain from a whitelist
of domain names or IP coordinate database and WHOIS processing
may take several minutes/hours to collect. Thus, we define these as
privileged features to assure real-time detection.

PL =100

)
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Figure 2: Fast-flux bot detection results. Log of detection error (up-
per) compares the approaches. Performance loss (bottom) presents

the relative loss over complete dataset.

Results- We start by presenting the detection error of complete and
standard sets. We then compare these results with the application of
knowledge transfer and model influence. In this set of experiments,
we consider spatial inputs as privileged inputs. Figure 2 presents the
log-scale error bar plot of detection error where x axis lists the names
of the applied technique. These results are summarized regarding
their performance loss as shown in the lower part of Figure 2.

The upper leftmost of the figure shows the application of models
to the complete dataset. We observe that RF, kNN, and SVM gives
nearly perfect detection accuracy. Their average detection error is
less than to 1%, and SVM yields the maximum average detection
error of 0.54%. One way of sustaining detection with the absence
of spatial inputs is retraining the models on standard features. First,
we notice that the input space of FFdetector is well-defined, as the
elimination of privileged inputs from training set gives higher de-
tection error than that of complete dataset, as these inputs introduce
loss of information. The average detection error of kNN, RF and
SVM increases from 0.6%, 1.01%, 0.54% to 2.89%, 1.77%, 8.25% .

The most apparent change in the error is evoked by SVM, whereas
changes found in RF and kNN are close to those observed in com-
plete dataset. To understand the impact of privileged inputs, we
verify their utilization in internal structures of the models. Through
investigation of RF trees, we observe that the spatial inputs are
substituted by standard inputs in classification trees because the dis-
crimination power (i.e., in terms of information gain) of that input
is similar to the privileged one. Thus, RF is able to replace each
spatial input with a corresponding standard input which gives simi-
lar results for those of complete dataset. KNN detection loss is also
recovered by a large combination of inputs. That is the DNS answer,
and network input categories are often sufficient to determine the
nearest neighbors of the actual class in the absence of spatial inputs.
Finally, we find that the main source of the increase in detection
error of SVM is false positives resulted from incorrect classification
of fast-flux servers to CDNS, as spatial inputs act as primary inputs
to distinguish fast-flux servers from CDNs.

Now, our goal is eliminating the retraining and detection loss
introduced by standard dataset, which is the central purpose of the
techniques. This allows us to apply the derived detection models
inferred from the complete dataset before deployment. We start



Input Category Description Complexity Dependency
Number of unique A records O(N)
DNS answer Number of NS records Packet analysis
Edit distance O(ND)
Domain name Kullback-Leibler divergence (unigrams and bigrams) O(ND*W) Whitelist of benign domain names
Jaccard index (unigrams and bigrams) O(N2D?)
Time zone entropy of A records
Spatial Time zone entropy of NS records O(NM) IP coordinate database lookup
Minimal service distances (u and G) (external source)
Network Number of distinct autonomous systems O(N) WHOIS processing
Number of distinct networks (external source)
Network delay (¢ and ©)
Timing Processing delay (u and ©) O(N) HTTP requests
Document fetch delay (u and ©)
N = Number of test domain names W = Number of domain names in whitelist
D= Max domain name size M= IP coordinate size

Table 1: Fast-flux bot detection system feature descriptions (u is for mean, and G is for standard deviation).
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Figure 3: Visualizing the input selection map for time zone entropy
of A records in a fast-flux detection. Eligible standard inputs for
knowledge transfer are those which have condition index (CI) < 30
and variance proportion (VP) < 0.5.

with the application of knowledge transfer. Recall that to employ
knowledge transfer options; we first need to derive a subset of
standard inputs to generate mapping function for each privileged
inputs. To do so, we construct input selection maps to find the most
relevant standard inputs to estimate the privileged ones.

Figure 3 shows an example of input selection map for privileged
input time zone entropy of A records. The leftmost column shows
the four largest condition index (CI) values with corresponding vari-
ance proportions (VP) demonstrated by the circles. The background
colors, the size of the rectangles and circles are used to label severity
of the CI and VP values [11]. We eliminate the standard inputs from
i15 to i1g, the inputs in the first two rows wherein CI > 30 and VP
> 0.5. These inputs tell us that they are highly correlated with the
privileged input of time zone entropy of A records. This process can
be generalized for a set of privileged inputs.

‘We now present the results of the regression based options of Mle
and Map in estimating the privileged inputs. We observe that all
options, except Mle, benefit statistical dependencies between privi-
leged and standard inputs, and reduces the detection error of kNN,
and SVM from 2.89% and 8.25% to 1.81% and 0.76%. However,
standard dataset trained with RF classifier yields good performance
in some cases. For instance, we observe that Wsim and Map give
1.89% and 2.2% after recovery, whereas RF trained on standard
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dataset achieves 1.77%. While it is dataset dependent, the decline in
detection error of Map and Wsim is promising. However the results
of Mle is surprising, it gives an average of 39.2%, 36.7% 37.9%
detection error for KNN, RF and SVM classifiers.

We observe that Mle regression suffers primarily from well-
known confounding effects of substantial biases. This causes over-
fitting of the mapping functions for estimating privileged inputs.
Thus, the test set shows a sharp increase in detection error. This is
confirmed by checking the predicted values of each privileged input
and responses of the classifiers. The inputs of FFDetector dataset
is mostly composed of real-valued inputs, and a small change in
privileged inputs influences the detection output. As an example, the
entropy of the leaf of a RF tree may totally change if spatial input
minimal service distance prediction is biased to one class. How-
ever, Map provides unbiased weight estimates for the privileged
inputs by assigning residual terms. This reduces the variability of
the estimated weights for all models.

It is important to note that the results of model influence are
quite promising. It utilizes the spatial inputs accurately. Because it
uses the objective function derived from SVM, it is fair to compare
their results. We observe that the average detection error of model
influence shows improvement over SVM, reducing from 8.25% to
6.36%. We discuss the effectiveness of model influence in detail
later in the corresponding section.

4.2 Case Study: Malware Classification

As a second case study, we use the publicly available Microsoft
malware classification dataset [14]. The goal of the dataset is to clas-
sify the nine malware families into their respective families, which
is used to detect new samples of the malware. The complete dataset
is split into a labeled training and an unlabeled test set. There are ap-
proximately 11000 observations in both files. The files are roughly
50MB in size, results in 200GB of training and test data. Each file
consists of two set of files for each polymorphic versions of the nine
malware classes: byte files and metadata manifest. The byte files
include the raw hexadecimal representation of the malware binary
contents. Metadata manifest contains the interactive disassembler
tool (IDA) [15] logs of binary assembly source code (asm). The
metadata manifest of each malware presents additional information
such as memory allocation and function calls.

We use the labeled training set to construct the input space. The
input extraction of malware dataset is more complicated than FFDe-
tector, as two large separate raw data sets are given. We split the



00409C00 18 53 52 00 D1 E8 F7 D0 83 E0 01 C3 Al 18 53 52
00409C10 00 C1 E8 11 F7 D0 83 E0 01 C3 A1 18 53 52 00 C1
00409C20 E8 02 F7 DO 83 EO0 01 C3 Al 18 53 52 00 C1 E8 03

00409C30 F7 DO 83 EO0 01 C3 Al 18 53 52 00 C1 E8 04 F7 DO

00409C40 83 E0 01 C3 A1 18 53 52 00 83 E0 60 33 C9 3C 60
00409C50 OF 95 C1 8B C1 C3 A1 18 53 52 00 C1 E8 07 F7 DO
00409C60 83 E0 01 C3 A1 18 53 52 00 C1 E8 08 F7 D0 83 E0
00409C70 01 C3 A1 18 53 52 00 C1 E8 09 F7 DO 83 E0 01 C3

var_C = dword ptr -0Ch FF BD BE 55 B8
Dst = dword ptr 8 FC CC 9F : 16
MaxCount = dword ptr 0Ch| Do 7¢” AA  B5 Pl

push ebp

mov eax, large fs:0

jmp short loc_401883
sub esp, 0Ch

cmp esi, OFFFFFFFEh
mov eax, dword_43D260
xor eax, ebp

mov [ebp+var_10], esp

Push call mov Eax
xor short Retn add proc

Figure 4: An example of a malware family raw files of hexadecimal representations, and disassembler output. We use frequency of byte

bigrams and tokens for standard and privileged set, respectively (Right).

dataset into two groups: byte files and asm files. The byte files are
used to construct an input space by counting the frequencies of each
hexadecimal duo (i.e., byte bigrams), and the metadata manifest file
is used as a textual depiction of the underlying byte files. We also
extract the frequency count of distinct tokens in asm files. As an
example, functions such as mov (), cmp () in the text section is in-
cluded as a bag of word counts. These tokens capture the execution
differences of malware binaries. Figure 4 presents a representative
example of raw data and extracted inputs: raw hexadecimal repre-
sentation of the malware’s binary content, a log containing metadata
manifest extracted from the binary by the disassembler, and standard
inputs from byte files and privileged inputs from asm files.

We treat the dataset as a binary classification problem (e.g., mal-
ware classes 1 and 8) to save on computation time. We also apply
input selection to reduce the 272 byte-level input space by using a
correlation-based filtering mechanism. The correlation-based filter
allows us to obtain the subset of inputs by measuring the relevance
of each input as having a minimal correlation between classes but
being extremely correlated to a particular class [16].

This particular dataset reveals an important consideration: in-
puts from asm files are not necessarily be available or accurate at
detection time. Consider a case where different versions or types
of disassembler are used to obtain the asm files. This may result
in a great deal of human intervention—error-prone and software
dependent process that provides no guarantees regarding the avail-
ability of the input space. Further, these constraints may introduce
latency in obtaining them. We will walk through the application
of experiments by considering byte inputs as standard inputs and
inputs from asm files as privileged inputs.

Results- Figure 5 presents the experimental results. We find that
complete set yields detection error with an average of 5.1%. 3.36%
and 4.32%, whereas standard dataset yields 10.37%, 8.72%, and
8.22% for kNN, RF and SVM classifiers, respectively. Note that
under traditional detection setting, the standard way of dealing with
this problem is learning a detection model using inputs from only
byte files (i.e., standard features). However, our goal is utilizing the
privileged inputs to improve detection accuracy.

We first evaluate knowledge transfer options. We see that knowl-
edge transfer options show unexpected variations in detection errors.
Interestingly, most of the approaches fail to estimate privileged in-
puts accurately. For instance, kNN classifier produced the maximum
detection error, yielding 48.1% and %31.4 average detection error
for Mle and Map, which are only slightly better than random guess-
ing between the two classes. We observe only detection gain in RF
classifier with the application of Map. The average detection error
of both reduces from 8.72% to 8.24% compared to results of RF
trained on standard dataset.

To understand the performance differences, we inspect input
selections maps. It turns out that standard dataset does not contain
enough useful information about the correlation between certain
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Figure 5: Malware classification results. Detection error (upper)
compares the approaches. Performance loss (bottom) presents the
relative loss over complete dataset.

standard inputs and the privileged inputs. Recall that we extract the
asm files as a textual description of malware binaries. This shows
that inputs derived from two different spaces may not have a precise
mapping between them through knowledge transfer options. As a
result, the disparity between these spaces fails to estimate privileged
inputs and yields unpredictable detection errors. We note that this
might be improved by application of more comprehensive mapping
options derived from knowledge transfer.

We turn now to the striking results of model influence. As intro-
duced in Section 3.2, model influence does not estimate privileged
inputs by generating a mapping function. Instead, it encodes the dis-
crimination power of privileged inputs into detection model. More
specifically, we influence the detection model by introducing asm
inputs in the correcting space of the optimization problem while
rejecting the inappropriate similarity measures between two input
spaces in the correction space. This results in a detection model
which is generated in the byte input space with the cooperation of
the asm files produced by the dissembler. However, the system
runs without the requirement of asm files after deployment. In this
manner, we relax the cumbersome process of finding accurate map-
pings of KT options. As illustrated in Figure 5, we observe this
positive effect. Model influence gives superior results to other tech-
niques, an average of 5.46% detection error, which is 2.1% less than
the best result of the complete dataset obtained by RF. This yields
1.23%, 2.6%, and 1.61% performance loss. That being said, the
privileged information reduces the detection error when selection of
the techniques is determined by the input space of the dataset.



S. RELATED WORK

We validate the performance of knowledge transfer and model
influence over detection systems of malware classification and fast-
flux bot detection. There has been a wealth of research focused on
these domains. For example, researchers have used specific patterns
to group malware samples into families [17, 18, 19], and have used
DNS information to understand and predict botnet domains [20,
21, 22, 23, 24]. The previous detection systems primarily focus
on the features only available at run-time and tied to the specifics
of these features to augment the detection performance. Unlike
previous work, we demonstrate a systematic cultivation of privileged
information into detection algorithms and increase their accuracy.

The use of privileged information has recently attracted atten-
tion in a few research areas such as computer vision, and image
processing. Wang et al. and Sharmanska et al. attempt to derive
models from images with an auxiliary information provided as a
privileged set [25, 8]. Hernandez-Lobato et al. treated learning
with privileged information paradigm under the Gaussian process
classification (GPC) [26]. Lopez-Paz et. al presented applications
of privileged information in semisupervised, unsupervised and mul-
titask learning [27], and Celik et al. used privileged information
for addressing patients’ privacy concerns in healthcare data analyt-
ics [28]. Unlike our techniques, their methodology is not designed
to parse the security data but rather to determine if there is a possi-
bility of application to a domain specific information. Thus, each
has a significant limitation or assumption that does not apply well
to security sensitive applications.

6. CONCLUSION

In this paper, we explored generally applicable techniques about

training detection system models using privileged information. Through

an explicit connection between a privileged set that is reliably avail-
able at training time, but not at run-time and current features of
detection systems, we gave a straightforward analysis showing that
privileged features can be used to improve generalization of detec-
tion models for better detection regardless of their high detection
performance. We used two techniques to integrate the useful in-
formation extracted from privileged set into the resulting detection
models: knowledge transfer, and model influence. First, we used
knowledge transfer, a general technique for extracting knowledge
from privileged information by estimation from available informa-
tion. Second, we used model influence, a model dependent tech-
nique of influencing the model optimization with additional knowl-
edge obtained from privileged information. By correctly cultivating
the features in techniques, we improved the accuracy of detection
systems regardless of their high detection performance. We showed
up to 8.2% decrease in relative detection error for fast-flux bot de-
tection over benchmark systems with no privileged information, and
5.5% for malware classification.
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