
SYSTEMS SECURITY
Editors: Sean W. Smith, sws@cs.dartmouth.edu | William Enck, whenck@ncsu.edu

68 May/June 2016 Copublished by the IEEE Computer and Reliability Societies 1540-7993/16/$33.00 © 2016 IEEE

A dvances in machine learning
have led to transformational

new fields of technology and intro-
duced capabilities not previously
possible. Emerging applications
in self-driving cars, data analytics
on massive datasets, adaptive and
interactive entertainment, and Web
search and sentiment analysis are
but a few of the technologies that
will impact society in the decades
to come.

Perhaps no technology field
has relied on or benefited from
advances in machine learning more
than systems and computer secu-
rity. Machine learning is the basis
for almost all nonsignature-based
detection, whether identifying

malware, network intrusions, spam,
rogue processes, fraudulent trans-
actions, or other malicious activ-
ity. Indeed, machine learning has
become so intertwined with secu-
rity that the technical community’s
ability to apply machine learning
securely will likely be crucial to
future environments.

In this article, we consider
whether today’s use of machine
learning in security-sensitive appli-
cations is vulnerable to nonobvious
and potentially dangerous manipu-
lation. Here, we examine sensitivity
not only in the context of computer
security but also in any applica-
tion whose misuse might lead to
harm—for instance, crashing an

autonomous vehicle or bypassing
a content filter. We explore the use
of machine learning in this area par-
ticularly in light of recent advances
in the computationally efficient
creation of adversarial samples
targeted at widely used classes of
machine-learning approaches.

Machine Learning
in Practice
Consider a generalized use of
machine learning as a classifier
and an example system identify-
ing spam email. (For brevity, we
restrict ourselves to machine-
learning classifiers—identifying a
sample as being from some output
class, among a predefined finite set
of [potentially] many classes—
trained on labeled data. Many
other kinds of machine-learning
systems and training techniques
exist; our arguments apply almost
universally.) A classifier is a sys-
tem that takes an input sample and
identifies it as one of several output
classes (or none, if the sample can’t
be identified confidently). In this
example, the system determines
whether the item is in the “spam” or
“not spam” class.

In machine learning, each
sample is input into the classifi-
cation process as a vector of fea-
tures that describe the sample.
For email, typical features might
be keywords, sender and recipi-
ent domain names, existence of
embedded content, or number
of emails of a particular type. The

Machine Learning in Adversarial Settings
Patrick McDaniel, Nicolas Papernot, and Z. Berkay Celik | Pennsylvania State University

system determination is based on
how that set of input features is
interpreted by the model for the
classification process—in this case,
a model of how email input fea-
tures indicate spam or not.

Conceptually, a model encodes
semantic information about how
certain features or sets of features
relate to the output class. For exam-
ple, certain keywords or
keyword combinations
could be strong indica-
tors of an email being
spam. In practice, models
will encode many differ-
ent such relationships,
each weighted on the
basis of the association’s
strength. An aggregate calculation
over the feature associations with
respect to the input features results
in an output classification and/or
confidence score.

To date, the key assessment met-
ric for these systems has been accu-
racy: How often does the model
pick the correct class for a sample?
Several accuracy measures exist,
including precision, sensitivity, and
specificity. These quality assess-
ments directly relate to assumptions
about the expected distribution
of the classification system input
and don’t account for adversarial
behavior, which often falls outside
of this expected input distribution.
In other words, accuracy can be
viewed as a measure of the system’s
average performance, whereas the
security evaluation is interested in
worst-case performance.

Adversarial Samples
One of the limitations of machine
learning in practice is that it’s
subject to adversarial samples.
Adversarial samples are carefully
modified inputs crafted to dictate
a selected output. In the context of
classification, adversarial samples
are crafted to force a target model
to classify them in a class different
from their legitimate class—for

instance, spam emails that bypass
a spam filter. The modifications,
called perturbations, are introduced
to yield a specific adversary-selected
misclassification. In general, adver-
saries want to perturb the sample as
little as possible so that to a human
observer, for example, it remains
indistinguishable from the original
unaltered sample.

Over the past few years, sev-
eral algorithms used to automate
adversarial-sample generation have
emerged for multiclass classifiers
built, for example, with deep neural
networks. In late 2013, Christian
Szegedy and his colleagues were
the first to reveal the vulnerability
of trained deep neural networks to
slight perturbations of their inputs
when they cast sample generation
as an approximate optimization.1
Ian Goodfellow and his colleagues
followed with a fast gradient sign
method, which linearly approxi-
mates the cost function in the neigh-
borhood of legitimate samples to
allow faster crafting of adversarial
samples.2 Finally, Nicolas Paper-
not and his colleagues proposed
an iterative crafting algorithm that
uses the model’s Jacobian to select
perturbations yielding the adver-
sary’s desired classification. They
showed that adversaries can reli-
ably achieve chosen adversarial tar-
get classes for any legitimate source
class.3 Their iterative approach
also allows greater control over
the introduced perturbations, thus
reducing their magnitude. These
more recent works expand on
the classical adversarial machine-
learning efforts described by Pavel
Laskov and Richard Lippmann.4

For example, related past work
explored the formalization of worst-
case errors against learned binary
classifiers,5 reverse engineering of
binary linear classifiers to identify
inputs they misclassify,6 and con-
tamination of training data jeopar-
dizing binary classifiers’ integrity
and availability.7

Consider the following real-
world scenario in which
an autonomous vehicle
uses a camera to identify
and recognize roadside
signs (see Figure 1). Once
a sign has been identified,
its image is fed to a neural
network for classification
in one of the predefined

sign classes. Here, the neural net-
work identifies the sign as a stop
sign. Now, consider adversaries
capable of altering the input of this
neural network. They can force the
model to output a wrong class upon
processing a slightly perturbed vari-
ant of the stop sign’s image. If adver-
saries can transfer perturbations to
the neural network’s image input,
the autonomous system can be
misled into misclassifying signs—
reading stop signs as yield signs, for
instance—potentially resulting in
vehicles crashing into one another.

Again, to humans, adversarial
samples are often indistinguish-
able from original samples. Humans
would classify both images in Fig-
ure 2 as stop signs. In real-world
tests using the Papernot algorithm,
a trained deep-learning neural net-
work classifies Figure 2a as a stop
sign and Figure 2b as a yield sign.
In actuality, the image on the left
is an ordinary image of a stop sign,
whereas the image on the right is an
adversarial sample crafted by solving
the earlier optimization problem.

Learning Models from
Training Data
To understand why adversarial
samples exist, it’s important to
explore how learning models are

In the context of classification,

adversarial samples are crafted to force

a target model to classify them in a class

different from their legitimate class.

www.computer.org/security 69

built. Although there are other
approaches, the models we discuss
here are trained in a supervised
fashion using labeled training data.
This training data is a corpus of
samples taken from the expected
input distribution and labeled with
their class. In the case of our spam
system, this sample data would be
a large number of emails that indi-
cate whether or not they are spam.
In the sign recognition system, the
training data would include numer-
ous signs and their type: stop, yield,
and so on. These labels are taken as
ground truth in constructing the
models to be used at runtime.

Generally, model training
begins with a null model represent-
ing no information. The training
method iteratively processes each
input sample in the training data
and updates the model. This itera-
tive refinement process strength-
ens or weakens the classification
associations as supporting evi-
dence is identified. Generally, the
larger and more diverse the train-
ing data is, the more accurate the
system becomes.

The refinement process of
the input data’s internal repre-
sentations is specific to the kind
of machine-learning technique
employed: shallow and deep neu-
ral networks represent the model

as a complex feed-forward network
of mathematical neurons (para-
meterized elementary computing
units), support vector machines use
high-dimensional hyperplanes to
separate classes, and random for-
ests represent the model as a collec-
tion of learned decision trees. Some
machine-learning techniques don’t
store a model—for instance, near-
est neighbors—but simply use lazy
evaluation to compare unseen sam-
ples to the training samples.

Regardless of technique, the
model represents an approximation
of the phenomena being modeled;
unless the training data contains
all possible input feature vectors, it
can’t fully capture a complete model
of the target domain. In nonadver-
sarial environments, this often isn’t
a problem. Data representative of
the expected input distribution is
sufficient for training. With enough
input emails or images of signs to
train on, input normally encoun-
tered at runtime will be sufficiently
similar to allow the model to output
a correct classification prediction by
extrapolating from training samples.

Exploiting Natural
Complexity in Decision
Boundaries
A problem arises when adversar-
ies exploit the system by providing

input samples that aren’t within the
expected input domain. Here, they
use information about the system to
find where the model is inaccurate
owing to items missing from the
training set.

Consider an unsophisticated
sample-generation algorithm in
which adversaries simply test differ-
ent input samples until they find a
combination of input features that
reliably achieves the desired clas-
sification. For example, spammers
could simply modify email typo-
graphy, vocabulary, addresses, and
domains; test against the system;
and see which are marked as legiti-
mate (not spam). Indeed, this is
common practice today; each new
spam campaign contains carefully
tested and selected email features
that reliably bypass online spam fil-
tering systems.

Figure 3 illustrates model train-
ing and use. In this figure, the plane
represents all possible input fea-
ture vectors. For each sample, the
input feature values uniquely iden-
tify its coordinates in the plane.
Two classes A and B (that is, spam
and not spam) are regions in a two-
dimensional plane separated by the
smooth curved line. All samples
above the smooth curved line are
in class A, and those below are in
class B. This line is called the real

Figure 1. An autonomous vehicle uses a camera to identify and recognize roadside signs. Once a sign has been identified, its image is fed to a
neural network for classification in one of the predefined sign classes. Here, the neural network identifies the sign as a stop sign.

… … …

Input layer Output layer

Hidden layers
(e.g., convolutional, rectified linear, …)

p0 = 0.01

p1 = 0.93

p8 = 0.02

pN = 0.01

Neuron
Weighted link
(weight is a parameter part of θo)

…

70 IEEE Security & Privacy May/June 2016

SYSTEMS SECURITY

decision boundary. The model is
trained using the input samples
labeled X. On the basis of these
samples, the training algorithm
approximates the class separa-
tion as the linear dashed line—the
model decision boundary. The dis-
tance between the real and model
decision boundary is called the
model error or space of adversarial
samples (adversarial regions).

One might intuit that the model
the algorithm learned by was faulty,
but this isn’t true.

This is a legitimate and highly
accurate model for the training
data: every sample in the input
sample distribution is correctly
classified. Indeed, one can’t do
better than this without more
samples or information; a natural
error is introduced by the fact that
the training data can’t, in almost
all circumstances, cover the entire
feature space or provide enough
data to illuminate the real deci-
sion boundary with anything other
than approximate accuracy. Mak-
ing matters worse, the real deci-
sion boundary generally becomes
more complex as the phenom-
enon becomes more nuanced and
the feature and dimension space
becomes larger.

It’s this complexity that adversar-
ies exploit. They simply take a sam-
ple and use trial and error (as in our
earlier spam example) or informa-
tion about the model error (as in the
recently developed adversarial sam-
ple algorithms) to find a few pertur-
bations that “move” the sample into
the region of adversarial samples.

Herein lies the crux of these sys-
tems’ vulnerability. Because adver-
saries can control the input sample
features, they explicitly drive the
malicious sample into the regions
of the input space that are ambigu-
ous with respect to the model. In
short, they search for or calculate a
sample that’s in one class (for exam-
ple, spam or stop sign) but, owing
to the ambiguity resulting from

incomplete training data, is classi-
fied as being in another class (for
example, not spam or yield sign).

The Importance of
Model Resilience
We argue that to address adver-
sarial action, a new metric for
machine-learning model quality
is needed: model resilience.8 Model
resilience can be defined as robust-
ness to perturbations of its input.
Simply put, the more perturbation
needed to move a sample from its
legitimate class to an adversarial

class, the more robust the model
is to adversarial manipulations of
its inputs.

In practice, we can achieve
resilience in several ways. In the
simplest approach, we can simply
require higher confidence in out-
puts. This would move the decision
boundaries further apart and thus
leave fewer regions of ambiguity.
This of course would affect model
accuracy. Other approaches would
be to refine the training process to
smooth decision boundaries, or to
measure each input’s likelihood of

Figure 2. To humans, adversarial samples are indistinguishable from original samples. (a) An ordinary
image of a stop sign. (b) An image crafted by an adversary.

(a) (b)

Figure 3. Model training and use. The plane represents all possible input feature vectors. For each
sample, the input feature values uniquely identify its coordinates in the plane. Two classes A and B (that
is, spam and not spam) are regions in a two-dimensional plane separated by the smooth curved line.

Training samples

Mode

Adversarial
regions

Adversarial
regions

Adversarial
regions

Class A

Class B

www.computer.org/security 71

being an adversarial sample based
on its characteristics, for example,
closeness to the centroid of a non
selected class. Such approaches
aren’t well understood, but they’re
certain to be a necessary element
to securing the future of machine
learning in adversarial settings.

M achine learning is driving
rapid innovation and pro

viding new insights into how we
can interpret and control complex
data and environments. With these
advances, adversaries will seek to
circumvent their controls and drive
systems for their malicious ends.
In recognition of this reality, the
machinelearning and security com
munities must endeavor to inocu
late systems against such misuse.
Thus, we must revisit our measures
of quality for machinelearning
techniques and weigh not only the
results they produce but also their
ability to resist samples carefully
generated by adversaries.

References
1. C. Szegedy et al., “Intriguing Prop

erties of Neural Networks,” Proc.

Int’l Conf. Learning Representations
(ICLR 14), 2014; http://arxiv.org
/abs/1312.6199.

2. I.J. Goodfellow, J. Shlens, and C.
Szegedy, “Explaining and Harness
ing Adversarial Examples,” Proc.
Int’l Conf. Learning Representations
(ICLR 15), 2015; http://arxiv.org
/abs/1412.6572.

3. N. Papernot et al., “The Limita
tions of Deep Learning in Adver
sarial Settings,” Proc. 1st IEEE
European Symp. Security and Privacy
(EuroS&P 16), 2016; http://arxiv
.org/abs/1511.07528.

4. P. Laskov and R. Lippmann,
“Machine Learning in Adversarial
Environments,” Machine Learning,
vol. 81, no. 2, 2010, pp. 115–119.

5. M. Kearns and M. Li, “Learning in
the Presence of Malicious Errors,”
J. Computing, vol. 22, no. 4, 1993,
pp. 807–837.

6. D. Lowd and C. Meek, “Adversarial
Learning,” Proc. Knowledge Discov-
ery in Data Mining (SIGKDD 05),
2005, pp. 641–647.

7. B.A. Nelson, “Behavior of Machine
Learning Algorithms in Adversarial
Environments,” PhD thesis, Dept.
of Computer Science, Univ. Cali
fornia, Berkeley, 2010.

8. N. Papernot et al., “Distillation as
a Defense to Adversarial Pertur
bations against Deep Neural Net
works,” to be published in Proc.
37th IEEE Symp. Security and Pri-
vacy, 2016.

Patrick McDaniel is a Distinguished
Professor in the School of Elec
trical Engineering and Com
puter Science at the Pennsylvania
State University. Contact him at
mcdaniel@cse.psu.edu.

Nicolas Papernot is a graduate stu
dent at the Pennsylvania State
University. Contact him at
ngp5056@cse.psu.edu.

Z. Berkay Celik is a graduate student
at the Pennsylvania State Univer
sity. Contact him at zbc102@cse
.psu.edu.

 DEADLINE FOR 2017 AWARD NOMINATIONS
DUE: 15 OCTOBER 2016

In 1982, on the occasion of its thirtieth
anniversary, the IEEE Computer Society
established the Computer Entrepreneur Award
to recognize and honor the technical managers
and entrepreneurial leaders who are responsible
for the growth of some segment of the computer
industry. The efforts must have taken place over
fifteen years earlier, and the industry effects must
be generally and openly visible.

All members of the profession are invited to
nominate a colleague who they consider most
eligible to be considered for this award. Awarded
to individuals whose entrepreneurial leadership is
responsible for the growth of some segment of the
computer industry.

COMPUTER ENTREPRENEUR AWARD

AWARD SITE: https://www.computer.org/web/awards/entrepreneur

www.computer.org/awards

Selected CS articles and columns
are also available for free at

http://ComputingNow.computer.org.

72 IEEE Security & Privacy May/June 2016

SYSTEMS SECURITY

